
INDUCTIVE EXTENSION OF A VECTOR MEASURE 
UNDER A CONVERGENCE CONDITION 

GEOFFREY FOX 

1. I n t r o d u c t i o n . Let /z be a vector measure (countably addi t ive set 
function with values in a Banach space) on a field. If JJL is of bounded variat ion, 
it extends to a vector measure on the generated o--field (2; 5; 8) . Arsène and 
Stra t i la (1) have obtained a result, which when specialized somewhat in form 
and context , reads as follows: ilA vector measure on a field, majorized in norm 
by a positive, finite, subaddi t ive increasing set function defined on the 
generated o--field, extends to a vector measure on the generated cr-field". 
Th is includes the bounded variat ion case, for it suffices to take the to ta l 
variat ion (extended) as the majorizing positive set function. Such results 
may be looked upon as possible steps toward the a t t a i n m e n t of a vector 
measure extension theorem wi thout any condition, if this is possible, or with a 
proven minimum condition, if not . In this paper we prove, by an intui t ively 
simple induction, another such extension, under a convergence condition which 
is sufficient (as is to be proved) and also necessary (as will be obvious) . I t will 
include the bounded variat ion case. T h e intervals of Euclidean space const i tu te 
the simplest class on which it is na tura l to introduce a measure. Abstract ion 
gives rise to the "semi-field" (semi-ring (6) of ring context ) . Accordingly, we 
begin with a vector measure defined on a semi-field. 

2. T e r m i n o l o g y a n d n o t a t i o n . As in (3), generalized sequence means 
Moore-Smith sequence, and "sequence" retains its e lementary meaning. 
Unless the context indicates otherwise, a set is a subset of a fixed set S\ the 
null set is denoted 0. As in (6), a set of sets (subsets of S) is called a class. 
T h e members of a class T are T sets; a sequence of T sets is called a T sequence. 
In the context of sequences, or of generalized sequences, of sets, convergence 
means set-theoretical convergence. T h e convergence of a sequence of sets {En\ 
to a set E is denoted (as is convergence in other contex ts ) : limw En = E, or 
En—*E; if, further, the sequence increases: En Ç E7l+1 (decreases: En 3 En+i), 
the notat ion En\ E (En j E) may be employed. Wi th reference to a class T, 
I \ (T5) is the notat ion for the class of countable (including finite) unions 
(intersections) of r sets. T h e nota t ion E\ + E2 + . . . ÇE,En) may be employed 
to denote the disjoint union Ei VJ E2 VJ . . . (UEn); in this case the union is 
referred to as a sum. A set function is a function /J. whose domain ^"(/x) is a 
class, and whose range is a subset of a Banach space. T h e condition of finite, 
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or countable, additivity on a set function \x is applicable only to those disjoint 
sequences of «^(M) sets whose sums belong to <^(/x). The term "field" refers 
to a field of sets whose maximum (with respect to inclusion) element is S. 
In the context of the lemmas "vector measure" (countably additive vector-
valued set function) is abbreviated to "measure". 

3. Extension from a semi-field to the generated field. 

Definition. A semi-field is a class A such that (a) 0, 5 G A; (b) A is closed 
under finite intersections; (c) whenever A and B are A sets such that A Ç B, 
there exists a finite increasing sequence of A sets: A = E0 Ç Ex C . . . C En = 
B, such that Ei — Ei-1 G A fori = 1, 2 , . . . ,n. A field is a specialized semi-field. 
Given a semi-field A, let 2(A) denote the class of finite sums of A sets; then 
2(A) is the field generated by A. 

Definition. A vector measure / zona semi-field A is monotonely convergent if, 
for every disjoint A sequence {En}, the series Yin v(En) converges. 

THEOREM 1. A vector measure on a semi-field extends uniquely to a vector 
measure on the generated field. If the original vector measure is monotonely 
convergent, so is its extension. 

Proof. The first statement, for a positive measure, is essentially Theorem 8, 
E of (6). The generalization to a vector measure does not affect the proof: 
the association and inversion involving double sums remain valid operations 
since countable additivity refers to unordered summation. The second state­
ment is obvious. 

4. Extension from a field to the generated <r-field. For a vector 
measure juona field 2, "monotone convergence" is equivalent to the following 
property: 

"For every monotone 2 sequence {En}, {/x(Ew)} converges". 
Without effect on the property, we may read "increasing" or "decreasing" 
for "monotone". 

Definition. Let T be a class closed under finite unions and finite intersections, 
and let £ be a set. The class r<+>(£) = {A: A G T, A 3 £} , if not empty, 
is directed by inclusion: 

A^B ^ AQB (A, B G r<+>(£)). 

Let M be a set function such that T C ^ ( M ) and E G ^( /x) . If r+ (£ ) is 
non-empty and the generalized sequence {n(A)}, A G T ( + )(£) , converges to 
n(E), we will say that n is upper Y continuous at E. The set function \x will 
be called "upper T continuous" if it is so at every i^(/x) set. Similarly, with 
r ( _ ) ( £ ) = {A: A G T, A Ç E}, reversing inclusions, we define "lower T 
continuity". 

The symbol (2, /x) will serve as abbreviation for the recurring hypothesis: 
" 2 is a field and ix is a monotonely convergent vector measure on 2 " . 
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LEMMA 1. Under hypothesis (S, /x), /x extends to a finitely additive set function 
X 0W Sa, uniquely characterized by lower S continuity. For every increasing S 
sequence {En}, limn \(En) = X(limraEn). 

Proof. For £ G Sff, the generalized sequence {n(A)\, A G S ( _ )(E) , con­
verges; In fact, if this were not so, there would exist e > 0 such that, whenever 
E contains a S set A, there is also a S set B such that A C B C E, 

MA) -n(B)\\ ^ e. 

Accordingly, whenever a sequence of n S sets ^4* has been established such 
that Ax C ^2 C . . . C 4„ C E, ||/*(4i) - M(^Z+I)II è e (1 ^ i < »), there 
is a S set ^4w+i such that 4̂W C ^n+i C E, \\n(An) — p(An+i)\\ ^ e. This 
would prove inductively the existence of an increasing S sequence {An} such 
that ||/x(-4n) — jLt(^4n+i)|| è e, which would contradict the monotone con­
vergence. Defining X(E) to be the limit of the above generalized sequence, we 
obtain the lower S continuous extension X of /u, of domain Sff. The finite 
additivity is preserved in the passage to the limit, and uniqueness is clear. 
Suppose that En\ E (En G S) ; by the lower S continuity, for arbitrary 
e > 0 there exists a S set A contained in E such that 

A Ç 5 C E , £ G S ==> ||X(E) - X(5)|| < e. 

Since /x is a measure, we have that 

||X(E) - X(EW)|| £ ||X(E) - X(il)|| + ||X(il) - X(EJ| | 

^ ||X(E) - X ( ^ ) | | + MEn-A)\\ + ||MG4 - E J H 

< e + 2e+ \\p(A - E J | | - * 3 e ( » - > » ) . 

LEMMA 1 (equivalent dual form). Under hypothesis (S, /x), jit extends to a 
finitely additive set function v on S 5, uniquely characterized by upper S continuity. 
For every decreasing S sequence {En}, limnp(En) = v(limnEn). 

Proof. The duality is immediate by complementation, except for the finite 
additivity of v. Let E and F be disjoint S5 sets and limits, respectively, of 
decreasing S sequences {En} and {Fn}. Since (En O Ew) j 0, we have that 

, ( E + 70 = \\mnlx(En\J Fn) = 

l imJM (EJ + n(Fn) - M(E» H E„)] = v(E) + , (E) . 

Under hypothesis (S, yu), if £ É 2 a Pi Sa, then there are S sequences, 
{E„}, {Fn}, increasing, decreasing, respectively, to E, therefore 

v{E) - X(E) = HmJM(En) - M ( E J ] = lim„M(E„ - E J = 0. 

Thus X and v combine to form a single extension (denoted by /x), whose 
domain is Sff \J Sa: 

iX(E) if E G 2,, 
M ( E ) " \„(E) if £ 6 2a. 
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This extension, which is finitely additive on each of the parts 2ff and 2 5 of 
its domain, will henceforth be understood, in the context of the hypothesis 
(2, JJL). Some of the lemmas to follow also have dual forms; these will not be 
stated, but appealed to as needed in proofs. Under the hypothesis (2, ju), 
Lemma 1 (with its dual) describes the behaviour of n with respect to monotone 
2 sequences. Under the same hypothesis, Lemmas 2 and 3 (with their duals) 
will describe the behaviour of ix (extended) with respect to monotone 2* 
and 2 g sequences. 

LEMMA 2. Under hypothesis (2, /x), if a 2^ sequence {En} decreases {decreases 
to 0), then {ij,(En)} converges (converges to 0). 

Proof. By the lower 2 continuity, for arbitrary e > 0, there exists a 2 
sequence {Fn) such that Fn C En and 

FnQAQE*, A 6 2 =» \\n(En) - »(A)\\ < e/2n, 

so that 

A Ç En - Fn, i ^ ^ | | / iU) | | < e/2\ 

Write 

An = O Fu 

1 

then for n > 1, 

Fn - A = [Fn - (Fn r\ FJ] + [(Fn r\ FX) - (Fn r\ Fx n F2)] +... 
+ [(Fn n Fi r\... n FW_2) - (F% n ^ n . . . n z ^ ) ] . 

The &th term of the sum is a 2 set contained in Ek — Fk, thus the norm of 
its measure is less than 2e/2fc, hence ||//(FW — An)\\ < 2e. Therefore 

\\»(En) - v(An)\\ ^ MEn) - n(Fn)\\ + \\v(Fn - An)\\ < 3e. 

Since e is arbitrary and {n(An)) converges (converges to 0), the conclusions 
follow. 

LEMMA 3. Under hypothesis (2, /x), for every increasing Xff sequence {En}, 
lim„ v(En) = /z(limn En). 

Proof. For arbitrary e > 0 let {Fn} be a 2 sequence such that Fn C En and 
^ ^ i Ç £ n , ^ G 2 ^ ||/*(£») - A*(^)|| < €• Each En is the limit of an 
increasing 2 sequence {.4nm}, m = 1, 2, . . . , such that Ew Ç ^4wm Ç Ere. Write 

n n 

Bnm
 = U Aim, Dn = U Bii' 

i=l i=l 

Then Fn Q Dn Q En and r ^ 5 tz m =ï Brm ÇL Bsm. If £ is an arbitrary point 
of E = limw En, there is an index r such that >̂ £ £ n then there is an index 
s > r such that p (z Ars Q Brs CI 5S S Ç Ds. This proves that Z>w | E, then, 
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by L e m m a 1, n(Dn) —> ju(E), and the conclusion follows from the following 
inequali ty: 

HMCE) - /x(£»)|| ^ | |M(£) - /i (2?.) 11 + HM(A0 - M(-EJ|| 

< ||„(£) -MAOH + e. 

T h e following weak addi t iv i ty relation will suffice for present purposes. 

L E M M A 4. Under hypothesis ( 2 , /x), if E £ 2 , £ Ç 2 a , rmd £ 3 F, /Âew 

M ( E - F) + /i(70 = /*(£)• 

Proof. Le t F n | ^ ( ^ Ç 2 ) . I t suffices to consider the equat ion 

/ x ( £ - Fn) + /i(Fn) = M ( £ ) 

in the limit (w —» °° ), applying Lemma 1 and its dual . 

Definition. A vector measure /JL on a field 2 is ww// convergent if £„ —> 0, 

( E , G 2 ) =*/ ! (£») ->(> . 

L E M M A 5. Let \xbe a null convergent measure on a field 2 , then if {En\ is a 

convergent 2 sequence {whose limit need not be a 2 set), then {JJL(E?1)} converges. 

Proof. T h e double sequence {id(Em — En)}, m, n = 1, 2, . . . , converges to 0; 
for if not , for some e > 0 and some pair of s tr ict ly increasing sequences of 
integers {mk}, {nk}} we have t h a t \\n(Emk — Enk)\\ ^ e (fe = 1, 2, . . . ) , and 
since Emk — Enk —> 0, this would contradic t the null convergence. Now the 
convergence of [ix(En)) follows from the following inequali ty: 

MEm) - »(En)\\ S \HEm - En)\\ + | |M (E n - Em)\\. 

T H E O R E M 2. For a vector measure on a field, null convergence and monotone 
convergence are equivalent properties. 

Proof. I t remains to show t h a t monotone convergence implies null con­
vergence, since the converse is contained in L e m m a 5. W e shall apply the 
following pa r t of the dual of Lemma 2 (obtained by complementa t ion, with 
the aid of Lemma 4 ) : 

" U n d e r hypothesis ( 2 , [x), if a 2s sequence {En} increases, then 
ln(En)} converges". 

Let JU be a vector measure on a field 2 which is no t null convergent . Then for 
some e > 0 there exists a 2 sequence {En} such t h a t \\id(En)\\ ^ e (n = 1, 2, . . .) 
and En —> 0. Wri te An = U?= w Et. Since the 2ff sequence \E1 C\ An\ decreases 
to 0, we have t h a t n(E\ Pi An) —> 0 (Lemma 2) . Le t n\ be an index such t h a t 
| | M ( - E i ^ ^ m ) | | < è*. Then Fx = EY - ( E i H ^ J is a 2 5 set such t h a t 
| | J U ( £ I ) | | > Je (Lemma 4) . By the same argument , for some n2 > n\, Ani — An2 

contains a 2s set F2 such t h a t | | A I ( £ 2 ) | | > ie, and so on, inductively. Hence 
there exists a disjoint 2Ô sequence {£w} such t h a t | | / i (£ n ) | | > \e (n = 1, 2, . . . ) , 
in which case, the series Z J ° ^ ( £ W ) diverges. Wri t ing Gn = YJi Fi} we have 
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the increasing 2 s sequence {Gn} such that \n(Gn)} diverges. Thus, by the dual 
of Lemma 2, n is not monotonely convergent. 

Definition. Let 2 be a field; the class of limits of convergent 2 sequences, 
which is obviously a field containing 2, is called the limit field of 2, and is 
denoted by 2. We note that the field 2 is a cr-field if and only if 2 = 2 . 

LEMMA 6. Under hypothesis (2, /*), ju extends to a finitely additive set function 
jl on 2, uniquely determined by the following condition: 

En -» E, (£n e 2) =»/*(£») -> M(£). 

Proof. Let £ be an arbitrary 2 set and let {En} be a 2 sequence converging 
to E. Then {ii(En)} converges (Theorem 2, Lemma 5), and it follows from the 
null convergence that the limit is independent of the particular 2 sequence 
converging to E. The required extension is therefore defined by the following 
formula: 

/Z(E) = limnfi(En), where En->E (En £ 2, E £ 2) . 

I t remains to verify the finite additivity of jl, but this follows as in the proof 
of the dual of Lemma 1, applying, this time, the null convergence. The exten­
sion jl extends the previous extensions X and v. Henceforth, in the context 
(2, JU), the extension /z will be understood, and we will write JU instead of /Z. 

LEMMA 7. Under hypothesis (2, //), 

En->0, (En e 2,) =>/*(£„)-»0. 

Proof. For arbitrary e > 0, there is a 2 sequence {Fn} such that Fn Ç £w 

and \\iJi(Fn) — ix(En)\\ < e (Lemma 1), and the conclusion follows from the 
null convergence. 

LEMMA 8. Under hypothesis (2, /z), every 2 se£ E is the limit of a decreasing 
2ff sequence {En} such that n(En) —»/x(i£). 

Proof. Let \Fn} be a 2 sequence converging to E and write En = U?=» F t. 
Then £ n J, E (En G 2a), n(Fn) —> n(E), and, by Lemma 7, 

LEMMA 9. Under hypothesis (2, /x), 

£» i £, (£. G 2,, £ G 2) =* /!(£„) -> /x(£). 

Proof. By the dual of Lemma 8, £ is the limit of an increasing 25 sequence 
{Fn} such that ii{Fn) —>/x(E), and the 2ff sequence {Ew — 7^} converges to 0, 
thus by Lemma 7 (or Lemma 2), 

M ( £ J - n(Fn) = n(En - Fn) -» 0. 

LEMMA 10. Under hypothesis (2, ju), /&£ additive extension /JL on 2 w upper 2,, 
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Proof. Let £ be a given 2 set. The class S^+^E) = { i : i G 2 ^ D £ ) 
is not empty, since S is a field and S £ 2(r

(+) (E) and the generalized sequence 
{n(A)\, A G 2 a

( + ) (E) , converges to a vector x. For if this were not so, there 
would exist a decreasing 2 , sequence {Fn) such that {̂  (Fn)} diverges, contrary 
to Lemma 2. Let {En} be a 2 , sequence decreasing to E (Lemma 8); we can 
construct inductively a decreasing 2 , sequence {An) such that En^D_ An~D_E 
and ||/x(^4w) — x|| < w_1. By Lemma 9, n(An) —»/*(£), thus x = M ( E ) . 

LEMMA 11. Under hypothesis (2, /z), suppose that ^ feas 5ee^ extended to a 
finitely additive, upper 2ff continuous set function {denoted by /x) on a y£e/d T 
containing 2. rfeew /fee extension y is a monotonely convergent measure on T. 

Proof. The conclusion is equivalent to the conjunction of the following two 
affirmations: 

(a) If {En} is an increasing T sequence, then {n(En)} converges. 
(b) If En Î E (En 6 r , E 6 r ) , then n(En) -> /x(E). 

Proof of (a). By the upper 2 a continuity, for e > 0 arbitrary, there is a 2^ 
sequence {7^} such that 

Fn^E» and ^ 2 ^ 2 4 A G 2 . => | | M ( £ J - »(A)\\ < e/2\ 

Write Gn = UÏ 7^, G = U ï 7?ni so that, by Lemma 3, M(Gn) ->ju(G). For 
w > l ( F o = 0), we have that 

G„ - Fn = [(F„ U Fx) - Fn] + [(Fn \J F1\J F2) - (Fn U FJ] + . . . 

+ [(Fn U 7^ U . . . U Fn_x) - (FH U Fi U . . . U Fn_2)]. 

The feth term of the sum is a proper difference of 2 , sets of the form 
Dk = Ak — Bkj where Bk 2 Efc and Dk C 7^ — 7^. Replacing ^ and 73* by 
their intersections with 7^ (which does not effect Dk), we may suppose, further, 
that EkQBkQAkQ Fk. I t follows that \\v(Dk)\\ < 2e/2*, and therefore 
\\fji(Gn — Fn)\\ < 2e. The affirmation (a) then follows from the following 
inequality: 

\\v(En) - /i(Gn)|| g | | M ( £ , ) - M ( ^ ) | | + ||//(Gn - Fn)| | < 3e, 

with e arbitrary and {n(Gn)} convergent. 

Proof of (b). We may apply the proof of (a) with the added hypothesis 
that there exists a 2ff set F containing E such that: 

E QA Ç F, A G S , = > | | M ( £ ) ~ M(-4) I ! < e. 

We may then further suppose that Fn Cl F (n = 1, 2, . . .) so that E C G Ç T7» 
and therefore ||/x(G) — M(-E)|| < e> a n d thus, finally, 

||limn/x(En) - M ( ^ ) | | < 4e. 

THEOREM 3. 4̂ monotonely convergent vector measure on afield extends uniquely 
to a monotonely convergent vector measure on its limit field. 
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Proof. Under hypothesis (2, /x), because of Lemma 10, the hypothesis of 
Lemma 11 is satisfied for Y = 2, thus the finitely additive extension n on 2 
(Lemma 6) is a monotonely convergent measure. If v is any monotonely 
convergent measure on 2, because of the null convergence, we have that 

En -> E, (En £ 2, E e 2) => K£») -> *(£). 

This implies the uniqueness of the measure extension. 
In the context (2, /x), we understand the extension of \x to a finitely addi­

tive function (denoted by /x) on 2 ; following Theorem 3, we understand this 
extension as a monotonely convergent measure on 2. The final induction will 
be carried out with the aid of Lemmas 11 and 13, below. 

LEMMA 12. Under hypothesis (2, /x), suppose that /x /̂ as ôeew extended to a 
monotonely convergent measure [denoted by /x) <w afield Y containing 2. Suppose, 
further, that /JL is upper 2 a continuous at every Y set. Then /x is upper 2ff C0?z-
tinuous at every Ya set. 

Proof. Suppose that En | E (En Ç r ) . Since ju is upper 2^ continuous at 
every En, as in the first part of the proof of Lemma 11, there exists, for 
arbitrary e > 0, an increasing 2ff sequence {Gn) such that En C Gn and 
\\n(En) — id(Gn)\\ < e. Write G = Yimn Gn. Since /x is also a measure on T 
(extension of Theorem 3) we may pass to the limit to obtain 

ME) - M ( G ) | | =g e. 

Let A be any 2ff set such that £ C 4̂ Ç G. It is clear from the proof of Lemma 
11, that if we replace each Gn of the above argument by Gn

r = GnC\ A, we 
still have ||/*(£») — /x(Gn')ll < e. Since G is replaced by A, the conclusion is 
| |M(£) - M C 4 ) | | ^ e. 

LEMMA 13. Under the hypothesis of Lemma 12, /x is upper 2ff continuous at 
every Y set. 

Proof. Let E be a given T set and let e > 0 be arbitrary. Since /x is upper I \ 
continuous at E (Lemma 10), there is a Ya set F such that 

£ C i ^ and E^AQG, A G r„ => ||/x(£) - /x(^)|| < e. 

By the conclusion and Lemma 12, /x is upper 2^ continuous at F; thus there 
is a 2 , set ^ such that 

F Ç 5 and F^CQB, C Ç 2 , => ||/i(/0 - /x(C)|| < e. 

Let £> be any 2„ set such that E Cl D Cl B. Then 

IIMCD) - MCE)|| ^ H M W - /i(2? n /oil + HM(^ n TO - /*(£)! I 

< | | / I ( P W / O - M ( / 0 I I + «. 

Since /x is upper 2 a continuous at the Ya set D KJ F (Lemma 12) there is a 2 , 
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set H such t h a t B 3 H 2 D U F and | |//(JÏ) - /z(Z> U F ) | | < e. B u t then 
B ^ H ^ F, H G 2 „ thus 

||/x(ff) - M ( F ) | | < e, 

| |M(D U F) - n(F)\\ S \\n(D VF)- M ( f f ) | | + | | M ( i ï ) - M ( ^ ) | | < 2e, 

and we have, finally, t h a t \\fj.(D) ~ M CE) 11 < 3e. 

T H E O R E M 4. 4̂ monotonely convergent vector measure on a semi-field extends 
uniquely to a vector measure on the generated a-field. 

Proof. Because of Theorem 1, we may s t a r t with hypothesis ( 2 , /i). Le t 2 ' 
denote the a-field generated by 2 . Let $ be the set of all pairs (T, X) such t h a t 

(a) T is a field such t h a t 2 C r Ç 2 ' , 
(b) X is a monotonely convergent, upper 2ff cont inuous vector measure on 

T, which extends /x, and 

(c) X is the only measure on T extending /x. 
T h e non-null set $ ( ( 2 , /i) G $ ) is part ial ly ordered: for ( I \ X), (T ' , X') 6 $ , 
(T, X) ^ ( r ' f X') means t h a t T ÇZ r r and X' extends X. In order to apply 
Zorn 's lemma, we will show t h a t <£ is inductive, t h a t is, an a rb i t ra ry total ly 
ordered non-null subset Slf is bounded above in <ï>. If ( I \ X) £ & we will say 
t h a t T is a "SF-field" and t h a t X is a " ^ - m e a s u r e " . T h e union of the ^-fields 
is a field r 0 ; and the upper 2^ cont inuous finitely addi t ive set function X0 on r 0 , 
extending //, is well-defined if we set, for E £ r 0 , Xo(E) = X(£) , where (T, X) 
is any element of ^ such t h a t E £ T. B u t then X0 is a monotonely convergent 
measure (Lemma 11). If v is any measure on T0 extending JJL, then by the 
definition of <£, v extends every ^"-measure, thus v = X0. Hence ( r 0 , X0) is an 
element of <£, and is the required upper bound of ^f. T h e induct ivi ty established, 
let (A, v) be a maximal element of <£. Suppose t h a t A C 2 ' . Then À C Â Ç 2 ' , and 
by Theorem 3, v extends uniquely to a monotonely convergent vector measure 
v on Â. Since (À, v) £ $, v is upper 2^ cont inuous a t every A set, so also a t 
every A set (Lemma 13). Le t X be any vector measure on A extending JJL; by 
the uniqueness of *>, the restriction of X to A is v, and therefore X = v (unique­
ness condition of Theorem 3) . Hence (A, v) £ $, (A, v) > (A, v), this con­
tradict ion showing t h a t A = 2 ' , and therefore v is the required extension. 

Theorem 4 includes the following known bounded variat ion case: 

COROLLARY. A vector measure of bounded variation on a semi-field extends 
uniquely to a vector measure of bounded variation on the generated a-field. 

Proof. l'Bounded var ia t ion" is a proper ty of a vector measure on a semi-field 
(defined there as on a field (3)) if and only if it is a proper ty of its extension 
(Theorem 1) to the generated field. T h u s we may suppose the vector measure /z 
of bounded variat ion defined on a field 2 . T h e to ta l var ia t ion v of ju is a positive 
(finite) measure, thus obviously monotonely convergent , hence null con­
vergent (Theorem 2) . B u t then, since v(E) ^ | | ^ ( £ ) | | for all E G 2 , /x is null 
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convergent, hence monotonely convergent (Theorem 2), thus Theorem 4 
applies to ju. Let jl and v be the extensions of ju and v, respectively, to measures 
on the generated cr-field 2 ' ; it is seen inductively that v(E) ^ ||/z(£)|| for 
all E £ 2' , thus Jx is of bounded variation. 
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