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ON FUNCTIONS WITH DERIVATIVE OF BOUNDED
VARIATION: AN ANALOGUE OF BANACH’S INDICATRIX
THEOREM

by WOLFGANG STADJE
(Received 5th December, 1984)

1. Statement of the result

A simple, but nice theorem of Banach states that the variation of a continuous
function F:[a,b]—R is given by j‘i’wt(y) dy, where t(y) is defined as the number of
x€[a,b] for which F(x)=y (see, e.g, [1], VIILS, Th. 3). In this paper we essentially
derive a similar representation for the variation of F’ which also yields a criterion for a
function to be an integral of a function of bounded variation. The proof given here is
quite elementary, though long and somewhat intriciate.

Let —cwo<a<b<oo, F: [a,b]-R be continuous.

For any real function G on [a, b] we denote by v(G) its variation and by /(G) the length
of its graph; further ||G||:=sup{|G(x)|| x € [a, b]}.

Let a,;=a+(b—a)j27", D,;={a,|j=1,...,2"—1}.
For a>0 we define F(F):={G:[a,b]-R|||F—G||La, G(a)= =F(a), G(b)=F(b)}.
We consider F3:[a,b]—R which is defined to be that function H satisfying H(a)=

F(a), H(b)=F(h), F(a,)—a<H(a,)<F(a,)+a (j=1,...,2"—1) which has minimal
length. Clearly F} is piecewise linear and continuous (see Fig. 1). We shall show that
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FIGURE 1
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F,:=lim,_ . F} exists (pointwise), and F, is uniquely determined. by
I(F,) =inf{l(G)| Ge Z(F)}. (1)

F, can be visualized as a thread fastened to the point (a, F(a)) and drawn as tautly as
possible in the region

{(x,y)eR?|xe[a,b], F(x)—a<y< F(x)+a}

such that it passes through (b, F(b)).
Let F°(x) be the straight line joining (a, F(a)) and (b, F(b)),

oo:=sup {|F(x)— F°(x)|| x € [a, b]}.

Suppose a,>0. It will be proved that for ae(0,a,) there is a finite number of open
intervals Jy,,...,J; ,<[a,b] (ordered from left to right) with the following properties:

ka '
(i) |Fx)—F(x)|<a forall xel) J,
i=1

(ii) Let J;,=(x;, X},). Then for i=2,...,k,—1 either
F(x;))—F(x;,)=a and F(x;,) —F(x},)= —a or
F,(x;) —F(x;;)) = —a and F(x},)— F(x!,) =a; further
X1,=a, F(x},)—F(xi)= to and x;_,=b,
Fo(xk,a) = F(xy,0) =t o
Let for a>aq s(x):=0 and for a (0, «p)

s(@): =[4(x1,—a)] ™" +(xoe = X20) T+ H (X -1 e = Xy - 1,0)

+[4b—x,, 17" 2
s(«) will be seen to be monotone decreasing. It measures how often F, varies from F+a
to F—a and vice versa and how fast this happens.

Now we can formulate the result.

Theorem. If [3s(«)da<oo for some €>0, there is a f:[a,b]—>R such that

F()=F(@)+] f()dt for all xe[a,b] 3)
o f) =4 ;f () do. @)
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If there is a f:[a,b]— R of bounded variation satisfying (3), there exists a f:[a,b]—R such
that f = f almost everywhere and v(f)=4 [ s(«) do < co.

2. Proof of the Theorem
We have subdivided the proof into a number of separate steps.

(a) It is clear that sup,l(F7)<co so that also sup,v(Fj) <oco. By Helly’s extraction
theorem ([1], p. 250), there is a pointwise convergent subsequence Fy'—F,, and we have
I(F,) <liminf;_, , I(F"#). Each G:[a,b]— for which ||F—G||§oz and G(a)=F(a), G(b)=
F(b) satisfies I(G) ZI(F?) for all ne N so that I(G)=I(F,). Thus (1) holds. We shall show
that (1) uniquely determines F, thus getting F,—F,.

(b) F, is continuous on [a,b]. Indeed, since v(F,)< oo, F(x+) and F,(x—) exist for
all xe(a,b). Suppose, e.g., Fx;—)<F/x,+) for some x, €(a,b). Define F(x):=F(x)
for xé¢[xy,x;+e), Fix,):=3F (x,—)+3F(x,+), F° linear on [x,;,x,+¢& and
]imx—>xl +te— F:(x):=Fa(xl +8—)

Then F®e Z(F) for small ¢>0 and I(F?) <I(F,), a contradiction. The continuity of F, in
a and b is proved similarly.

(c) By (b), A,:={xe[a,b]|F(x)—F(x)<a} is open. F, is concave on each compo-
nent of A,. To see this, let x,, x, € D for some N with the properties U:=(x, x,) = 4, and
supy (F(x) —a) <inf, (F(x)+a). For n=N let G, be the smallest concave function on U
satisfying G (x)2F(x)—a for all xeD,n(xy,x;), G x)=F xy), Gux;)=F(x,).
Obviously we have G,<F+a and G,£F, (in U); G, is an increasing sequence, and the
limit G:=Ilim,_ %G, is a concave function on U for which GXF,, F—a<G<F+a,
G(x,)=F(x,), G(x;)=F(x;). So we must have G=F, on U.

(d) Similarly as iff (c) it is seen that F, is convex on each component of the (by (a))
open set B,={xe[a,b]|F(x)—F(x)>—a}. Let S(%,) be the set of all intervals
[x,yl<[a,b] such that x,ye A% and [x,y]nBi=C (x,yeB. and [x,y]nAi=(J). Let
L= {|les,}, T;=\J{|leF,}, J:=[a,b]\U,u]). On the components of I,uJ,
resp. I,uJ, resp. J F, is convex resp. concave resp. linear. The number of components of
I, T, and J, is finite (otherwise there exist sequences x; e dl,, %;€ 4T, such that x,—X,-0
(i—»o0) so that F(x)—F(X)—0; this yields a contradiction, because F(x;)=F(x;)~—a,
Fy(X)=F(X)+a).

(e) By (d), F, is absolutely continuous. If F, is a solution of (1) for which F,%F,, F,
is also absolutely continuous, and

IGF,+3F) =lj, [1+&F.(x) +3F(x))*] /2 dx
<[ B+ L0 2431+ Py 2] dx

=H(F)+3(F)=I(F,). ©)
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Since 4F,+1iF,e #(F), (5) contradicts (1). So F, is uniquely determined by (1), and
Fi—F, (n—00).

(f) J, is increasing, I, and I, are decreasing with respect to a. Consider for example
Aj. Suppose on the contrary that for some a<f and x,€(a,b) we have Fy(x,)=F(x)+
and F(x,) <F(xo)+oa. Let U=(x,,x,) be the maximal interval in [a,b] containing x,
such that Fg(x)— B> F(x)—a for xe U. Clearly a<x, <x,<x,<b, and F, is concave on
U (otherwise there is a x3€U for which F.(x;)=F(x,)+a, but then Fy(x;)— B> F(x,),
a contradiction). Note that for xe U

Fg(x)— B> F(x) —a=F(x)—2a
> F(x)—28 (6)
so that Fg(x)>F(x)—pB. Consequently Uc By, and F; is convex on U. The convex F,

coincides with the concave F,+f—a at x; and at x,, so Fy=F,+f—o on U. This is a
contradiction to the definition of U.

(g) It follows from (f) that s, as defined by (2), is a monotone decreasing function
(note that the construction of F), shows that J,# & for a <ag).

(h) For the rest of the proof we assume without restriction of zenerality that
infI, <infT,.

Thus F, “has a convex start”.

(i) J, is a finite disjoint union of open intervals J, ,,...,J, , (ordered from left to
right). Denote their lengths by [, ,,..., 1, and set

hy:= —l;il,lla+2l{,i1,2'u——"'+(—1)"“’12l,;£1,11,k‘_1_a
+(— l)k“l,;'lal,kra, ae(0,ap) )
hye:=0, a=aq,.
If s is defined by (2), it is easy to verify that
4 s(a) =v(h,). 8)

Further, for all £>0,
4 { s(o) da= [ v(h,) du= v(j h, doc). 9)

To establish the second equation in (9), consider an arbitrary partition a=
Xo<x;<'*<xy=b with the property that no interval [x;_,,x;] contains points from
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I, and T, We notice that for each a=¢ the set of points at which h, jumps upwards
(resp. downwards), is contained in I, (resp. I,). Thus the sign of h(x)—h(x;_,) only
depends on j (not on a=g¢). Therefore the approximating sums for j';” v(h,) do and
([ h, de) belonging to the abdve partition are equal:

do

N
2
ji=1

1

Jj=1

T hi(x) do— T by, ) dor| = i i

)ax.

ho(x) = ho(x;-1)

ha(xj) - ha(xj— )

This proves the second equation of (9).

(j) We next derive the equation

Fux)= | [ hy(u) dudB+ FO(x). (10)

First note that F, is absolutely continuous with respect to «. Indeed, it follows from the
proof in (f) that Fy(x)— B < F,(x)—a for «<f, and a similar argument shows that F(x)+
a<Fy(x)+p for a<B.

Thus the limit of

HZ(X): =g l(Fa(x) _Fa—a(x))a

as e—»0+, exists almost everywhere. By the Lipschitz continuity of a—F (x) we have
|H¢| < 1. Further for xe ASU BS

1, xeAS

11
—1, xeB.. (1)

HE(x) = —§ h(u) du ={

For if xeAS, F (x)=F(x)+a« and, by (f), F,_.(x)=F(x)+a—¢; the assertion for h,
follows from the definition (7) and (h). As F, is linear on the components of 4,nB,,
F,_, is concave on the components of 4,_, and (by (f)) A,_,< A,, we can conclude that
H: is convex on the components of (4,nB)NA,_,=A,_,nB,. On B we have H:=
—1, so that H: is convex on the components of A,_,. Similarly it is seen that H% is
concave on the components of B, _,.

It is easily seen that A,_,TA,, B,_.1B, Jo-.1Js as €|0. If xe I, there are x,, x, € A
such that xe[x;,x,]. Since AicB,=(Jo<c<sB.-.» there is a g>0 such that
Xy, %, €B,_,; as H; is concave on B,., and Hg(x,)=H(x;)=1, we l~1ave Hix)=1 for
e€(0,&0]. Thus Hix)—1 for xel,. Similarly we get H)(x)— —1 for xel,, as e-»0+.

Now let (xo, x,) be a component of J,, xq€ A5, x, € Bj, so that HYx,)=1, Hy(x,)=—1.
Then for small ¢>0 there are d(g) >0, n(¢) >0 such that H; is concave and decreasing on
[x0,x, —n{e)], convex and decreasing on [x,+d(¢), x,] and linear on [xq+ d(¢),
x; —n(e)], and

lim &(g)= lim n(e)=0.

e—=0+ e-0+
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Hence lim,_, o, H:(x) exists for x € [xq, x;] and is linear and continuous. Thus

11m Hi(x)= — jh (u) du (12)

e—=0

by (11) and the fact that the right-hand side is piecewise linear and continuous.

(k) By (10) and Fubini’s theorem (note that ,hl,lg(Z/min,- l;,) for f=a),

Fi(x)= j' hy(x) dﬁ+ib[:$ a.e.

If F, is not differentiable at x, F;, denotes the right derivative which exists because of the
concavity and convexity properties of F,. As v(F,) and u([Z hy(.) dB) can be computed by
only considering partitions of [a, b] contained in a countable dense set, we get

(F;)=v(jh,,(.)dﬂ>. (13)
By (9), (13) and the assumption (g s(«) da < oo, it follows that
sup u(F;) < c0. (14)
a>0

By Helly’s selection principle either there exists a function f:[a,b]—R such that F, — f
pointwise for some sequence a;—0+ or there is a xo€[a,b] such that ]F’ (xo)l—>oo for
some sequence o;—04. In the second case we have without restriction of generality
F, (x)—»oo for all x€[a,b] (use (14)) so that F, (x) j' F’ (u)du—»oo for xe(a,b]. Thus

th1s possibility is excluded. In the first case however

F(x)— F(a)= lim F,(x)— F(a)—hij’ (t)dt~j 1 adt. (15)

j= o joowa

() We shall now prove

u(f)=41°s(a)da. (16)
Firstly, by (k) and (9),
o(f)liminfo(F,) =4 j da. (17)
Next we show that
o(F,)<Y|D*F(x)—D F(x'), (18)
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where D* and D~ denote right and left derivative and the sum is taken over all
components [x’,x] of I,uT,. Note that because of v(f) < oo,

x+te x

lim e | f()dt and lim ™' | f(r)de
-0+ x e~ 0+ x—¢&

exist for all xe(a,b), are continuous from the right resp. left and are both equal to F'(x)

almost everywhere (see [2]). Especially, the right-hand sum in (18) is well-defined.

Let us consider an arbitrary component [x;,x,] of I, Then Fj(x,)=F(x,)+a,
Fx;)=F(x,)+a, and F, is convex on [x;—e x,+¢] for ¢>0 so small that
(x;,—¢&x,+¢e)cl,uJ, Thus the total variation of F, in [x, —g, x,+¢] is equal to
F(x,+¢&)—F(x,—¢). On the other hand, by definition of I, and ¢ it is clear that for all
0e(0,8)

Fyx,+8)<F(x,+3d)+a, Fx,—0)<F(x,—95)+a.

FIGURE 2

Hence,

x3+8
D*F(x;)= lim ™' | f()dt
-0+

X2

= lim 6 '[F(x,+06)+a—(F(x;)+a)]

-0+

2 lim 67 '[Fy(x;+0)—F,(x,)]

-0+
=F(x;,+¢) (19)

(the last equation follows, because F, is linear on a set containing [x,, x, +&]). Similarly
it is seen that D™ F(x,) < F,(x, —¢). Therefore the total variation of F, in [x, —¢&,x,+¢]
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is at most as large as |D+F(x2)—D_F(x1)|. An analogous argument applies to the
components of [,. v(F.) is the sum of the above estimated total variations.

This yields (18).

Since D*F(x) (D™ F(x)) is continuous from the right (left) and almost everywhere
equal to f(x), we obtain from (18) that

v(F)Zu(f) forall a>0. (19)

(17) and (19) together imply (16).

(m) Finally suppose that there is a f: [a,b]—>R with bounded variation for which
F(x)=[7 f(¢) dt for all xe[a,b]. As in (1) it is shown that v(F)) <v(f) for all a>0. As in
(k) it is then proved that there is a f of bounded variation coinciding with f almost
everywhere such that f(x) =lim;_, F;j(x) for all xe[a, b]. Note that also

0

[s(Bdp=v(F))<v(f) for all a>0. (20)
Thus
Zs(ﬁ) dB< o, 21)

and the first part of the theorem applies.
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