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A NOTE ON ANNIHILATOR BANACH ALGEBRAS

PAK-KEN WONG

Let A be a semisimple Banach algebra with || • ||, which is a dense subalgebra of a
semisimple Banach algebra B with | • | such that || • || majorises | • | on A. The purpose
of this paper is to investigate the aniuhilator property between the algebras A and B.

1. INTRODUCTION

Let A be a simisimple Banach algebra with norm || • ||, which is a dense subalgebra
of a semisimple Banach algebra B with norm | • | such that || • || majorises | • | on A.

We show that A is an annihilator algebra if and only if B is an annihilator algebra
and A and B have the same socle which is dense in A. This improves greatly a result
by Tomiuk and Yood [7, Theorem 4.5, p. 246].

2. NOTATION AND PRELIMINARIES

Definitions not explicitly given are taken from Rickart [6].
Let A be a Banach algebra. For any subset E of A, let C\A(E) denote the closure

of E in A and \A{E) (respectively IA(E) ) the left (respectively right) anniliilator of
E in A. Then A is called a modular annihilator algebra if, for every maximal modular
left ideal M and for every modular maximal right ideal N we have TA{M) = (0) if
and only if M = A and \A{N) = (0) if and only if N = A (see [8] and [12]). Also, A
is called an annihilator algebra if ^(.A) = TA(A) — (0) and if for every proper closed
right ideal / and every proper closed left ideal J , IA(I) ^ (0) and rA(J) ^ (0). If, in
addition, TA(1A(I)) = I and \A{*A{J))

 = J i then A is called a dual algebra.
In this paper, all algebras and linear spaces under consideration are over the field

C of complex numbers, and the norms on A and B will be denoted by || • || and | • |
respectively.

The following result is well-known.
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LEMMA 2.1. Let A be a semisimple Banach algebra which is a dense two sided
ideal of a semisimple Banach algebra B. Then:

(1) there exists a constant K such that K\\ • || ^ | • | ;

(2) there exists a constant M such that

\\ab\\ < M\\a\\ \b\ and \\ba\\ ^ M\\a\\ \b\,

for all a in A and b in B;
(3) A and B have the same socle S.
PROOF:

(1) This is [2, Proposition 2.2, p. 3].
(2) This is [2, Theorem 2.3, p.3]. See also [5, Lemma 4, p. 18].
(3) Let e be a minimal indempotent of B. Since eBe = eAe — Ce, e G A and so

eA = eB and Ae = Be. It follows that A and B have the same socle 5 . |

3. THE MAIN RESULT

In this section, A will be a semisimple Banach algebra which is a dense subalgebra
of a semisimple Banach algebra B such that || • || majorises | • | on A.

LEMMA 3.1. Let A bean annihilator algebra and e a minimal idempotent in A.
Then the following statements are true:

(1) the norms || • || and | • | are equivalent on Ae and eA; also AE = Be and
eA = eB;

(2) A and B have the same socle S, which is a dense two-sided ideal of both A
and B.

PROOF: By [6, Corollary (2.8.16), p. 100], the socle 5 of A is dense in A.
1. Let / = Ae and K = cl^iAeA). Then it" is a topologically simple annihilator

algebra. Also, K can be considered as an operator algebra on / and K contains all
continuous linear operators with finite rank (see [6, p. 101]). Let E be a proper closed
subspace of / . We claim that E is not a dense subspace of Be. Suppose otherwise
and let / be a non-zero bounded linear functional on I and

R = {T £K: T(I) CE}.

If u £ E, then u <8> / ^ R. Hence R is a proper closed right ideal of A". Therefore
IK(R) ^ (0) and so there exists a minimal idempotent p in A" such that pR = (0).
Let y G E. Then y ® / G R • Therefore, for any x in / , we have
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Since / and x are arbitary, we have py = 0 and so pE = (0). If E is dense in Be,

then pBe = (0). Hence pi = (0) and so p = 0, which is impossible. Therefore E is
not a dense subspace of Be.

Let Xi and X2 be the norrned spaces (Ae, || • ||) and (Ae, | • | ) , respectively. The
identity mapping from X\ onto X? is denoted by U. Suppose that E is maximal
closed subspace of X1. Since C\B(E) is a proper closed subspace of Be, E is not
dense in X2 • Hence E is contained in a maximal closed subspace N of X2 • Since || • ||
majorises | • | , N is also closed in || • ||. Therefore, by the maximality of E, E — N and
so E is a maximal closed subspace of X2 • Hence U maps maximal closed subspaces
of Xi to maximal closed subspaces of X2 . Similarly the inverse of U has the same
property. Therefore by [4, Lemma B, p. 246], || • || and | • | are equivalent on Ae and
so Ae = Be. Similarly we can show that eA = eB. This proves (1).

2. By (1), S is a dense two-sided ideal of B. Let e be a minimal idempotent
of B. Then Se — Be and so Be C 5 C A. Therefore e G A and e is a minimal
idempotent of A. Now it is clear that 5 is also the socle of B. This proves (2). |

Remark. If A is an annihilator algebra and B is a dual algebra, Lemma 3.1 is con-

tained in [9, Lemma 3.2, p. 82] and [10, Lemma 5.1, p. 442].

We now have the main result of this section.

THEOREM 3.2. Let A be a semisimple Banach algebra which is a dense subaigebra

ofa semisimple Banach algebra B such that ||-|| majorises |-| on'A. Then the following

statements are equivalent:

(1) A is an annihilator algebra;

(2) B is an annihilator algebra, A and B have the same socle S, which is dense

in A.

P R O O F :

(1) = > (2) Suppose that A is an annihilator algebra. Then by Lemma 3.1, A
and B have the same socle S, which is a dense two-sided ideal in both A and B . Let
R be a proper closed right ideal of B. Since cl^(i? D A) is a proper closed right ideal
of A, U(iJri j4) ^ (0). Therefore there exists a minimal idempotent e G IA{R(~\A).

We show that eR — (0). Suppose otherwise. Since eR C eB and eR is a right ideal
of By we have eR — eB = eA and so eRe — eAe = C'e. Since Re C Be = Ae C A,
Re C Rn A. Because e e IA{R<^A), eRE - (0), which is impossible. Therefore
eR = (0) and so IB(R) it (0)- Similarly we can show that r^f-/) ^ (0) for any proper
closed left ideal J of B. Therefore B is an aniiiliilator algebra and this proves (2).

(2) =$> (1) Let M be a proper closed right ideal of A. Since the socle 5 is

dense in A, there exists a minimal idempotent e such thai e ^ M. We claim that

e 0 clfl(Af). Suppose otherwise and write e — l im n x n in | • | , with xn G M. Since
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Be C S C A, we have Ae — Be and so, by the Closed Graph Theorem, the two norms
|| • || and | • | are equivelent on.4e . Since xne —> e and xne € M , it follows that e £ M ;
a contradiction. Therefore e ^ cls(M) and so cls(M) is a proper closed right ideal
of B. Let p be a minimal idempotent in \B{C\B{M)). Since p E S C A,it follows
that p 6 \A{M). Similarly we can show that T^{N) ^ (0) for any proper closed left
ideal N of A. Therefore A is an annihilator algebra. This completes the proof of the
Theorem. |

R e m a r k 1. The condition " 5 is dense in A" cannot be omitted in (2) of Theorem
3.2. In fact, let A be an A* -algebra which is a dense two-sided ideal of a B* -algebra.
Suppose that A is a modular anniliilator algebra which is not an annihilator algebra
(see an example in [11, p. 1033]). Then B is a dual i?*-algebra. By Lemma 2.1, A

and B have the same socle 5 .

R e m a r k 2. Theorem 3.2 greatly improves [7, Theorem 4.5, p. 264].

COROLLARY 3.3. Let A be a semisimple Banach algebra which is a dense two-

sided ideal of a semisimple Banach algebra B. Then the following statements are

equivelent:

(1) A is an annihilator algebra;

(2) B is an annihilator algebra and A2 is dense in A.

PROOF: By Lemma 2.1, A and B have the same socle 5 . If condition (1) or (2)
is satisfied, then S is dense in B. Let x and y be elements of A. Since S is dense
in B, there exists a sequence {xn} in 5 such that xn —> x in | • |. It follows from
Lemma 2.1 that xny —> xy in || • ||. Therefore A2 C CIA{S). If A2 is dense in A, then
cl^(S) = A. Now the Corollary follows immediately from Theorem 3.2. |

R e m a r k . As seen before, the condition "A2 is dense in A" cannot be omitted in (2)

of Corollary 3.3.
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