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AN ANALOGUE OF PROBLEM 26 OF P. TURAN

Y.G. SHI

Explicit formulas for Cotes numbers of the Gaussian Hermite quadrature formula
based on the zeros of the nth Chebyshev polynomial of the second kind and their
asymptotic behaviour as n —» oo are given. This provides an answer to an analogue
of Problem 26 of Turan.

1. INTRODUCTION AND MAIN RESULTS

This paper deals with explicit formulas for Cotes numbers of the Gaussian Hermite
quadrature formula based on the zeros of the nth Chebyshev polynomial of the second
kind and their asymptotic behaviour as n —> oo.

Let a(x) be a nonnegative function on [—1, 1] with infinitely many points of in-
crease such that all moments of a(x) are finite and let Pjv denote the set of polynomials
of degree $J N. According to Theorem 4 in [3], given integers m ^ 1 and p ^ 0, if

n
Wnfl) := II (X ~ xkn) With

A = l

(11) 1 = xOn > xln > x2n > • • • > xnn > xn+i<n - - 1 , n ^ 1

satisfies

(1.2) J^ (1 - x2)P \Un(x)\m da(x) = p=min J^ (l - x2)" \P(x)\m da(x),

then the quadrature formula with certain numbers Cikm '•= c-ik-mn (called Cotes numbers
of higher order)

(1.3) f f(x)a(x)da(x) = £ f ] cikmf^(xk)
J~l k=0i=0

is exact for all / g 'Pmn+2P-i, where

(1.4) a(x) := sgnwn(z)m
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and

I Tn — 2. 1 ̂  k ^ n,
(1-5) M* := \

y p — 1, otherwise.

As Turan pointed out in [10, p.46], particularly interesting is the case

p=0, da{x)= dx

By a theorem of Bernstein [2], in this case the nth Chebyshev polynomial of first kind
21~nTn(x) is the solution of (1.2) for all values of m ^ 1. Meanwile, Turan raised the
following problem for even m [10, p.47], in which Cikmn stands for the Cotes number
based on the zeros of Tn(x):

PROBLEM 2 6 . Give an explicit formula for CjjtTOn and determine its asymptotic
behaviour as n —» oo.

In [6, 7] we got a solution of this problem for each (even and odd) m.

Another particular interesting case is

(1.6) „ = [ ! ] , da(x) = dam{x) := (1 - ^ K

By a well known result (see, say, [8]), in this case the nth Chebyshev polynomial of
the second kind 2~nUn(x) is the solution of (1.2) for all values of m ^ 1. Then the
quadrature formula with certain numbers Cikm

/

I n+l mjb

f(x)<rm(x)dam(x) = £ £ <W(i)(**)
1 k=0 i=0

is exact for all / £ Pmn+2[m/2]-i. where

(1.8) <rm(x) := sgnUn(x)m

and

r 1, lO<n,
(1.9) mjb := [njb(m - 2)], nk := < l

[ - , otherwise.

In the present paper, using a modification of the main idea of [6], we intend to
answer to the same problem for this quadrature formula. It turns out that, in the
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present case the problem is more difficult and complicated. To state our results we
need the notation:

• • • > » >

(1.10) Am(x) := Amn(x) := (l - x 2 ) ! m / % n ( x r ,

(1.11) dkm := A«"B*™1>(«4) = I ( -2 ) ' m / 2 ! ( [ f ] ) !C/ n ( i r , Jb = 0,

/ , 1 9 v r , y. r f x ([ntm])!Am n(x)

(1.12) ^im(K) := Lkmn(X) -~ , , , k = 0, 1, . . . , 71 + 1,
dkm(x - xkf

 k '
(1.13) 6ifcm := fc,-*raB := ^ [ i f c m t * ) " 1 ] ^ , ^ i = 0, 1, . . . ; * = 0, 1, . . . , n + 1,

Bjtm := -Bifcmn := ^ Y, [2{xv - x)Lkm{x))-

(1.14)

* = 0, 1, . . . ; * = 0 , l , . . . , n + l ,

I 2, if m is odd,
(1.15) sm:={ .

^ w, otherwise.
The main results in this paper is

THEOREM. Let (1.1) be the zeros of D,n(x) := (l - x2)Un(x) and let m ^ 1 be
an integer. Tiien for each i, 0 ^ i ^ mk, and for each k, 0^fcsJn + l ,

( nksm{m-2)\
(1.16) mk'k'm ~ dk,m_2[(m - 2)!!]*(» + 1) ' m ^ 2 l

I c m j t + l i t > m = 0,

• 17) Cjfcm = c,-,t,ro-2 + T^—T TT < (i + nk(m - 2) - mjt)omjt_j jt)m_2

i[l + (- i r+ 1]5m t_ i_1 ,*,m_2 | , m > 3.

Moreover

{ (1 - x2 \K"l-1)/2]-[(m-i-0/2)

ram-2[m/2}+2<+i '

(1 - x2 ) i / 2

(119) c,jbmn~-^ ^ , m= even; i = 0, 2, 4, . . . , m - 2; 1 ̂  fc ̂  n.
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REMARK. For sake of notation we still use the idex m in (1.16) and (1.17). In fact,
they remain true if we replace m by any suitable integer r (say, r ^ 3 in (1.17)). Thus
these two formulas provide an explicit expression for Cjtm.

2. LEMMAS

To prove our theorem we need several lemmas.

LEMMA 1. Let

(2.1)
v~» |nvm]

TAen

(2.2) bikmn = T ^ o v

l

PROOF: Let k, [, be fixed. It is easy to check that

/ \ " + 1 r 1

Hence

Lkm\x)7—p-^r
( i - l ) ! k

Using (1.13) and applying the Newton-Leibniz rule we get

7 (^ij
1 [ L'km(x)

i D
LEMMA 2 . Let (1.1) be the zeros of fin(z) and let m ^ 0 be an integer. Then

for each A , 0 ^ A : ^ n + l ,

(2 '5>
dx _ BtJm(m!)

(m!!)2(n

PROOF: We distinguish two cases.
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CASE 1. 1 ^ k ^ n.

We know [5, Volume 3, Chapter 5, Section 4]

Expand |sin#|m as

(2.7)
oo

|sinflr = 5^/8,, cos i/fl.
i/=0

Here we can use [4, Formula 3.621-3 and 4, p.369] to calculate the required first two
coefficients:

(2.8) fl> = - de =
7r(m!!)2'

= 0.

Replacing 6 by (n + 1)0 in (2.7) yields

(2.9) |sin (n + l)0\m = Y1^V cos " ( n

«/=0

By making the substitution fl = arccos x, we obtain

(2.10)

Then

K = 0

i \{l-
dx

(m!!)2(n

-T?

- r t

CASE 2. Jfe = 0, n + 1.
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We give the proof for the case k = 0 only, the proof for the case k — n + 1 being
similar. Since [1, Formula 22.3.12, p.776]

/ Un{cos 6)(1
Jo

i/=0

+ cos «)<ftf = ir.

(2.11) Un(cos6) = Sm["Jg
)e = X>s(n ~ *»%

we have

(2.12)

This means

(2.13) f Un
J-i

By (2.8) and (2.10) we conclude

\(i-x*)1/3un(x)\mnn{x) dx

dx sm(m\)

LEMMA 3 . Let (1.1) be the zeros of £ln(x) and let m ^ 1 be an integer. Then
for each i, i <

n
(2.14) ( i - L ) l ( i + 1 ) / 2 1

en
2t

n

cn'
2 >

(2.15) \Bikmn\ ••

PROOF: We distinguish two cases.

, 1 < k ^ n,

otierwise,

, 1 ̂  k ^n,

otherwise.
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CASE 1. 1 < k ^ n .

We have [11, Lemma 3.11]

(2.16)
=xk

Meanwhile it is easy to see that

(2.17)
J X = X

Then by the Newton-Leibniz rule

\bikm\ =

(i)

x=xk

n
2I./2]

Here we used the relation

On the other hand, since in this case

we have in a similar way

\Biikm\

CASE 2. fc = 0, n + 1.

We discuss the case k — 0, the case fc = n + 1 leading to entirely analogous,

symmetric considerations. In this case we obtain

2i

Meanwhile

en2'.
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LEMMA 4 . Let (1.1) be the zeros of Un(x) and let m ^ 1 be an integer. Then
(1.16) is true for each k, 0 ^l ^n + 1.

PROOF: That cOlk,i =0, 0 < k ^ n + 1, follows from (1.7). Now let m ^ 2 and
let k, 0 ^ A; ^ n + 1, be fixed. It is easy to see that

(2.18) f{x) = ^ 7n ' («>)(»- ,0

satisfies the conditions:

(2 19) f^Hx ••) = S{ m 6k * = 0 1 mj ' j = 0 1

In fact, it is sufficient to show

(2.20) f{mk){xk) = 1.

By the Newton-Leibniz rule and (1.11) this is indeed the case:

m-l( ° "
Substituting / into (1.7) and using (2.5) gives

S , i , m = / f(x)<rm(x)dam(x)
J-i

2M)|m~2nn(s) dx

dk,m-2 J-i Q,'n{xk)(x - Xk)

( m - 2 ) !

3. PROOF OF THEOREM

The theorem for m ^ 2 or i — rrik is given by Lemma 4. Now assume that m ^ 3

and that both i and fc, 0 ^ i ^ m,k — 1, 0 $ A ^ n + 1, are fixed.

By the same arguments as that in [9, Lemma 1] we conclude

1 m ^ " ' +J-

satisfies the conditions:

(3.2) f»{xw) = Sip8ky, M = 0 , l , . . . , m f c - l ; •/= 0, 1, . . . , n + 1 .
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Applying (1.7) t o . / twice yields

(3.3) citk<m-2 = I f{x)am-2{x)dam-.2{x)
J-i

,1 n+l

= / f(x)am{x)dam{x) = cikm + J2c^,",rnf
{m''){^)-

•'-1 K=0

We distinguish two cases.

CASE 1. u = k.

From (1.11) and (1.12) it follows that Lkm{xk) = 1. Using (3.1) and (2.5) andapplying the Newton-Leibniz rule twice, we obtain

mj.— 1— i

"H*k) =-< E ***.—
; = 0

p

{rnh-t-j)\

r » TTlL — 1 — 1

fmk\ V^
= ( . I > .

CASE 2. v ^ k.

By using (3.1) and applying the Newton-Leibniz rule again we have

n»k-l-»

v?k j=0

„ mi—l—i , .

i=0 ./^l " - * = i v

mj.-1-i

6- V* ( — 1*+J'j
i=o i/^*

According to (1.11) and (1.12) we see that

(3-4) Lk,m-2(
x-<) = ~, ; vsr. " ± *•

« t ( l Z )
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Substituting (1.16) and (3.4) into the previous formula and applying Lemma 1, we get

/ ., cmv,v,mf " \xv)

sm{m-2)\mk\
 mk~1-i^ h

i\[(m - 2)!!]»(» + l)dk,m-» fa ^m-2

fa
mv + [nv{m- 2) - mv)

lnk(m-2) fa j k 2 ^
_ rnk\cmk<k<m \—y

-ilnk(m-2) fa j'k'm-2fa
Tnjfe—1—«

It remains to compute

mjt—1—t

j=o v?k

Tlv(77l — 2 ) —

It is particularly simple for even m; in this case we have mv = 71̂ (771 — 2) and hence

5-0.
Determination of S for odd m in the same way first leads to a formula of different

structure:

E nv{m — 2) — mv 1

Kx ~xk)

Using the notation (1.14) we can get a simple formula for 5:

mt-l-i

y^ f(2(xw — z) )" 1 ]^ '

(mt-i-l)

B,n+l}\{fc}
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By substituting the values of 5 we obtain a simple formula:

(3-5) * ^ ^ ^ 1 + 1

= T. '. L~7Tr{(TOfc — i)bmk-i,k,m-2 + ~[1 + (~ 1) }Bmk-i-l,k,m-2} •
t!njt(m — I) z

At last, from (3.3) we get the recurrence relation (1.17) with respect to the index
m. Finally, (1.18) follows from (1.16), (1.17), (2.14), (2.15), and the relation

To prove (1.19) by the same arguments as those in [9, Lemma 3] we claim bikm > 0
for even i. Thus if both i and m are even then for 1 ^ k ^ n by (1.16) and (1.17)

Cikm ^ Cj 1 i i m _ 2 ^ Ci,k,i+2 —
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