INDUCTIVE EXTENSION OF A VECTOR MEASURE
UNDER A CONVERGENCE CONDITION

GEOFFREY FOX

1. Introduction. Let u be a vector measure (countably additive set
function with values in a Banach space) on a field. If u is of bounded variation,
it extends to a vector measure on the generated o-field (2; 5; 8). Arsene and
Stratila (1) have obtained a result, which when specialized somewhat in form
and context, reads as follows: “A vector measure on a field, majorized in norm
by a positive, finite, subadditive increasing set function defined on the
generated o-field, extends to a vector measure on the generated o-field”.
This includes the bounded variation case, for it suffices to take the total
variation (extended) as the majorizing positive set function. Such results
may be looked upon as possible steps toward the attainment of a vector
measure extension theorem without any condition, if this is possible, or with a
proven minimum condition, if not. In this paper we prove, by an intuitively
simple induction, another such extension, under a convergence condition which
is sufficient (as is to be proved) and also necessary (as will be obvious). It will
include the bounded variation case. The intervals of Euclidean space constitute
the simplest class on which it is natural to introduce a measure. Abstraction
gives rise to the ‘“‘semi-field” (semi-ring (6) of ring context). Accordingly, we
begin with a vector measure defined on a semi-field.

2. Terminology and notation. As in (3), generalized sequence means
Moore-Smith sequence, and ‘‘sequence’ retains its elementary meaning.
Unless the context indicates otherwise, a set is a subset of a fixed set S; the
null set is denoted @. As in (6), a set of sets (subsets of .S) is called a cluss.
The members of a class I' are T' sets; a sequence of I' sets is called a T' sequence.
In the context of sequences, or of generalized sequences, of sets, convergence
means set-theoretical convergence. The convergence of a sequence of sets | E,}
to a set E is denoted (as is convergence in other contexts): lim, E, = £, or
E, — E; if, further, the sequence increases: E, C E,.; (decreases: E, D E,.1),
the notation E, T E (¥, | E) may be employed. With reference to a class T,
I', (T'5) is the notation for the class of countable (including finite) unions
(intersections) of I'sets. The notation E; + E» + ... (3 E,) may be employed
to denote the disjoint union E;\J E,\U ... (UE,); in this case the union is
referred to as a sum. A set function is a function g whose domain & (u) is a
class, and whose range is a subset of a Banach space. The condition of finite,
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or countable, additivity on a set function u is applicable only to those disjoint
sequences of & (u) sets whose sums belong to & (u). The term “‘field”’ refers
to a field of sets whose maximum (with respect to inclusion) element is .S.
In the context of the lemmas ‘‘vector measure’” (countably additive vector-
valued set function) is abbreviated to ‘‘measure’.

3. Extension from a semi-field to the generated field.

Definition. A semi-field is a class A such that (a) @, .S € A; (b) A is closed
under finite intersections; (¢) whenever A4 and B are A sets such that 4 C B,
there exists a finite increasing sequenceof Asets: A = E,C E; C ... CE, =
B, such thatE;, — E,_; € Afori = 1,2,...,n. Afieldisa specialized semi-field.
Given a semi-field A, let £(A) denote the class of finite sums of A sets; then
Z(A) is the field generated by A.

Definstion. A vector measure u on a semi-field A is monotonely convergent if,
for every disjoint A sequence {E,}, the series >, u(E,) converges.

THEOREM 1. A vector measure on a semi-field extends uniquely to a vector
measure on the generated field. If the original vector measure is monotonely
convergent, so 1s its extension.

Proof. The first statement, for a positive measure, is essentially Theorem 8,
E of (6). The generalization to a vector measure does not affect the proof:
the association and inversion involving double sums remain valid operations
since countable additivity refers to unordered summation. The second state-
ment is obvious.

4. Extension from a field to the generated o-field. For a vector
measure p on a field Z, ‘“‘monotone convergence’’ is equivalent to the following
property:

“For every monotone X sequence {E,}, {u(E,)} converges.
Without effect on the property, we may read ‘“‘increasing’”’ or ‘‘decreasing”
for ““monotone”.

Definition. Let T be a class closed under finite unions and finite intersections,
and let E be a set. The class T (E) = {4: A € T, A D E}, if not empty,
is directed by inclusion:

A=2B & ACB (4, B¢ I'P(R)).

Let u be a set function such that T € D (u) and E € & (u). If TH(E) is
non-empty and the generalized sequence {u(4)}, 4 € TH(E), converges to
uw(E), we will say that u is upper T' continuous at E. The set function g will
be called “upper I' continuous’ if it is so at every & (u) set. Similarly, with
I'O(E) = {A: 4 € T, A C E}, reversing inclusions, we define “lower T
continuity’’.

The symbol (2, u) will serve as abbreviation for the recurring hypothesis:

“Y is a field and u is a monotonely convergent vector measure on 2'’.
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LeMMA 1. Under hypothesis (Z, u), u extends to a finitely additive set function
\ on Z,, uniquely characterized by lower = continuity. For every imcreasing 2
sequence { E,}, lim, N(E,) = N(lim, E,).

Proof. For E € 3,, the generalized sequence {u(4)}, 4 € T (E), con-
verges: In fact, if this were not so, there would exist e > 0 such that, whenever
E contains a 2 set 4, there is also a 2 set Bsuch that A C B C E,

u(d) =B 2 e

Accordingly, whenever a sequence of # X sets 4; has been established such
that Al C A2 C PN C An C E, ”[J.(AJ - .U-(Ai—*—l)ll _—_>—_ € (1 é 1 < n), there
is a 2 set Any1 such that 4, C 4Ap1 CE, |[u(4s) — u(4ay1)|] = e This
would prove inductively the existence of an increasing 2 sequence {4,} such
that ||u(4,) — p(4n11)|| = ¢ which would contradict the monotone con-
vergence. Defining A\ (E) to be the limit of the above generalized sequence, we
obtain the lower 2 continuous extension A\ of u, of domain Z,. The finite
additivity is preserved in the passage to the limit, and uniqueness is clear.
Suppose that E, T E (E, € Z); by the lower Z continuity, for arbitrary
e > 0 there exists a Z set 4 contained in E such that

ACBCE, BeI=|NE) —\B)<e
Since u is a measure, we have that
INE) = NED]] = [INE) = M) + [INA) = ME)||
= [NE) =MD + [w(Ew = DI + [[u(4 — E)||
<et 2+ [l —E)|[ >3  (n— ).
LemMA 1 (equivalent dual form). Under hypothesis (Z, n), u extends to a

finitely additive set function v on Zs, uniquely characterized by upper T continuity.
For every decreasing X sequence {E,}, lim, v(E,) = v(lim, E,).

Proof. The duality is immediate by complementation, except for the finite
additivity of ». Let E and F be disjoint Z; sets and limits, respectively, of
decreasing Z sequences {E,} and {F,}. Since (E, N F,) | 0§, we have that
”(E + F) = hmnﬂ(EnU Fn) =

Under hypothesis (2, u), if E € Z,M Z;, then there are T sequences,
{E,}, {F,}, increasing, decreasing, respectively, to E, therefore

Thus N and » combine to form a single extension (denoted by u), whose
domain is Z, U Z;:

_JME) HEE€Z,
u(E) = {V(E) ifE € 3
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This extension, which is finitely additive on each of the parts Z, and Z; of
its domain, will henceforth be understood, in the context of the hypothesis
(2, u). Some of the lemmas to follow also have dual forms; these will not be
stated, but appealed to as needed in proofs. Under the hypothesis (Z, u),
Lemma 1 (with its dual) describes the behaviour of u with respect to monotone
2 sequences. Under the same hypothesis, Lemmas 2 and 3 (with their duals)
will describe the behaviour of u (extended) with respect to monotone ZX,
and Z; sequences.

LeMMA 2. Under hypothesis (Z, u), if @ Z, sequence { E,} decreases (decreases
to B), then {u(E,)} converges (converges to 0).

Proof. By the lower Z continuity, for arbitrary ¢ > 0, there exists a =
sequence {F,} such that F, C E, and

F,CACE, A4€z=|uE) —u)] < e,
so that
ACE,—F, 4 € =) < ¢/2m
Write

An=mF1y
1

then for n > 1,
+(F,NFiN ...\ Fy) — (FbNFiN...N\F,_)].

The kth term of the sum is a X set contained in E, — F, thus the norm of
its measure is less than 2¢/2%, hence ||u(F, — A4,)|| < 2¢. Therefore

Since € is arbitrary and {u(4,)} converges (converges to 0), the conclusions
follow.

LemMma 3. Under hypothesis (Z, u), for every increasing =, sequence {E,},

Proof. For arbitrary ¢ > 0 let { F,} be a = sequence such that F, C E, and
F,CACE, 4¢ 2= |u(E,) —u(d)|| < e Each E, is the limit of an
increasing = sequence {4..}, m = 1,2, ..., such that F, C 4,, C E,. Write

Bum = UAim; D, = U By
i=1 i=1

Then F, €D, C E,andr £ s = m = B,, C By, If p is an arbitrary point

of E = lim, E,, there is an index 7 such that p € E,, then there is an index
s > r such that p € 4,; C B,; C Bs; € D,. This proves that D, T E, then,
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by Lemma 1, u(D,) — u(E), and the conclusion follows from the following
inequality:

[[u(E) — n(E)|| = |[w(E) — u(Da)|| + [|u(Dn) — u(EW)]]
< Nu(E) — u(Da)|] + e
The following weak additivity relation will suffice for present purposes.

LemMA 4. Under hypothesis (Z,u), if £E € 2, F € Z,, and E D F, then
uw(E — F) + u(F) = uw(E).

Proof. Let F, T F (F, € Z). It suffices to consider the equation
N(E - Fn) + .U(Fn) = ,U'(E)
in the limit (# — =), applying Lemma 1 and its dual.

Definition. A vector measure p on a field = is null convergent if E, — @,
(E, € Z) = u(E,) — 0.

LEMMA 5. Let u be a null convergent measure on a field Z, then if |E,} is «
convergent 2 sequence (whose limit need not be a 2 set), then {u(E,)} converges.

Proof. The double sequence {u(E,, — E,)},m,n=1,2,..., converges to 0;
for if not, for some ¢ > 0 and some pair of strictly increasing sequences of
integers {m;}, {n:}, we have that |[u(E,, — E.)|| 2 € (¢ =1,2,...), and

since E,, — E,, — @, this would contradict the null convergence. Now the
convergence of {u(E,)} follows from the following inequality:

H“(Em) - N(En)H = HF"(Em - En)H + H/J'(En - Em)”'

THEOREM 2. For a vector measure on « field, null convergence and monolone
convergence are equivalent properties.

Proof. It remains to show that monotone convergence implies null con-
vergence, since the converse is contained in Lemma 5. We shall apply the
following part of the dual of Lemma 2 (obtained by complementation, with
the aid of Lemma 4):

“Under hypothesis (Z, u), if a 25 sequence {E,} increases, then

{u(E,)} converges’'.
Let u be a vector measure on a field 2 which is not null convergent. Then for
some e > 0 there exists a T sequence {E,} such that ||u(E,)||Ze(n=1,2,...)
and E, — 0. Write 4, = U%., E.. Since the 2, sequence { E; M 4, decreases
to @, we have that u(E; M 4,) — 0 (Lemma 2). Let #, be an index such that
llw(Exi M Ay)|| < e Then Fy = E; — (ExM 4,,) is a 25 set such that
[|lu(F1)|| > 3¢ (Lemma 4). By the same argument, for some ny > ny, 4,, — 4,,
contains a Z; set Fp such that |[u(F2)|| > %¢ and so on, inductively. Hence
there exists a disjoint Z; sequence { F,} such that |[u(F,)|| > $e (n = 1,2, ...),

-y .

in which case, the series >.7,(F,) diverges. Writing G, = X1 F,, we have
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the increasing Z; sequence {G,} such that {u(G,)} diverges. Thus, by the dual
of Lemma 2, u is not monotonely convergent.

Definition. Let = be a field; the class of limits of convergent X sequences,
which is obviously a field containing Z, is called the limit field of X, and is
denoted by 2. We note that the field 2 is a o-field if and only if = =Z.

LemMA 6. Under hypothesis (Z, u), u extends to a finitely additive set funciion
g on Z, uniquely determined by the following condition:

E,—E, (B, € 2)=ulE) — B(E).

Proof. Let E be an arbitrary 2 set and let {E,} be a = sequence converging
to E. Then {u(E,)} converges (Theorem 2, Lemma 5), and it follows from the
null convergence that the limit is independent of the particular = sequence
converging to E. The required extension is therefore defined by the following
formula:

Z(E) = lim, p(E,), where E,—»E (E, € 3, E € Z).
It remains to verify the finite additivity of g, but this follows as in the proof
of the dual of Lemma 1, applying, this time, the null convergence. The exten-

sion @ extends the previous extensions A and ». Henceforth, in the context
(2, u), the extension g will be understood, and we will write u instead of .

LEMMA 7. Under hypothesis (Z, u),
E,—9, (E, € Z,)=u(E,)—0.

Proof. For arbitrary ¢ > 0, there is a = sequence {F,} such that F, C E,
and ||u(F,) — u(E,)|| < € (Lemma 1), and the conclusion follows from the
null convergence.

LeEMMA 8. Under hypothesis (Z, 1), every = set E is the limit of a decreasing
X, sequence {E,} such that u(E,) — u(E).

Proof. Let { F,} be a = sequence converging to E and write E, = U7, F.
Then E, | E (E, € Z,), u(F,) — u(E), and, by Lemma 7,

M(En) - I-"(Fn> = IJ(En - Fn) — 0.
LEMMA 9. Under hypothesis (Z, u),
E, | E, (E. € 2, E € E) = u(E,) — u(E).

Proof. By the dual of Lemma 8, E is the limit of an increasing Z; sequence
{ F,} such that u(F,) — u(E), and the =, sequence {E, — F,} converges to @,
thus by Lemma 7 (or Lemma 2),

u(En) — #(Fn) = p(E, — F,) — 0.

LeMMA 10. Under hypothesis (Z, ), the additive extension u on S is upper =,
CONLINUOUS.
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Proof. Let E be a given Z set. The class Z,P(E) = {4: 4 € Z,, 4 D E}
is not empty, since 2 is a field and S € Z,*P(E) and the generalized sequence
{u(4)}, 4 € 2, (E), converges to a vector x. For if this were not so, there
would exist a decreasing Z, sequence { F,} such that {u(F,)} diverges, contrary
to Lemma 2. Let {E,} be a 2, sequence decreasing to E (Lemma 8); we can
construct inductively a decreasing =, sequence {4,} such that E, D 4, D E
and ||u(4,) — x|| < »~.. By Lemma 9, u(4,) — u(E), thus x = u(E).

LemMA 11. Under hypothesis (Z, u), suppose that u has been extended to a
finitely additive, upper Z, continuous set function (denoted by n) on a field T
containing . Then the extension p is a monotonely convergent measure on T'.

Proof. The conclusion is equivalent to the conjunction of the following two
affirmations:

(a) If {E,} is an increasing T sequence, then {u(E,)} converges.

(b) f E,TE (E, € T, E€T), then u(E,) — u(E).

Proof of (a). By the upper Z, continuity, for e > 0 arbitrary, there is a =,
sequence { F,} such that

F,2E, and F,2 A4 DE, A€ 2= ||uE,) — u(d)]] < e/2n
Write G, = U1 Fy, G = UT F,, so that, by Lemma 3, u(G,) — u(G). For
n>1 (Fy = @), we have that

G, — F,=[(F,UF)—FKl+ [(F,UF,\UF) — (F,JF)]+...

+ (F,UFRVU...UF.) — (FYFVJU...UF,_)l.

The kth term of the sum is a proper difference of =, sets of the form
D, = A, — By, where B, 2D E; and D, C F; — E;. Replacing A, and B; by

their intersections with F; (which does not effect D;), we may suppose, further,
that E, C B, C A, C F;. It follows that [[u(D;)]| < 2¢/2%, and therefore
||u (G, — F,)|| < 2e. The affirmation (a) then follows from the following
inequality:

w(En) — w(G)| = [[u(Es) — w(F)|] + [[p(Ga — F)|| < 3¢,
with e arbitrary and {u(G,)} convergent.

Proof of (b). We may apply the proof of (a) with the added hypothesis
that there exists a Z, set I containing E such that:

ECACF AczZ=|kE) —pA)l <e
We may then further suppose that F,, & F(n = 1,2,...)sothat EC G C F,

and therefore ||u(G) — u(E)|| < ¢ and thus, finally,

THEOREM 3. A monotonely convergent vector measure on a field extends uniquely
to a monotonely convergent vector measure on its limat field.
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Proof. Under hypothesis (Z, u), because of Lemma 10, the hypothesis of
Lemma 11 is satisfied for T' = Z, thus the finitely additive extension u on 2
(Lemma 6) is a monotonely convergent measure. If » is any monotonely
convergent measure on Z, because of the null convergence, we have that

En__)Ey (En € Ey E ¢ _E) = V(En) "'—)V(E).

This implies the uniqueness of the measure extension.

In the context (2, u), we understand the extension of u to a finitely addi-
tive function (denoted by ) on I; following Theorem 3, we understand this
extension as a monotonely convergent measure on =. The final induction will
be carried out with the aid of Lemmas 11 and 13, below.

LeMMA 12. Under hypothesis (2, u), suppose that u has been extended to a
monotonely convergent measure (denoted by u) on a field T containing Z. Suppose,
Sfurther, that u is upper Z, continuous at every T set. Then u is upper Z, con-
tinuous at every I', set.

Proof. Suppose that E, T E (E, € T). Since u is upper Z, continuous at
every E,, as in the first part of the proof of Lemma 11, there exists, for
arbitrary € > 0, an increasing Z, sequence {G,} such that E, C G, and
u(E,) — p(Gn)]] < e. Write G = lim, G,. Since u is also a measure on T
(extension of Theorem 3) we may pass to the limit to obtain

u(E) —u@)] = «

Let A be any 2, setsuch that E C 4 C G. Itis clear from the proof of Lemma
11, that if we replace each G, of the above argument by G,’ = G, M 4, we
still have ||u(E,) — u(G,')|| < e Since G is replaced by 4, the conclusion is

u(E) — w D] = e

LemMma 13. Under the hypothesis of Lemma 12, u is upper 2, continuous at
every T set.

Proof. Let E be a given T set and let ¢ > 0 be arbitrary. Since u is upper T,
continuous at E (Lemma 10), there is a T, set F such that

ECF and ECACG, A€T,=|uE) —u)ll <e

By the conclusion and Lemma 12, u is upper Z, continuous at F; thus there
is a 2, set B such that

FCB and FCCCB, C€Z=|uF) -0 <e
Let D be any Z, set such that E € D C B. Then
k(D) — wB)| = [[6D) = DN B[+ [[u@ N F) — p(E)|
<|[w(DVJF) = u(BH| + e

Since u is upper Z, continuous at the T, set D \JU F (Lemma 12) there is a Z,
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set H such that B2 H 2 DU Fand |[u(H) — u(D U F)|| < e But then
B>DOHDF, HE Z,, thus

w(H) — u(F)|| <
u(D\JF) —u(O)] £ |uD Y F) — pwH)|| + [[wH) — p(F)]] < 2
and we have, finally, that [[u(D) — u(E)|| < 3e.

THEOREM 4. A monotonely convergent vector measure on « semi-field extends
uniquely to a vector measure on the generated o-field.

Proof. Because of Theorem 1, we may start with hypothesis (Z, u). Let 2’
denote the ¢-field generated by Z. Let ® be the set of all pairs (T, A) such that

(a) T isa field such that 2 C T' C ¥/,

(b) X is a monotonely convergent, upper Z, continuous vector measure on
I', which extends u, and

(¢) Ais the only measure on T extending u.
The non-null set ® ((Z, u) € ®) is partially ordered: for (T, \), (I, \') € &,
(I',\) = (I",N) means that I' © IV and )\ extends A. In order to apply
Zorn's lemma, we will show that & is inductive, that is, an arbitrary totally
ordered non-null subset ¥ is bounded above in &. If (T, \) € ¥ we will say
that T is a ““¥-field” and that \ is a ““¥-measure’’. The union of the ¥-fields
is a field T'y; and the upper Z, continuous finitely additive set function Ay on Ty,
extending u, is well-defined if we set, for E € Ty, No(E) = MNE), where (T, \)
is any element of ¥ such that E € T. But then A\ is a monotonely convergent
measure (Lemma 11). If » is any measure on Ty extending u, then by the
definition of ®, » extends every ¥-measure, thus » = \o. Hence (T, A¢) is an
element of ®, and is the required upper bound of ¥. The inductivity established,
let (A, ) be a maximal element of ®. Suppose that A C 2. Then A CA C 3/, and
by Theorem 3, v extends uniquely to a monotonely convergent vector measure
7 on A. Since (A, ») € ®, 7 is upper Z, continuous at every A set, so also at
every A set (Lemma 13). Let \ be any vector measure on A extending u; by
the uniqueness of », the restriction of A to A is v, and therefore A\ = 7 (unique-
ness condition of Theorem 3). Hence (A, 7) € &, (A, 7) > (A, »), this con-
tradiction showing that A = 2/, and therefore v is the required extension.

Theorem 4 includes the following known bounded variation case:

COROLLARY. A wvector measure of bounded variation on a semi-field extends
uniquely to a vector measure of bounded variation on the generated c-field.

Proof. ‘‘Bounded variation’ is a property of a vector measure on a semi-field
(defined there as on a field (3)) if and only if it is a property of its extension
(Theorem 1) to the generated field. Thus we may suppose the vector measure u
of bounded variation defined on a field Z. The total variation v of  is a positive
(finite) measure, thus obviously monotonely convergent, hence null con-
vergent (Theorem 2). But then, since »(E) = ||u(E)|| for all E € Z, u is null
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convergent, hence monotonely convergent (Theorem 2), thus Theorem 4
applies to u. Let g and 7 be the extensions of u and v, respectively, to measures
on the generated o-field 2’; it is seen inductively that #(E) = ||z(E)|| for
all E € 3, thus @ is of bounded variation.
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