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1. INTRODUCTION

In the analysis of quantitative variability in predominantly cross-fertilized forage
species, it is often extremely convenient to make use of family groups produced
by natural crossing. A group of offspring derived from a single ovule parent which
has been pollinated under nursery conditions without control of male parentage,
is commonly termed an open-pollinated progeny group. Single-cross families are
those produced by controlled crossing of pairs of genotypes without emasculation.
For the analysis of many traits it may be assumed that the offspring so derived
represent half-sib and full-sib groups produced under random mating, provided
the level of self-fertility in the species is sufficiently low; but for accurate analyses
of seedling characters or of characters correlated with time of maturity, it may
often be essential to consider the complexity introduced by maternal effects and
by phenotypic assortative mating.

The present series of papers is concerned with the variation shown by date of
ear emergence, seed weight, and measures of seedling growth rate in the Australian
Commercial population of Phalaris tuberosa L. In this first communication, the
statistical theory necessary for the interpretation of the available observations is
developed: we will consider in turn the effects of partial self-fertilization, of pheno-
typic assortative mating, and of maternal effects, on the expectations of the
observed covariances among relatives.

2. SELF-FERTILIZATION AND RANDOM MATING

The genetical structure of a population in equilibrium under a combination of
self-fertilization and random mating has been studied by a number of authors.
I t was demonstrated by Haldane (1924) that if a proportion s of all matings involve
self-fertilization, the remainder being at random, equilibrium at an autosomal
locus with two alleles A\, Ai implies that the genotype frequencies / n , /12, /22 are
such that

4/11/22 -/l22 = j ^ / l 2 (1)

More recently, Bennett & Binet (1956) examined the approach to equilibrium of a
pair of loci under this mating system, concluding that there exists a positive
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association between the homozygous states at the two loci at equilibrium, even
when the loci are located on different chromosomes. In both these studies it was
assumed that all genotypes were equally viable. Hayman (1953) investigated the
equilibrium conditions for a single locus at which natural selection favours the
heterozygote at the expense of the two homozygotes.

The following model appears to be a little more realistic for the study of a quantita-
tive character which is unaffected by natural selection, in a species which is pre-
dominantly out-breeding. Suppose each ovule parent gives rise to a proportion
st of inbred progeny and a proportion 1 — s; of progeny produced by random mating,
where st varies independently of the level of homozygosity of the parental genotype
and has mean s. Suppose further that the probability of survival of an inbred
individual is p relative to that of the outbred progeny, and let kt =psil(l—si +pst)
denote the incidence of inbred individuals among the surviving members of a
family, where Aj has mean k and variance of.

Consider two unlinked loci with alleles Ai,A2; Bi,B2, with additive effects on
the quantitative character under observation, and let /ft, /f2, f§2; fn,fi2, ftz denote
the frequencies of the genotypes at each locus in the population of survivors. Then
/ i = /n + i/&. / i =/n + i/?2> and/ | = 1 - / ? , / | = 1 - / } . At either locus, the change
in /n in one generation is

so that at equilibrium

4/11/22 ~/i22 =YZ-Jv* (2)

The theory of Bennett & Binet (1956) leads to the following equilibrium genotype
frequencies in the population of survivors;

Genotype Frequency Effect

A\A\BiB\ fiifii + D —a — b
AiA1BiB2 fufi2~^D -a
A\A\B2B2 fnfh + D -a + b
A\A<>B\B'\ fa f^ 2.Z) b

0
+ b
+ a-b

A2AiB2B2 J22J2Z + D
where

n _ kps{l-s)(l~s+ps) tatafbth

If we suppose the genotypic values to be as given in the third column above, the
overall mean of the population is given by
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and the total genetic variance is

which is the sum of the contributions of the individual loci.
Let g{ denote the genotypic value of an ovule parent and g^ that of a pollen

parent, both expressed as deviations from the population mean: then the mean
of their offspring will be £(1 — h)(9i + 9j) + hffi> a n ( i *n e covariances of parent and
offspring become

(3)
cov(<Sr,O) =

The covariance of mid-parent and offspring is therefore \a^.
The mean performance of the offspring of sire (j) is obviously |(1 — kfy, and the

mean of the offspring of dam (i) under open-pollination is similarly ^(l + k^g^
The component of variance among sires is therefore £<^(1 — k)2, and that among
dams is !o^[(l + &)2 + c7f]. The variance among single-cross family means is also
readily shown to be |<7p(l +kz + o%), so that an analysis of offspring performance
can be expected to lead to the following partition of the total genetic variance:

Source of variation Component

Sires
Dams
Sires x dams
Within families

Total

3. THE CONSEQUENCES OF PHENOTYPIC ASSORTATIVE MATING

The foundations of the theory of phenotypic assortative mating were set out by
Fisher (1918) and by Wright (1921). Reeve (1953, 1955, 1961) has studied in detail
the estimation of heritability and genetic correlation in a progeny test involving
assortative mating among parents taken from a random mating population, giving
particular emphasis to the expectations of the regressions of offspring on mid-parent,
and the components of variance and covariance among full-sib family groups.
In the course of the analysis of the observations made of variation in ear emergence
date and seed weight in Phalaris tuberosa, it has been necessary to derive corre-
sponding formulae appropriate to half-sib families produced in a population in
equilibrium under phenotypic assortative mating, and to consider the effects of
genotype x season interaction on the estimation of genetic parameters under this
mating system.

Expectations of the various covariances among relatives will be derived initially
for a single additive genetic quantitative character which is not subject to
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genotype x season interaction, so that the general method of approach can be
outlined, and the notation introduced.

(i) A single additive genetic character under assortative mating

The basic statistical theory involved in the derivation of expectations under
phenotypic assortative mating may be set out in the following way. Suppose we
are dealing with a sequence of ordered variables denoted by Xt, i = 1,2,... n, which
show correlations r^, i,j = 1,2,...n: then the partial correlation coefficient rikj

involving any three variables X{, Xj and Xk taken in sequence, (i.e. i <j < k), is
given by

In a model which specifies that all such rikj are equal to zero, it therefore follows
that

(5)

and the correlation between any pair of variables can then be expressed as the
product of the correlations between all successive pairs of variables in the sequence.
For example,

Let p be the phenotypic value of an individual and g its breeding value, where
p is the sum of the breeding value and an independent environmental deviation,
and suppose the observed assortative mating to be based on the measurement p
with correlation p. Suppose p and g to be measured as deviations from the popula-
tion mean. If we consider the sequence of variables gi,Pi,Pj,gj, where subscripts i
and j refer to female and male parameters respectively, the correlations between
successive variables in the sequence are then h,p,h respectively, where A2 = o^/o^:
the assumptions leading to equation (5) are clearly satisfied here, for if we hold
the value of pi constant, the residual variation in gt is independent of that in pj,
and of that in gr,-; similarly if the value of Pj is held constant, the residual variation
in gj is independent of that in gi and of that in pt. The correlation between the
breeding values of mates is therefore ph2.

Since the mean performance of a group of offspring for an additive genetic charac-
ter is \(gi+gj), the covariance between ovule parent and offspring in a population
in equilibrium is

cov(D,O) =

The expected mean of the open-pollinated progeny group derived from an ovule
parent of breeding value gt and phenotypic value pi is given by the mean of gr,- and
E(g-\pi), the latter term denoting the mean value of gr,- in the relevant sub-population
of pollen parents. It is easy to see that
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where pJfi is the regression of gi on pt: in a population in equilibrium under pheno-
typic assortative mating, the component of variance among half-sib group means
is then equal to

cov (HS) = iEtet+phPpi)*
= ^ ( 1 + 2 ^ 2 + ^ 2 )

The component of variance among full-sib group means is simply

* cov (FS) =

(ii) Two additive genetic characters subject to genotype x season interaction

The following model has been found to be adequate for the present study of
open-pollinated progeny groups in the Australian Commercial population of

pdy)

Pi(y)

Fig. 1. Statistical relationships among parameters of a pair of parents in the
presence of phenotypic assortative mating.

Phalaris. Suppose characters x and y to show additive genetic variation in a
population in equilibrium under phenotypic assortative mating of degree p based
on p(x) and let

p(x) = g(x) + i(x) + e(x)

p(y) = g(y)+Hy)+e(y)

i.e. suppose a phenotypic value to be the sum of a breeding value g, a genotype x
season interaction effect i, and a within-season environmental deviation e, where
g, i, and e are uncorrelated and have zero means. Denote the correlation between
p(x) and p(y) by rp, and the corresponding correlations between breeding values,
interaction effects and environmental deviations by rg, ru and re. The usual
assumptions that g(x) is independent of i(y) and of e(y), and that i(x) is independent
of e{y), etc., will also be made. The statistical relationships among these parameters
for a pair of parents from the equilibrium population are illustrated in Fig. 1.
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Consider firstly the expectations of the four possible parent-offspring covariances:

let h2 = ojj/aj; as before, and let i2 = of/erf, and e2 = ô /fff, So that h2 + i2 + e2 = 1.
The weighted mean breeding value for character x of the pollen parents contributing
to the open-pollinated progeny of an ovule parent of breeding value gt(x) and
phenotypic value Pi{x) is then

E[gj(x)\Pi(x)] = Ph2(x)Pi(x)

and the covariance of ovule parent and offspring for character x is therefore

cov (Dx,0x) = icov[pi(x),gi(x)+Ph2(x)pi(x)]
= i[h(x)ap(x)ag(x)+Ph2(x)al(x)}
= W{x)(\+p)ol{x) (6)

By repeated application of equation (5), it can readily be shown that the weighted
mean breeding value for character y of the same set of pollen parents is

so that
cov (Dx, 0y) = \coY[pi(x),gi{y)+prgag{x)ag{y)pi{x)jal{x)'\

= lh(x)rgh(y)(l+p)oP(x)op(y) (7)

In a similar manner, it can be seen that

cov (Dy,0x) = ^cov[Pi(y),gi(x)+ph2(x)pi(x)]
(x) rP ap(x) ap(y)]

) rp] <rp(x) aP{y) (8)

and the covariance of ovule parent and offspring for character y is given by

cov (Dv, 0v) = icov[pi(y),gi(y)+nrgag(x)cjg(y)pi(x)l^(x)]
= lihHy) +Ph(x) rg h(y) rp] o%{y) (9)

Expression (9) is most useful in that it specifies the bias involved in the estimation
of the heritability of a character by means of the regression of offspring on ovule
parent, when the effects of phenotypic assortative mating for flowering time are
ignored. As one would expect, the estimate will be unbiased when the character
under observation is genetically independent of time of maturity, whether or
not the two characters be environmentally correlated. However, when a genetic
relationship exists, the magnitude of the bias involved is a function of both the
genetic correlation and the environmental correlation between the two variables.

Let us turn now to a consideration of the components of variance and covariance
among progeny group means. The expected performance for character x of an
open-pollinated progeny group derived from an ovule parent with phenotypic
value Pi(x) and breeding value gt{x) is simply

mean(OJ = \[gi{x) + i'i{x)+Ph2{x)pi{x)]

where i'i(x) denotes the genotype x season interaction effect appropriate to the
ovule parent genotype in the season during which the offspring generation is studied.

2B
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The component of variance among progeny groups for character x is then

cor (HSX) =
(s) (10)

where h%(x) denotes the within-season heritability of character x. This expectation
may also be derived by considering performance for the character in the parent
season and that in the offspring season to be two distinct but genetically correlated
variables.

The expected performance for character y of the same open-pollinated progeny
group is similarly given as

mean(0j,) =

so that the component of variance among progeny groups for character y is

= \[K{y)+p{mrgMy))Hi+P]]ol{y)
The bias involved in estimating the within-season heritability for character y from
an analysis of open-pollinated progenies, when the effects of phenotypic assortative
mating for character x are ignored, can then be seen to depend on the genetic
correlation between the two variables, but not on the environmental correlation.
As we have seen, the magnitude of the corresponding bias in the parent-offspring
estimate of heritability is a function of both the genetic and environmental correla-
tions.

The expectation of the component of covariance among open-pollinated progeny
groups for characters x and y, can be derived from the above expressions for the
group means of the two characters. It can be shown to be

cov{HSxy) = tthw(x)rgwhw(y)+hZ(x)p(2+p)h(x)rgh(y)]op(x)op(y) (12)

where rgm is the within-season genetic correlation between the two characters.
The expectations of the four possible parent—offspring covariances (expressions

6—9) can be seen to involve four parameters p, h2(x), h2(y), and rg, apart from the
phenotypic variances of the two characters and the phenotypic correlation between
them, which can be estimated directly from the data. In theory it is therefore
possible to obtain estimates of all four parameters from the observed covariances,
but because of the complexity of the expectations, tho errors of estimation involved
can be anticipated to be quite high. If the assumptions of additivity of the genetic
variances can be justified, however, it is possible to provide additional estimates
of the parameters h2(x) and h2(y) if, as in the present study, one is dealing with a
perennial species. These can be derived from observations of the repeatability of
performance of individual plants in successive seasons. Equations 10, 11, and 12
can then be used to estimate h%(x), h%(y) and rga, which, when compared with the
corresponding estimates h2(x), h2(y) and rg, give a measure of the contribution of
genotype x season interaction to the variances of the two characters and to the
correlation between them.
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4. A MODEL FOR THE STUDY OF MATERNAL EFFECTS

Perhaps the most penetrating treatment of the theory of maternal effects in
quantitative genetics is that of Kempthorne (1957), who considered a model
involving an arbitrary degree of dominance as regards the direct effects, and also
the genetically determined maternal effects, of the genotypes at a single autosomal
locus. If one includes environmentally determined maternal effects, it turns out
that nine parameters are involved in the expectations of the covariance of sire and
offspring, the covariance of dam and offspring, the covariance among full-sibs,
and the total phenotypic variance. It is therefore essential to use a less general
model in the analysis of any set of experimental observations. For the study of
variation in seedling growth-rate and of seed weight in Phalaris tuberosa, the
following simplified model has been found to be adequate: in this paper we will
merely set up the model and derive the necessary expectations, giving some
attention to the type of information which has been considered in arriving at the
simplifications involved.

Let x denote the character subject to maternal influence (seedling growth rate),
and let y denote a measurable character related to maternal ability (for instance,
a measure of the average size of seed produced by an individual plant). Suppose
that the phenotypic value of an individual for character x is the sum of an additive
genetic value, a dominance effect, an additive genetic maternal effect, an environ-
mental maternal effect, and an independent environmental deviation: i.e. that

p(x) = a(x)+d(x) + am(x) + em(x) + e(x)

Suppose also that the phenotypic value of the individual for character y is simply
the sum of an additive genetic value and an independent environmental deviation:
i.e. that

P(y) = a{y) + e{y)

In the Australian Commercial population of Phalaris tuberosa, the parent-
offspring correlation for seed weight has been found to be very high, and seed weight
has been identified as the predominant factor in the determination of maternal
ability. It has therefore been assumed above that the genetic variance shown by
this character is additive, and that genetically determined maternal effects on
seedling growth rate are also additive.

Consider a single autosomal locus with alleles A\, A% making the following
contributions to p{x) and p(y), where am'(x) refers to the maternal effect of the
gene common to a maternal half-sib group of offspring, and a, b, or m may be
negative, zero, or positive:

Effects on

Genotype Frequency a(x) + d(x) a(y) am'(x)

A\A\ p2 —a —b —m
A1A2 2pq d 0 0
A2A2 q2 +a +b +m
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The covariance of a sire's performance for character y and. his offspring's perform-
ance for character x, which is the key observation upon which further simplification
of the model rests, has expectation

cov (Sv, 0x) = | cov [a(x), a(y)] (13)

since maternal effects are not involved here. If this covariance can be shown
experimentally to be zero, and if character y is the prime factor in the determination
of inherited maternal ability, we may with little likelihood of error ignore the term
cov [a(x), am'(x)] in all the expectations which follow.

The covariance between a dam's performance for character y and her offspring's
performance for character x is similarly expected to be

cov {Dy, 0x) = \ cov [a{x), a(y)] + cov [am'{x), a(y)] + cov [em'{x),e{y)\ (14)

and the component of covariance between the two characters among maternal
half-sib families has expectation

cov {HSxy) = cov [\a{x) + am'(x) + em'(x), %a(y)]
= J cov [a(x),a(y)] + % cov [am'(x), a(y)~\ (15)

The phenotypic covariance between the two characters is expected to be

cov [p(x),p(y)] = cov [a(x),a(y)] +cov [e{x),e(y)] +cov [am(x),a(y)]
+ cov[em(x),e(y)]

(16)

since cov [am(x),a(y)] = \cov [am'(x),a(y)], and cov[em(x),e(y)] = 0.
The expectations of the various covariances between relatives for character x

can be readily obtained from the treatment of Kempthorne (1957). The covariance
of sire and offspring is

cov {Sx, Ox) =
cov [a(x), am' (x)] (17)

and the covariance of dam and offspring (Fig. 2) is

cov (Dx, Ox) = pq[a + d(p — q)]2 + pqm2 + %pqm[a + d(p-q)] +cov [e{x), em'(x)]
%) + i°lm{x) + |cov [a(x), am'(x)] + cov [e(x), em'(x)] (18)

Note that the heritability of character x should therefore be denned (Dickerson,
1947) as

_ ol{x) + \alJx) +f cov [a(x), am'jx)]
h {x) ~ 4w

where
ajix) = o2(x) + o2

d(x) + o2
am(x) + <>2

em(z)+o2
e(x) + cov [a(x), am' (x)] (19)

since cov [a(x), am(x)] = £cov [a(x),am'{x)]. Note that this definition of heritability
includes only the permanent effects of the parents on the performance of their
offspring, and the term cov[e(x),em'(a;)] which appears in the expectation of
cov (Dx, Ox) has not been included.
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The covariance among full-sibs for character x has been shown by Kempthorne
to be

cov (FSZ) = fc*{x) + Jofts) + aUx) + o*m(x) + cov [a(x), am'(x)] (20)

and the covariance among maternal half-sibs can readily be shown to have expecta-
tion

cov (HSX) = E[±a{x) + am'(x) + em'(x)]2

x) + cov [a(x), am'(x)] (21)

The relationship between the two characters x and y can then be seen to involve
four parameters which can in principle be estimated from the four expectations
given (13-16). In the present study involving a perennial species, there is available
an additional statistic designated cov (D*,OX), which measures the covariance

OFFSPRING

a(x)

am(x) •* am * am'(x)

em(x) Hy)

^ * em'(x)

Fig. 2. Statistical relationships among parameters of ovule parent and offspring
involving maternal effects of character y on character x.

between the performance of an ovule parent for character y in one season, and the
performance for character x of her offspring derived from seed harvested in a
subsequent season. The expectation of this covariance is

cov (D*, 0x) = \ cov [a(x), a(y)] + cov [am'(x), a(y)] (22)

The corresponding statistic relating the performance of ovule parent and offspring
for character x has expectation

cov (D*,OX) = $(%(x)+ $(%m(x)+$ cov [a{x), am'(z)] (23)

The six expressions (17-21, 23) involving character x alone can be seen to involve
seven parameters, so that a complete analysis is possible only when at least one
parameter can justifiably be ignored. An unbiased estimate of the heritability of
the character can however, be derived from expressions 17, 19 and 23.

5. DISCUSSION

The analysis of quantitative variability in the presence of a combination of
self-fertilization and random mating, of phenotypic assortative mating, or of
maternal effects, involves the use of somewhat complex expressions for the expecta-
tions of observed covariances among relatives. It is therefore to be anticipated
that the errors of estimation of the basic parameters involved will be considerably
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greater than those appropriate to estimates derived from more simple genetic
models. The prime value of the theory which has been set out in this paper will
therefore be in the detection of important sources of bias in an analysis which
ignores the above phenomena. Having satisfied oneself that the biases involved
are of a minor order, one may then choose to make use of the more accurate, though
biased, estimates deriving from simpler theory. Where the effects of one or other
of the potential sources of complexity can be shown to be of importance, however,
one has no alternative but to apply the more elaborate theory.

In the analyses to be presented in subsequent papers in this series, it will be
seen that the effects of phenotypic assortative mating and of maternal effects are
of undeniable significance, though it has not been necessary to consider the simul-
taneous effects of these two phenomena in the analysis of any individual trait.

SUMMARY

The present series of papers is concerned with the variation shown by date of
ear emergence, seed weight, and measures of seedling growth rate in the Australian
Commercial population of Phalaris tuberosa L. In this first communication, the
statistical theory necessary for the interpretation of the available experimental
observations is developed. The treatment involves a consideration of the effects
of partial self-fertilization under open-pollination, of phenotypic assortative mating,
and of maternal effects, on the expectations of the observed covariances among
relatives.
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