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Abstract

In this note we deal with the allocation of independent and identical active redundancies
to a k-out-of-n system with the usual stochastic order among its independent components.
The optimal policy is proved both to assign more redundancies to the weaker component
and to majorize all other policies. This improves the corresponding one in Hu and Wang
(2009) and serves as a nice supplement to that in Misra, Dhariyal and Gupta (2009) as
well.
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1. Introduction

In industrial engineering, system security, and reliability, it is of great interest to allocate
some redundancies to components of a system so as to optimize the lifetime or increase the
reliability of the system. Generally, the following two types of allocation are commonly used:
(i) active redundancy (hot standby), in which the redundancies are put in parallel to components
of the system and start functioning at the same time as the components are initiated; (ii) standby
redundancy (cold standby), in which redundancies are put in standby and start functioning once
components fail. Recently, Cha et al. (2008) considered the so-called general standby, in which
the redundancy works in a milder environment in the standby state and, hence, the failure rate
is nonzero and smaller than that in the usual environment; therefore, it is just an intermediate
stage between the cold and the hot stages. This paper will focus only on the active redundancy.
For more on general standby, we refer the reader to Cha et al. (2008) and Li et al. (2009).

Shaked and Shanthikumar (1992) were among the first to study the problem of allocating
m active redundancies to a series system with n components in the situation that lifetimes of
components and redundancies are independent and identically distributed. Let r = (r1, . . . , rn)

be an allocation policy, i.e. ri redundancies are put in parallel with the ith component in the
system (i = 1, . . . , n) and r1 + · · · + rn = m. They proved that Ts(r), the lifetime of the
resulting series system with allocation policy r , has a Schur-concave survival function with
respect to r . Afterward, in view of the importance of the hazard rate which describes a system’s
wear out, Singh and Singh (1997) showed that the failure rate function of Ts(r) is Schur convex
with respect to the allocation policy r . Recently, Hu and Wang (2009) further investigated
the allocation of m active redundancies to a k-out-of-n system where lifetimes of all working
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components and active redundancies are independent and identical; they proved that

Tk|n(r ′) ≤st Tk|n(r) whenever r ≤m r ′.

Here r ′ is another allocation policy and Tk|n(r) is the lifetime of the resulting k-out-of-n system
with allocation policy r , ‘≤st’ and ‘≤m’ denote the usual stochastic order and the majorization
order, respectively. Readers are referred to Section 3 for their definitions. It is clear that the
conclusion on the series system in Shaked and Shanthikumar (1992) is extended to the general
k-out-of-n system.

On the other hand, Misra et al. (2009) also studied the allocation of m independent and
identical redundancies with distribution G to a series system with lifetimes of n independent
components that are stochastically ordered, i.e. F1(t) ≤ · · · ≤ Fn(t) for all t . They proved
that the survival function of lifetime Ts(r) of the resulting series system is Schur concave with
respect to r in R̃m = {(r1, . . . , rn) : r1 ≥ · · · ≥ rn, r1 + · · ·+ rn = m, ri ∈ N, i = 1, . . . , n}.
Namely, for r ∈ R̃m and r ′ ∈ R̃m,

Ts(r
′) ≤st Ts(r) whenever r ≤m r ′. (1)

In addition, when Fi = F for i = 1, . . . , n, they also showed that the failure rate function of
Ts(r) is Schur convex with respect to r if ln G(t)/ ln F(t) increases in t ≥ 0; this strengthens
the main result of Singh and Singh (1997).

The interest of this paper is twofold. We further investigate the allocation of m active
redundancies to a k-out-of-n system in the situation that lifetimes of independent components
are stochastically ordered and all redundancies are independent and identically distributed. For
the sake of optimizing the survival function of the redundant system, in Section 3 we study
relations among those admissible allocation policies which are ‘better’ than the ones discussed
in Misra et al. (2009). We show that the survival function of the lifetime of the resulting
k-out-of-n system is Schur concave with respect to the admissible allocation policy r , and
we also present the optimal policy among all allocation policies. On the other hand, when
all components are identically distributed, we prove that the survival function of the lifetime
of the resulting system is also Schur concave with respect to the allocation policy without
any other ancillary conditions, and we present the optimal allocation policy as well. Finally,
in Section 4 we present some conclusions on the allocation of redundancies for components
without stochastic order and the allocation of heterogeneous redundancies.

Throughout this paper, all random variables are assumed to be nonnegative and have 0 as
the common left endpoint of their supports.

2. Assumptions and notation

In this study we deal with a redundant system based on the following assumptions.

(A1) k-out-of-n system with active redundancies. The system under study fails once k of its n

components fail to operate properly, and active redundancies are respectively in parallel
with those working components to which they are allocated.

(A2) Stochastic order among components. All components of the system are independent and
their lifetimes are stochastically ordered.

(A3) Independent and identical redundancies. There are m redundant components to be
allocated so as to optimize the lifetime of the system. All the redundancies are independent
and identically distributed.
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(A4) Independence between components and redundancies. The lifetimes of the working
components in the system and the redundancies are independent.

For k-out-of-n systems, we refer the reader to Kuo and Zuo (2002) for a comprehensive
discussion. We refer readers to Shaked and Shanthikumar (2007) for more on the stochastic
order. For ease of reference, we list all the notation which will be employed from now on below.

X = (X1, . . . , Xn) The vector of random lifetimes of system’s components.
Y = (Y1, . . . , Ym) The vector of random lifetimes of redundancies.
Fi , F̄i , i = 1, . . . , n The distribution function and survival function of the ith

component.
G, Ḡ The distribution function and survival function of redundancies.
r = (r1, . . . , rn) The allocation policy with ri redundancies allocated to

Xi, i = 1, . . . , n.
r ′ = (r ′

1, . . . , r
′
n) The allocation policy defined in a similar manner to r .

(X1(r), . . . , Xn(r)) The vector of lifetimes of components under allocation policy r .
Xk:n(r) The kth order statistic based on X1(r), . . . , Xn(r).
Tk|n(X, Y ; r) The lifetime of a k-out-of-n system with allocation policy r .
H̄k(t; r) The survival function of the lifetime Tk|n(X, Y ; r).
Rm (R̄m) The set of all (admissible) allocation policies.
≤st, ≤m The usual stochastic and majorization orders.

Recall that a random variable X with distribution F is said to be smaller than the random
variable Y with distribution G in the usual stochastic order (denoted by X ≤st Y or F ≤st G)
if P(X > t) ≤ P(Y > t) for all t . This useful concept will be employed to compare survival
functions of the redundant system with respect to various allocation policies. We refer the
reader to Shaked and Shanthikumar (2007) for a comprehensive discussion. According to (A2),
components of the system are stochastically ordered. For convenience, say X1 ≥st · · · ≥st Xn.
Equivalently,

F̄1(t) ≥ · · · ≥ F̄n(t) for all t ≥ 0. (2)

Under the allocation policy r = (r1, . . . , rn), ri active redundancies are allocated to the
component Xi, i = 1, . . . , n. As a result, the survival function of the system under policy r is

H̄k(t; r) = P(Tk|n(X, Y ; r) > t) = P(Xk:n(r) > t) for all t ≥ 0.

For any pair of nodes i < j , define

Zl =

⎧⎪⎨
⎪⎩

Xl(r), 1 ≤ l ≤ i − 1,

Xl−1(r), i + 1 ≤ l ≤ j − 1,

Xl−2(r), j + 1 ≤ l ≤ n.

Let Zk:n−2 be the kth order statistic based on Z1, . . . , Zn−2, which are independent due to (A3)
and (A4). For convenience, set

ξs|i,j (t, k) = P(Zk−s+1:n−2 > t) for 1 ≤ k ≤ n and s = 1, 2, 3

whenever k ≥ s, and ξs|i,j (t, k) = 0 otherwise. The following decomposition of the system’s
survival function plays an important role in deducing the main results in the sequel.
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Proposition 1. For a fixed pair of nodes i < j ,

H̄k(t; r) = ξ1|i,j (t, k)[1 − Fi(t)G
ri (t)][1 − Fj (t)G

rj (t)]
+ ξ2|i,j (t, k)[Fi(t)G

ri (t) + Fj (t)G
rj (t) − 2Fi(t)Fj (t)G

ri+rj (t)]
+ ξ3|i,j (t, k)Fi(t)Fj (t)G

ri+rj (t). (3)

Proof. By the total probability we have, for all t ≥ 0,

H̄k(t; r) = P(Xk:n(r) > t)

= P(Xk:n(r) > t | Xi(r) > t, Xj (r) > t) P(Xi(r) > t, Xj (r) > t)

+ P(Xk:n(r) > t | Xi(r) > t, Xj (r) ≤ t) P(Xi(r) > t, Xj (r) ≤ t)

+ P(Xk:n(r) > t | Xi(r) ≤ t, Xj (r) > t) P(Xi(r) ≤ t, Xj (r) > t)

+ P(Xk:n(r) > t | Xi(r) ≤ t, Xj (r) ≤ t) P(Xi(r) ≤ t, Xj (r) ≤ t)

= P(Zk:n−2 > t)[1 − Fi(t)G
ri (t)][1 − Fj (t)G

rj (t)]
+ P(Zk−1:n−2 > t)[1 − Fi(t)G

ri (t)]Fj (t)G
rj (t)

+ P(Zk−1:n−2 > t)[1 − Fj (t)G
rj (t)]Fi(t)G

ri (t)

+ P(Zk−2:n−2 > t)Fi(t)Fj (t)G
ri+rj (t)

= ξ1|i,j (t, k)[1 − Fi(t)G
ri (t)][1 − Fj (t)G

rj (t)]
+ ξ2|i,j (t, k)[Fi(t)G

ri (t) + Fj (t)G
rj (t) − 2Fi(t)Fj (t)G

ri+rj (t)]
+ ξ3|i,j (t, k)Fi(t)Fj (t)G

ri+rj (t).

This is the desired result.

3. Allocation of active redundancies

3.1. The optimal allocation policy

It is evident that we should focus on

Rm = {(r1, . . . , rn) : r1 + · · · + rn = m, ri ∈ N, i = 1, . . . , n},
the set of all allocation policies.

Theorem 1. Consider two allocation policies r ∈ Rm and r ′ ∈ Rm such that ri = r ′
j and

rj = r ′
i for some 1 ≤ i < j ≤ n, and rl = r ′

l for l /∈ {i, j}. Then,

Tk|n(X, Y ; r) ≥st Tk|n(X, Y ; r ′) if and only if ri < rj .

Proof. Since

rl =

⎧⎪⎨
⎪⎩

r ′
j , l = i,

r ′
i , l = j,

r ′
l , l /∈ {i, j},

by (3) we have, for all t ≥ 0,

H̄k(t; r) − H̄k(t; r ′) = ξ1|i,j (t, k)[1 − Fi(t)G
ri (t)][1 − Fj (t)G

rj (t)]
− ξ1|i,j (t, k)[1 − Fi(t)G

r ′
i (t)][1 − Fj (t))G

r ′
j (t)]

+ ξ2|i,j (t, k)[Fi(t)G
ri (t) + Fj (t)G

rj (t) − 2Fi(t)Fj (t)G
ri+rj (t)]
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− ξ2|i,j (t, k)[Fi(t)G
r ′
i (t) + Fj (t)G

r ′
j (t) − 2Fi(t)Fj (t)G

r ′
i+r ′

j (t)]
+ ξ3|i,j (t, k)Fi(t)Fj (t)[Gri+rj (t) − G

r ′
i+r ′

j (t)]
= ξ1|i,j (t, k)[Gri (t) − Grj (t)][Fj (t) − Fi(t)]

+ ξ2|i,j (t, k)[Grj (t) − Gri (t)][Fj (t) − Fi(t)]
= [ξ1|i,j (t, k) − ξ2|i,j (t, k)][Gri (t) − Grj (t)][Fj (t) − Fi(t)].

Since Zk:n−2 ≥ Zk−1:n−2, it holds that

ξ1|i,j (t, k) ≥ ξ2|i,j (t, k) for all t ≥ 0.

On the other hand, by (2) we have

Fj (t) ≥ Fi(t) for all t ≥ 0.

As a result, H̄k(t; r) − H̄k(t; r ′) ≥ 0 for all t ≥ 0 if and only if ri < rj .

Under the same assumption in our model, Misra et al. (2009) derived (1) for the series system.
However, according to Theorem 1, more redundancies should be allocated to the component
which is stochastically smaller. That is, for X1 ≥st X2 ≥st · · · ≥st Xn, the allocation policy
r = (r1, . . . , rn) with r1 ≤ · · · ≤ rn performs better than the policy with ri > rj for some
i < j . As a result, it suffices to pay attention to

R̄m = {(r1, . . . , rn) : r1 ≤ · · · ≤ rn, r1 + · · · + rn = m, ri ∈ N, i = 1, . . . , n},

the set of all admissible allocation policies.

Theorem 2. Consider allocation policies r ′ ∈Rm with r ′
j − r ′

i ≥ 2 for some pair 1 ≤ i <

j ≤ n and r ∈ Rm such that ri = r ′
i + 1, rj = r ′

j − 1, and rl = r ′
l for l /∈ {i, j}. If G ≥st F1

then

Tk|n(X, Y ; r) ≥st Tk|n(X, Y ; r ′).

Proof. Since

rl =

⎧⎪⎨
⎪⎩

r ′
l + 1, l = i,

r ′
l − 1, l = j,

r ′
l , l /∈ {i, j},

by (3) again we have, for all t ≥ 0,

H̄k(t; r) − H̄k(t; r ′)

= ξ1|i,j (t, k)[1 − Fi(t)G
r ′
i+1(t)][1 − Fj (t)G

r ′
j −1

(t)]
− ξ1|i,j (t, k)[1 − Fi(t)G

r ′
i (t)][1 − Fj (t)G

r ′
j (t)]

+ ξ2|i,j (t, k)[Fi(t)G
r ′
i+1(t) + Fj (t)G

r ′
j −1

(t)]
− ξ2|i,j (t, k)[Fi(t)G

r ′
i (t) + Fj (t)G

r ′
j (t)]

+ ξ3|i,j (t, k)Fi(t)Fj (t)[Gr ′
i+r ′

j (t) − G
r ′
i+1+r ′

j −1
(t)]
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= ξ1|i,j (t, k)[(Gr ′
j (t) − G

r ′
j −1

(t))Fj (t) + (Gr ′
i (t) − Gr ′

i+1(t))Fi(t)]
+ ξ2|i,j (t, k)[(Gr ′

j −1
(t) − G

r ′
j (t))Fj (t) + (Gr ′

i+1(t) − Gr ′
i (t))Fi(t)]

= (1 − G(t))(ξ1|i,j (t, k) − ξ2|i,j (t, k))[Fi(t)G
r ′
i (t) − Fj (t)G

r ′
j −1

(t)]
= (1 − G(t))Gr ′

i (t)Fi(t)(ξ1|i,j (t, k) − ξ2|i,j (t, k))

[
1 − Fj (t)

Fi(t)
G

r ′
j −r ′

i−1
(t)

]
.

In view of r ′
j − r ′

i ≥ 2 and G ≥st F1 ≥st Fi , we have, for all t ≥ 0,

G
r ′
j −r ′

i−1
(t) ≤ G(t) ≤ Fi(t).

Then, it holds that, for all t ≥ 0,

Fj (t)

Fi(t)
G

r ′
j −r ′

i−1
(t) ≤ Fj (t)

Fi(t)
Fi(t) = Fj (t) ≤ 1.

Consequently, due to ξ1|i,j (t, k) ≥ ξ2|i,j (t, k) for any t ≥ 0, it immediately follows that

H̄k(t; r) − H̄k(t; r ′) ≥ 0 for all t ≥ 0.

This completes the proof.

According to Theorem 2, it is better for the difference between numbers of redundancies
allocated to any two different components in an allocation policy not to exceed 2.

Let x(1) ≤ · · · ≤ x(n) be the increasing arrangement of the components of the vector
x = (x1, . . . , xn). Recall that x is said to majorize y = (y1, . . . , yn) (denoted by x ≥m y) if∑n

i=1 x(i) = ∑n
i=1 y(i) and

∑n
i=1 x(i) ≤ ∑n

i=1 y(i) for j = 1, . . . , n − 1. It is well known that
majorization is quite useful in establishing various inequalities. Readers may refer to Marshall
and Olkin (1979) for more on the majorization order. Here, the majorization order enables us
to compare the diversity of two allocation policies. The next result provides some insight into
comparisons between two admissible policies in R̄m.

Theorem 3. Consider two admissible allocation policies r ∈ R̄m and r ′ ∈ R̄m. If G ≥st F1
then

Tk|n(X, Y ; r) ≥st Tk|n(X, Y ; r ′) whenever r ≤m r ′.
Proof. Since r ≤m r ′, according to Lemma D.1 of Marshall and Olkin (1979, p. 135), there

exist � − 2 admissible allocation policies such that

r = r(1) ≤m r(2) ≤m · · · ≤m r(�) = r ′,

and, for s = 1, . . . , � − 1, r(s) = (r
(s)
1 , . . . , r

(s)
n ) and r(s+1) = (r

(s+1)
1 , . . . , r

(s+1)
n ) satisfy, for

some 1 ≤ i, j ≤ n,

r
(s)
i = r

(s+1)
i + 1, r

(s)
j = r

(s+1)
j − 1, and r

(s)
l = r

(s+1)
l for l /∈ {i, j}.

Thus, the desired result follows immediately from Theorem 2.

Let r∗ = (r∗
1 , . . . , r∗

n) ∈ Rm such that |r∗
j − r∗

i | ≤ 1 for any pair i �= j , and let r̄∗ =
(r̄∗

1 , . . . , r̄∗
n) ∈ R̄m such that |r̄∗

j − r̄∗
i | ≤ 1 for any pair i �= j . It should be remarked here

that r∗ is not unique, whereas r̄∗ is unique. For example, when n = 5 and m = 18, r∗ may be
(3, 3, 4, 4, 4), (3, 4, 3, 4, 4), or (3, 4, 4, 3, 4), etc.; however, r̄∗ = (3, 3, 4, 4, 4).
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The proof of the following Theorem is straightforward and hence omitted for briefness.

Theorem 4. For any r ∈ Rm, r ≥m r∗. In particular, for any r ∈ R̄m, r ≥m r̄∗.

Now, in combination with Theorem 1, Theorem 3, and Theorem 4, we reach the optimal
allocation policy in the sense of the usual stochastic order.

Theorem 5. For any allocation policy r ∈ Rm, if G ≥st F1 then

Tk|n(X, Y ; r) ≥st Tk|n(X, Y ; r̄∗).

That is, r̄∗ is the optimal.

The stochastic order condition G ≥st F1 actually claims that redundancies are not worse
than those active components. This is a bit restrictive and not always the case in practice.
However, as can be seen in the following example, this condition may not be dropped.

Example 1. (Stochastic order between the component and standby.) For a series system with
three components having survival functions

F̄1(t) = e−0.2t , F̄2(t) = e−0.5t , F̄3(t) = e−2t ,

consider three active redundancies having common survival function Ḡ(t) = e−t . Then it is
easy to verify that

F̄3(t) ≤ Ḡ(t) ≤ F̄2(t) ≤ F̄1(t) for all t ≥ 0.

Owing to Theorem 1, we consider only allocation policies with their elements being arranged
in ascending order. The survival curves of the redundant system corresponding to the three
admissible allocation policies r1 = (0, 0, 3), r2 = (0, 1, 2), and r3 = (1, 1, 1) are plotted in
Figure 1. As can be seen, the three corresponding survival curves cross each other, and none of
them is superior to the other two in the sense of the usual stochastic order. That is, the optimal
allocation does not exist.
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Figure 1: Survival curves of a series system with allocation ri , i = 1, 2, 3.
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3.2. The case with homogeneous components

Recall that a function φ : Rn → R is said to be Schur concave if, for x and y in R
n,

φ(x) ≤ φ(y) whenever x ≥m y. The following necessary and sufficient condition for a
permutation symmetric differentiable function to be Schur concave is quite useful. For a
comprehensive discussion on the theory and application of the majorization order as well as
the Schur-concave function, we refer the reader to Marshall and Olkin (1979).

Lemma 1. (Roberts and Varberg (1973).) Let f (x) be symmetric and have continuous partial
derivatives for x = (x1, . . . , xn) ∈ In, where I is an open interval. Then f : In → R is Schur
concave if and only if

(xi − xj )

(
∂f (x)

∂xi

− ∂f (x)

∂xj

)
≤ 0

for x ∈ In such that xi �= xj with 1 ≤ i < j ≤ n.

The next theorem studies the optimal allocation policy of active redundancies for k-out-of-n
systems with identical components. As can be seen, the stochastic order condition between the
redundancies and the components may be neglected.

Theorem 6. Suppose that Fi = F for i = 1, . . . , n, and consider two allocation policies
r ∈ Rm and r ′ ∈ Rm. Then,

Tk|n(X, Y ; r) ≥st Tk|n(X, Y ; r ′) whenever r ≤m r ′.

Proof. Since Fi = F for i = 1, . . . , n, (3) becomes

H̄k(t; r) = ξ1|i,j (t, k)[1 − F(t)Gri (t)][1 − F(t)Grj (t)]
+ ξ2|i,j (t, k)[F(t)Gri (t) + F(t)Grj (t) − 2F 2(t)Gri+rj (t)]
+ ξ3|i,j (t, k)F 2(t)Gri+rj (t)

for any pair 1 ≤ i, j ≤ n and t ≥ 0. Then,

∂H̄k(t; r)

∂ri
= −ξ1|i,j (t, k)(1 − F(t)Grj (t))F (t)Gri (t) ln G(t)

+ ξ2|i,j (t, k)[F(t)Gri (t) − 2F 2(t)Gri+rj (t)] ln G(t)

+ ξ3|i,j (t, k)F 2(t)Gri+rj (t) ln G(t),

and, thus, owing to the fact that ξ1|i,j (t, k) ≥ ξk
2,|i,j (t) for all t ≥ 0, we have

(ri − rj )

(
∂H̄k(t; r)

∂ri
− ∂H̄k(t; r)

∂rj

)

= (ri − rj )(G
rj (t) − Gri (t))F (t)(ξ1|i,j (t, k) − ξ2|i,j (t, k)) ln G(t)

≤ 0.

That is, the survival function H̄k(t; r) of the resulting system is Schur concave.
Note that, since H̄k(t; r) is symmetric with respect to r ∈ Rm, by Lemma 1, we reach the

desired conclusion.

From Theorem 4 and Theorem 6, we immediately have Theorem 7, below.
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Theorem 7. For any allocation policy r ∈ Rm,

Tk|n(X, Y ; r) ≥st Tk|n(X, Y ; r∗).

That is, r∗ is the optimal allocation policy.

Hu and Wang (2009) showed that, when Ḡ(t) = F̄i(t) = F̄ (t) for i = 1, . . . , n,

Tk|n(X, Y ; r) ≥st Tk|n(X, Y ; r ′) whenever r ≤m r ′.

As is seen, this is just a particular case of both Theorem 3 and Theorem 6.

4. Two related conclusions

The model in Section 2 assumes that all components are ordered in the sense of the usual
stochastic order. However, in practice, this may not be applicable due to components wearing out
differently. In fact, this assumption can be neglected in the case below: m = rn redundancies are
allocated to a k-out-of-n system with heterogeneous components. From the proof of Theorem 2,
we have Corollary 1.

Corollary 1. Suppose that there are m = rn redundancies. If G ≥st Fi for i = 1, . . . , n then
r∗ = (r, . . . , r) is the optimal allocation policy. Formally,

Tk|n(X, Y ; r) ≥st Tk|n(X, Y ; r∗) for any r ∈ Rm.

On the other hand, for the case with stochastically ordered components and heterogeneous
redundancies, let Gi(t) denote the distribution function of the lifetime Yi of the ith redundancy,
i = 1, . . . , n. Denote by T ′(X, Y ; (i1, . . . , in)) the entire lifetime of the system with Gil being
allocated to the lth component with survival function F̄l, l = 1, . . . , n. Then, we have the
following corollary, which may be proved in a similar manner to that of Theorem 1.

Corollary 2. Consider a k-out-of-n system with n components such that X1 ≥st · · · ≥st Xn,
and suppose that there are n redundancies arranged as Y1 ≤st · · · ≤st Yn. Then,

T ′(X, Y ; (1, . . . , n)) ≥st T ′(X, Y ; (i1, . . . , in))

for any permutation (i1, . . . , in) of (1, . . . , n).

Acknowledgement

The authors would like to thank the anonymous referee for his/her comments, which helped
us to improve the presentation of this manuscript.

References

Cha, J. H., Mi, J. and Yun, W. Y. (2008). Modelling a general standby system and evaluation of its performance. Appl.
Stoch. Models Business Industry 24, 159–169.

Hu, T. and Wang, Y. (2009). Optimal allocation of active redundancies in r-out-of-n systems. J. Statist. Planning
Infer. 139, 3733–3737.

Kuo, W. and Zuo, M. J. (2002). Optimal Reliability Modeling: Principles and Applications. John Wiley, Hoboken,
NJ.

Li, X., Zhang, Z. and Wu, Y. (2009). Some new results involving general standby systems. Appl. Stoch. Models
Business Industry 25, 632–642.

https://doi.org/10.1239/jap/1269610829 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610829


Optimal allocation of active redundancies 263

Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization and Its Applications. Academic Press,
New York.

Misra, N., Dhariyal, I. D. and Gupta, N. (2009). Optimal allocation of active spares in series systems and comparison
of component and system redundancies. J. Appl. Prob. 46, 19–34.

Roberts, A. W. and Varberg, D. E. (1973). Convex Functions. Academic Press, New York.
Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York.
Shaked, M. and Shanthikumar, J. G. (1992). Optimal allocation of resources to nodes of series and parallel systems.

Adv. Appl. Prob. 24, 894–914.
Singh, H. and Singh, R. S. (1997). Optimal allocation of resources to nodes of series systems with respect to failure-

rate ordering. Naval Res. Logistics 44, 147–152.

https://doi.org/10.1239/jap/1269610829 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610829

	1 Introduction
	2 Assumptions and notation
	3 Allocation of active redundancies
	3.1 The optimal allocation policy
	3.2 The case with homogeneous components

	4 Two related conclusions
	Acknowledgement
	References

