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LOCALLY FINITE GROUPS WHOSE SUBGROUPS HAVE
FINITE NORMAL OSCILLATION
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Abstract

If X is a subgroup of a group G, the cardinal number min{|X : XG |, |XG : X|} is called the normal oscillation
of X in G. It is proved that if all subgroups of a locally finite group G have finite normal oscillation, then
G contains a nilpotent subgroup of finite index.
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1. Introduction

It is well known that a nonabelian group has only normal subgroups if and only if it is
the direct product of a quaternion group of order eight by a periodic abelian group with
no elements of order four. More generally, the imposition of generalised normality
conditions to all subgroups usually has a strong influence on the structure of a group.
A famous result of Neumann [9] shows that in a group G every subgroup X has finite
index in its normal closure XG if and only if the commutator subgroup G′ of G is finite.
In the dual situation, it has been proved by Buckley et al. [3] that if G is a locally finite
group in which every subgroup X is finite over its core XG, then G contains an abelian
subgroup of finite index.

The consideration of an infinite extraspecial group shows that a group with finite
commutator subgroup need not be abelian-by-finite. On the other hand, it is well
known that all finite-by-abelian groups are likewise nilpotent-by-finite, and hence in
both theorems quoted above the group G contains a nilpotent subgroup of finite index.
The aim of this paper is to prove a similar result for locally finite groups in which every
subgroup satisfies one of the two generalised normality conditions considered above.

Let G be a group, and let X be a subgroup of G. The normal oscillation of X in G
is the cardinal number

min{|X : XG |, |X
G : X|}.
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Clearly X is normal in G if and only if it has normal oscillation 1. Moreover, X has
finite normal oscillation in G if and only if either X has finite index in its normal closure
XG or it is finite over its core XG; in particular, finite subgroups and subgroups of finite
index have finite normal oscillation. The main result of the paper is the following
theorem.

T. Let G be a locally finite group in which all subgroups have finite normal
oscillation. Then G contains a nilpotent subgroup of finite index.

We mention finally that groups in which every (infinite) subgroup either has finite
index in its normal closure or is normal in a subgroup of finite index have been
investigated in [7].

Most of our notation is standard and can be found in [10].

2. Proof of the theorem

Our first lemma proves that if a subgroup X of a group G has finite normal
oscillation, then the factor group X/XG must have finite exponent.

L 2.1. Let G be a group, and let X be a subgroup of G such that the index |XG : X|
is finite. Then the group X/XG has finite exponent.

P. Put |XG : X| = n, and let Y be the core of X in XG. Then the index |XG : Y |
divides n!, and hence the normal subgroup (XG)n! of G (which is generated by the set
{hn! : h ∈ XG}) is contained in X. Therefore X/XG has finite exponent. �

Recall that the Baer radical of a group G is the subgroup generated by all abelian
subnormal subgroups of G, and G is called a Baer group if it coincides with its Baer
radical, or equivalently if all finitely generated subgroups of G are subnormal. Of
course, it follows from the Hirsch–Plotkin theorem that any Baer group is locally
nilpotent.

L 2.2. Let G be a group, and let X be a nilpotent subnormal subgroup of G such
that the index |XG : X| is finite. Then the normal closure XG of X is nilpotent.

P. Obviously, the normal closure XG is a Baer group, and in particular all its
finitely generated subgroups are subnormal. If Y is the core of X in XG, the index
|XG : Y | is finite, and hence XG = YE for some finitely generated subgroup E.
Therefore XG is nilpotent by Fitting’s theorem. �

The following consequence of Lemma 2.2 shows in particular that if G is any locally
finite group in which all subgroups have finite normal oscillation, then G contains a
hyperabelian subgroup of finite index. Here a group is called hyperabelian if it has an
ascending normal series with abelian factors.

C 2.3. Let G be an infinite locally finite group whose subgroups have finite
normal oscillation. Then G contains an infinite nilpotent normal subgroup.
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P. The group G contains an infinite abelian subgroup A by the famous theorem of
Hall–Kulatilaka and Kargapolov (see [10, Part 1, Theorem 3.43]). Of course, we may
suppose that AG is finite, so that the index |AG : A| is finite. Then also the core B of A
in AG has finite index in AG, and so B is an infinite abelian subnormal subgroup of G.
Moreover, the subgroup BG is obviously finite, so that the index |BG : B|must be finite,
and hence BG is nilpotent by Lemma 2.2. �

L 2.4. Let G be a Baer group whose subgroups have finite normal oscillation.
Then G is soluble.

P. Let X be any subgroup of G. If the index |X : XG | is finite, we have that X is
subnormal in G since G/XG is a Baer group. On the other hand, if X has finite index
in its normal closure XG, then X is subnormal in XG, and so even in G, because G is
locally nilpotent. Therefore all subgroups of G are subnormal, and hence G is soluble
by a relevant theorem of Möhres [8]. �

If G is any group, the set C(G), consisting of all elements of G having only finitely
many conjugates, is a characteristic subgroup, called the FC-centre of G. The upper
FC-central series of G is the ascending normal series {Cα(G)}α, defined by the rules
C0(G) = {1},

Cα+1(G)/Cα(G) = C(G/Cα(G))

for each ordinal α and
Cλ(G) =

⋃
β<λ

Cβ(G)

if λ is a limit ordinal. For the main properties of the upper FC-central series of a
group, we refer to [10, Part 1, Ch. 4]. The behaviour of the upper FC-central series
of a group in which all subgroups have finite normal oscillation plays a central role in
our considerations, and will be described by the following three results.

L 2.5. Let G be a group in which all subgroups have finite normal oscillation,
and let C be the FC-centre of G. Then every subgroup of C has finite index in its
normal closure in G, and in particular the commutator subgroup C′ of C is finite.

P. Let X be any subgroup of C such that the index |X : XG | is finite. Then it follows
from Dietzmann’s lemma that the group XG/XG is finite (see [10, Part 1, page 45]),
and so X has finite index in XG. In particular, each subgroup of C has finite index in
its normal closure in C, and hence C′ is finite. �

L 2.6. Let G be a locally finite p-group in which all subgroups have finite normal
oscillation, and let A be an abelian normal subgroup of G. If A is a direct product of
cyclic subgroups and C = C(G) is the FC-centre of G, then A/A ∩C is finite.

P. Assume for a contradiction that A/A ∩C is infinite. Then there exist in A
sequences of elements (an)n∈N and (bn)n∈N such that

C < 〈C, a1〉 < 〈C, a1, b1〉 < 〈C, a1, b1, a2〉 < · · · < 〈C, a1, b1, . . . , an, bn〉 < · · ·
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and

〈a1, b1, a2, b2, . . . , an, bn, . . .〉 = 〈a1〉 × 〈b1〉 × 〈a2〉 × 〈b2〉 × · · · × 〈an〉 × 〈bn〉 × · · · .

Now consider a partition
{In | n ∈N}

of the set N of natural numbers, consisting of infinitely many infinite subsets. For all
positive integers k and n, put

Uk,n = (Dr
h∈Ik

〈ah〉) × 〈bn〉.

Since every bn has infinitely many conjugates in G, and

Ur,n ∩ Us,n = 〈bn〉

if r , s, it follows that for each n there exists at most a positive integer m such that Um,n

has finite index in its normal closure. Thus for each positive integer n, we can choose
a positive integer k(n) such that the core Vn of Uk(n),n has finite index in Uk(n),n and
k(m) , k(n) if m , n. Therefore

U = 〈Uk(n),n | n ∈N〉 = Dr
n∈N

Uk(n),n.

Clearly, the factor group Uk(n),nC/C is infinite, so that for each n the subgroup Vn is
not contained in C. For every positive integer n, let yn be an element of Vn having
infinitely many conjugates in G, and put

V = Dr
n∈N
〈yn〉.

Then
Vn ∩ V = 〈yn〉,

so that the conjugates of yn are representatives of infinitely many cosets of V , and
hence the index |VG : V | is infinite. It follows also that the core VG of V is contained in
the FC-centre of G, so that the index |V : VG | must be infinite, and this contradiction
completes the proof of the statement. �

C 2.7. Let G be a locally finite p-group in which all subgroups have finite
normal oscillation, and let A be an abelian normal subgroup of G. Then A is contained
in the second FC-centre C2(G) of G.

P. If a is any element of A, the normal closure 〈a〉G is an abelian group of finite
exponent, and hence it is a direct product of cyclic subgroups. Then it follows from
Lemma 2.6 that 〈a〉GC1(G)/C1(G) is a finite normal subgroup of G/C1(G), and so it is
contained in the FC-centre of G/C1(G). Therefore A is contained in C2(G). �

L 2.8. Let G be a p-group, and let A be an abelian normal subgroup of G such
that the index |XG : X| is finite for every subgroup X of A. Then A contains a finite
G-invariant subgroup B such that the centraliser CG(A/B) has finite index in G.
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P. Write A = D × R, where D is the largest divisible subgroup of A and R is
reduced. Let P be any subgroup of type p∞ of A. As the index |PG : P| is finite,
the subgroup P is characteristic in PG and so it is normal in G. It follows that all
subgroups of D are normal in G, and in particular G/CG(D) is finite. Moreover, R
has finite index in its normal closure RG, so that RG is likewise reduced and hence it
contains a finite G-invariant subgroup B such that all subgroups of RG/B are normal in
G/B (see [4, Lemma 2.9]). Therefore the intersection

CG(D) ∩CG(RG/B)

has finite index in G, and so also the index |G : CG(A/B)| is finite. �

L 2.9. Let G be a soluble p-group whose subgroups have finite normal
oscillation. Then G contains a nilpotent subgroup of finite index.

P. Assume that the statement is false, and choose a counterexample G with
minimal derived length k. Let C be the FC-centre of G. It follows from Lemma 2.5 that
every subgroup of C has finite index in its normal closure in G, and in particular the
commutator subgroup C′ of C is finite. Application of Lemma 2.8 to the factor group
G/C′ yields that there exists a finite G invariant subgroup E of C such that C′ ≤ E and
the centraliser CG(C/E) has finite index in G. Since every finite-by-nilpotent p-group
is obviously nilpotent, also the factor group G/E is a minimal counterexample, and its
FC-centre is C/E. Therefore, replacing G by G/E, it can be assumed without loss of
generality that the centraliser CG(C) has finite index in G.

Consider the last nontrivial term A = G(k−1) of the derived series of G. By the
minimal choice of k, the group G/A contains a subgroup of finite index N/A which
is nilpotent. Moreover, A is contained in the second FC-centre C2(G) of G by
Corollary 2.7, and so every subgroup of AC/C has finite index in its normal closure
in G/C by Lemma 2.5. Another application of Lemma 2.8 yields that AC/C contains
a finite G-invariant subgroup B/C such that the centraliser CG(AC/B) has finite index
in G. Therefore the intersection

M = N ∩CG(C) ∩CG(B/C) ∩CG(AC/B)

is a nilpotent subgroup of finite index of G, and this contradiction completes the
proof. �

We can now prove the statement of our main theorem in the case of primary locally
finite groups.

L 2.10. Let G be a locally finite p-group whose subgroups have finite normal
oscillation. Then G contains a nilpotent subgroup of finite index.

P. Let F be the Fitting subgroup of G, that is the subgroup generated by all
nilpotent normal subgroups of G. Then F is a Baer group, and hence it is soluble
by Lemma 2.4. Assume for a contradiction that the index |G : F| is infinite, so
that it follows from Corollary 2.3 that G/F contains an infinite nilpotent normal
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subgroup N/F. As N is soluble, Lemma 2.9 yields that it is nilpotent-by-finite. Thus
the Fitting subgroup M of N is a nilpotent normal subgroup of G and the index |N : M|
is finite. This contradiction shows that F has finite index in G, so that G is soluble and
hence it is nilpotent-by-finite by Lemma 2.9. �

C 2.11. Let G be a locally finite group whose subgroups have finite normal
oscillation, and let P be a Sylow subgroup of G. Then G contains a nilpotent normal
subgroup N such that PN/N is finite.

P. The subgroup P is nilpotent-by-finite by Lemma 2.10. If the index |P : PG | is
finite, the Fitting subgroup of PG is a nilpotent normal subgroup of G and it has finite
index in P. On the other hand, if P has finite index in PG, the normal subgroup PG is
likewise nilpotent-by-finite; in this case, the Fitting subgroup N of PG is nilpotent and
PN/N is finite. �

If G is any periodic group, we will denote by π(G) the set of all prime numbers p
such that G has elements of order p. Suppose that π(G) = ω1 ∪ ω2, where ω1 and ω2

are disjoint subsets; if U is an ω1-subgroup of G and V is an ω2-subgroup of G such
that G = UV , we shall say that G = UV is an (ω1, ω2)-decomposition of G. Moreover,
for each set ω of prime numbers, ω′ will denote the set of primes which are not in ω.
Thus the classical result of P. Hall on Sylow theory of finite soluble groups just says
that each finite soluble group has an (ω, ω′)-decomposition for each set ω of prime
numbers. This was extended by E. Schenkman (in an unpublished work) to the case
of countable locally finite groups. We give here an easy proof of this latter result.

L 2.12. Let G be a countable periodic locally soluble group, and let ω be any
subset of π(G). Then G = UV, where U is an ω-subgroup and V is an ω′-subgroup
of G.

P. Since G is a countable locally finite group, there exists an ascending chain

{1} = G0 <G1 <G2 < · · · <Gn < · · ·

of finite subgroups of G such that

G =
⋃

n∈N0

Gn.

Put U0 = V0 = {1}, and suppose that for some n ≥ 0 an (ω, ω′)-decomposition

Gn = UnVn

of Gn has been chosen. Now consider any (ω, ω′)-decomposition

Gn+1 = An+1Bn+1

of Gn+1. By Hall’s theorem there exist x and y in Gn+1 such that Un ≤ Ax
n+1 and

Vn ≤ By
n+1. Moreover,

Gn+1 = Un+1Vn+1,
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where Un+1 = Ax
n+1 and Vn+1 = By

n+1 (see for instance [1, Lemma 1.3.1]). In this way
we have defined by induction two ascending chains

{1} = U0 < U1 < · · · < Un < · · ·

and
{1} = V0 < V1 < · · · < Vn < · · ·

of finite ω-subgroups and finite ω′-subgroups of G, respectively. Write

U =
⋃

n∈N0

Un

and
V =
⋃

n∈N0

Vn.

Therefore U is an ω-subgroup and V is an ω′-subgroup, so that G = UV is an (ω, ω′)-
decomposition of G and the statement is proved. �

L 2.13. Let G be a countable locally finite group whose subgroups have finite
normal oscillation. Then G has a unique Sylow p-subgroup for all but finitely many
prime numbers p.

P. It follows from Corollary 2.3 that every infinite homomorphic image of G
has an infinite nilpotent normal subgroup. Then G contains a hyperabelian normal
subgroup H of finite index, and it is obviously enough to prove that the statement
holds for H. Therefore it can be assumed without loss of generality that G itself is
hyperabelian.

Let ω be the set of all prime numbers p such that G contains a nonnormal Sylow
p-subgroup Gp, and assume for a contradiction that ω is infinite. Consider an infinite
subset ω1 of ω such that ω \ ω1 is infinite, and put ω2 = π(G) \ ω1. As G is a countable
locally (soluble and finite) group, it follows from Lemma 2.12 that G has an (ω1, ω2)-
decomposition G = UV . The factor groups U/UG and V/VG have finite exponent by
Lemma 2.1, and hence there exist prime numbers p in ω1 and q in ω \ ω1 such that
[Gp,Gq] = {1}. An application of Ramsey’s theorem yields now that ω contains an
infinite subset ω∗ such that

[Gp,Gq] = {1}

for all distinct primes p and q in ω∗. Put

K = 〈Gp | p ∈ ω
∗〉 = Dr

p∈ω∗
Gp.

As the factor group K/KG has finite exponent, there exists a prime number q in ω∗

such that Gq is contained in KG. It follows that Gq is a normal subgroup of G, and this
contradiction proves that the set ω is finite. �
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Recall that a group class X is said to be countably recognisable if it contains all
groups whose countable subgroups belong to X. It is well known that many relevant
classes of groups are countably recognisable; in particular, Baer [2] proved that this
is true for the class of nilpotent groups. As a consequence of results by Dixon
et al. [6], we can prove here that the class of nilpotent-by-finite groups is also countably
recognisable. This result of independent interest will be used in the proof of our main
theorem, in order to restrict the attention to the case of countable groups.

L 2.14. The class of nilpotent-by-finite groups is countably recognisable.

P. Let G be a group whose countable subgroups are nilpotent-by-finite, and let F
be the Fitting subgroup of G. Then all countable subgroups of F are nilpotent, and
hence F itself is nilpotent. Assume for a contradiction that G/F is infinite, and let
H/F be a countably infinite subgroup of G/F. Then G contains a countable subgroup
X such that H ≤ XF and the set X \ F has empty intersection with the Fitting subgroup
V of X (see [6, Corollary 2.3]). Let h and k be elements of H. Then h = xa and k = yb,
where x, y belong to X and a, b are elements of F. In particular, if the cosets hF and
kF are different, we have also that xV , yV , since

(X \ F) ∩ V = ∅.

It follows that the factor group X/V is also infinite. This contradiction proves that G/F
is finite, and so G is nilpotent-by-finite. �

P   T. By Lemma 2.14, it is enough to prove the statement in the case
of a countable group G. Let ω be the set of all prime numbers p such that G contains a
nonnormal Sylow p-subgroup Gp. Then ω is finite by Lemma 2.13. Put π = π(G) \ ω,
and for each prime q in π let Gq be the unique Sylow q-subgroup of G. Consider in G
the normal subgroup

K = Dr
q∈π

Gq.

Since G is countable and π(K) ∩ π(G/K) = ∅, it is well known that there exists
a subgroup H of G such that G = HK and H ∩ K = {1} (see for instance [5,
Theorem 3.4.5]). Let π∗ be the subset of π, consisting of all primes q ∈ π such that
Gq contains a nonnormal subgroup Xq, and put

X = Dr
q∈π∗

Xq.

The factor group X/XG has finite exponent by Lemma 2.1, so that the set π∗ must be
finite, and hence the subgroup Gq is abelian for all but finitely many primes q in π.
On the other hand, it follows from Lemma 2.10 that every Sylow subgroup of G is
nilpotent-by-finite, and so the Fitting subgroup L of K is nilpotent and the index |K : L|
is finite. As H 'G/K, the set of primes π(H) is finite, and so by Corollary 2.11 there
exists a nilpotent normal subgroup N of G such that all Sylow subgroups of HN/N
are finite. Therefore HN/N is finite, and hence the nilpotent normal subgroup LN has
finite index in G. The theorem is proved. �
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