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We tackle the question of how anisotropy in flows subject to background rotation
favours structures elongated along the rotation axis, especially in turbulent flows. A
new, wave-free mechanism is identified that challenges the current understanding of
the process. Inertial waves propagating near the rotation axis (Staplehurst et al. J.
Fluid Mech., vol. 598, 2008, pp. 81–105; Yarom & Sharon, Nat. Phys., vol. 10(7),
2014, pp. 510–514) are generally accepted as the most efficient mechanism to
transport energy anisotropically. They have been shown to transfer energy to
large anisotropic, columnar structures. Nevertheless, they cannot account for the
formation of simpler steady anisotropic phenomena such as Taylor columns. Here, we
experimentally show that more than one mechanism involving the Coriolis force may
promote anisotropy. In particular, in the limit of fast rotation, that is at low Rossby
number, anisotropy favouring the direction of rotation of the average of a turbulent
flow arises neither because of inertial waves nor following the same mechanism as in
steady Taylor columns, but from an interplay between the Coriolis force and average
advection.

Key words: rotating turbulence, waves in rotating fluids

1. Introduction
Subjecting a flow to background rotation tends to eliminate variations of velocity

along the axis of rotation. The effect, first noticed by Lord Kelvin (Thomson 1868),
was famously illustrated when Taylor observed that a fluid column exactly followed
the motion of a coin placed at the bottom of a rotating tank (Taylor 1922). The
question of the anisotropic mechanism underlying the development of these columnar
structures is, however, still open. It raises the wider issue of how anisotropy favouring
the direction of rotation arises in rotating flows, which is the focus of this work. The
thesis we advocate is that non-propagative mechanisms can promote anisotropy, in
particular purely advective ones.

The type of anisotropy that underpins the emergence of Taylor columns in rotating
flows is most commonly studied in the context of turbulence in fast rotating systems
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such as planetary cores, atmospheres and astrophysical objects, where its origin is
attributed to the propagation of inertial waves (Hopfinger, Browand & Gagne (1982)
and Davidson (2013), and see Greenspan (1968) for the theory of these waves): for
a wavevector k of frequency ω, in background rotation Ω , inertial waves follow the
dispersion relation, and associated group velocity

ω=±2Ω · ek, vg =±
2
k

ek × (Ω × ek), (1.1a,b)

where ek = (1/k)k. Two main theories account for the growth of anisotropy favouring
the direction of rotation and the subsequent spontaneous formation of large structures
in these systems: one invokes triadic interactions feeding an inverse energy cascade
towards large scales while non-resonant triads or quartets of waves transfer energy
to modes aligned with the axis of rotation (Cambon & Scott 1999; Smith & Waleffe
1999). This scenario is supported by numerical simulations and by strong experimental
(Lamriben, Cortet & Moisy 2011; Duran-Matute et al. 2013; Campagne et al. 2014)
and numerical (Smith, Chasnov & Waleffe 1996; Chen et al. 2005) evidence of the
inverse energy cascade. The other theory argues that linear inertial waves account
for most of the energy transport in rotating turbulence (Davidson, Staplehurst &
Dalziel 2006). This was demonstrated numerically and experimentally in the context
of the propagation of transient rotating turbulence (Screenivasan & Davidson 2008;
Staplehurst, Davidson & Dalziel 2008; Kolvin et al. 2009).

Both theories consider Taylor columns as large turbulent scales, that is, as transient,
fluctuating objects. None of them, however, satisfactorily explains the steady, laminar
columns that Taylor observed. Indeed, the analytical solution for these columns
(Moore & Saffman 1969) is entirely steady and neglects non-rotating inertia, thus
excluding inertial waves. The formation of fluctuating Taylor columns in rotating
turbulent flows and steady ones in laminar flows may thus arise out of fundamentally
different mechanisms. This idea finds support in previous experimental and theoretical
work (McEwan 1973, 1976; Pothérat 2012), showing that a velocity field with a
divergence in planes normal to the rotation preferentially transports momentum along
the rotation axis. Crucially, this phenomenology holds regardless of the steady or
fluctuating nature of the flow. We therefore suggest that more than a single mechanism
may exist to promote anisotropy in rotating flows and set out to determine conditions
in which the better known mechanisms involving inertial waves may not be dominant.
Beyond simple steady flows, we seek evidence of such alternative mechanism not
involving inertial waves in the average components of turbulent flows, on the grounds
that these are both steady in nature and subject to the presence of inertial waves
inherent to rotating turbulence. As such, they provide the ideal battleground for
mechanisms with and without waves to compete. The particular flow of interest shall
be generated in an experimental device where turbulent motion results from the fast
injection of fluid through holes located at the bottom of a cylindrical tank driven
in rotation. This technique, pioneered by McEwan (1973), provides an efficient and
convenient mean of generating turbulence with a background rotation (see more
recent experiments by Kolvin et al. (2009)). For the specific purpose of the study,
using a small number of holes enables us to imprint a strong average component to
the turbulence.

We first establish a scaling law for the length scale of anisotropic structures forming
out of momentum transport associated with average flows with a divergence in
planes normal to the rotation (§ 2). The experimental set-up and optical measurement
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techniques based on particle image velocimetry (PIV) are detailed in § 3. We then
proceed in three steps gathered in § 4: first, the theoretical scaling for the length scale
of columnar structures is validated against experimental measurements. Then, in order
to separate the contribution of random fluctuations from that of inertial waves to the
topology of the average flow, we introduce a filtering technique using the maximum
frequency of inertial waves. Based on this technique, we derive mathematical upper
bounds for terms involving inertial waves in the equation governing the average
velocity field. The relevance of these upper bounds is tested by means of more
refined filtering techniques inspired by Yarom & Sharon (2014). Finally we derive
an equation for the average flow and experimentally estimate upper bounds for
terms involving inertial waves to identify flow regimes where the contributions of
these waves in this equation can be neglected. The implications of these results are
discussed in § 5.

2. Theory
2.1. Governing equations and diffusion length scale

We first derive scalings characterising anisotropy between the rotation axis and
other directions in steady and turbulent flows. Consider an incompressible flow of
Newtonian fluid in a frame of reference rotating at constant angular velocity Ωez. The
effect of the Coriolis force on a structure of size lz along the axis of rotation, l⊥ in
the directions perpendicular to it and velocity U is readily seen from the z-component
of the vorticity equation governing the velocity and vorticity fields u and ω(

d
dt
− ν∆

)
ωz =ω · ∇uz + 2Ω∂zuz, (2.1)

where, d/dt = ∂t + u · ∇. In the limit Ω →∞ the flow is columnar, with ∂zuz = 0,
which implies −∇⊥ · u⊥ = 0. For finite rotation, a horizontally divergent flow exists
and the Coriolis force associated with it must be balanced either by inertial or viscous
forces (Pothérat 2012). The divergent flow is estimated by means of the z-component
of the momentum equation and its divergence, i.e.(

d
dt
− ν∆

)
uz =−∂z

p
ρ
, (2.2)

∇ · (u · ∇u)= 2Ωωz −∆
p
ρ
. (2.3)

In both Taylor’s experiment (Taylor 1922) and Moore & Saffman’s analytical solution
(Moore & Saffman 1969), inertia is neglected. In this limit (2.3) implies that the
pressure is geostrophic p = 2ρΩ∆−1ωz, where the inverse of the Laplacian ∆−1 is
defined with boundary conditions prescribed by the geometry. The rotational part of
the Coriolis force can thus be expressed by virtue of (2.2) as

2Ω∂zuz = 4
Ω2

ν
∂2

zz∆
−2ωz. (2.4)

An almost identical mathematical form exists for the Lorentz force in electrically
conducting fluids pervaded by an imposed magnetic field Bez, where it expresses
that the Lorentz force diffuses momentum along ez (Sommeria & Moreau 1982).
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This finding was experimentally verified, establishing that the diffusive nature of
the Lorentz force persists both in viscous and inertial regimes, albeit with different
characteristic diffusion length scales (Sommeria & Moreau 1982; Pothérat & Klein
2014; Baker et al. 2018). In the rotating flows of interest here, the Coriolis force
diffuses momentum along ez in the inertialess limit. Its diffusion length scale follows
from introducing (2.4) into (2.1) and applying scaling arguments

lνz (l⊥)∼ l⊥
2Ωl2

⊥

ν
= l⊥

l2
⊥

H2
E−1, (2.5)

where the Ekman number E = ν/2ΩH2 represents the ratio of Coriolis to viscous
forces, based on the domain height H (cf. figure 1). This length scale recovers the
columnar length scale implied in Moore & Saffman’s (1969) analytical solution. lνz
can be interpreted as the distance needed for viscous effects to exhaust the horizontally
divergent flow that drives the column.

In contrast to Taylor’s flow (Taylor 1922), inertia dominates in turbulent flows and
balances the Coriolis force associated with the horizontally divergent flow in (2.1).
Using this assumption and a similar derivation as for lνz leads to an inertial scaling
for lz

lI
z(l⊥)∼

2Ωl2
⊥

U
= l⊥Ro(l⊥)−1, (2.6)

where the Rossby number Ro(l⊥) = U/2Ωl⊥ is based on the considered structure’s
velocity scale U. It represents the ratio of inertial to Coriolis forces at the scale of
the structure considered.

2.2. Influence from the fluctuating flow on the average flow component
To isolate the mechanisms controlling anisotropy, we consider a forced, anisotropic
turbulent flow with non-zero average flow at large Reynolds number. A benefit of
this choice of flow is that mechanisms controlling the anisotropy of the average flow
that do not involve waves, as in Taylor columns, can be captured by simple event
averaging. At the same time, since turbulent fluctuations under strong rotation support
inertial waves, these can potentially affect the anisotropy of the average flow. For these
reasons, a turbulent flow with an average flow component offers a good testing ground
to identify the conditions in which either propagative or wave-free mechanisms drive
anisotropy. We start by deriving the equations for the average quantities, decomposing
all quantities into their average and fluctuations, e.g. u= 〈u〉 + u′. Taking the average
of (2.1)–(2.3), neglecting viscous friction yields

〈u〉 · ∇〈ωz〉 = 〈ω〉 · ∇〈uz〉 + 2Ω∂z〈uz〉 + 〈ω
′
· ∇u′z〉 − 〈u

′
· ∇ω′z〉, (2.7)

〈u〉 · ∇〈uz〉 =−∂z
〈p〉
ρ
− 〈u′ · ∇u′z〉, (2.8)

∆
〈p〉
ρ
= 2Ω〈ωz〉 −∇ · 〈u · ∇u〉. (2.9)

In (2.9), |∇ · 〈u · ∇u〉|/|Ω〈ωz〉| =O(Ro), so for fast rotating turbulence (Ro� 1), the
average pressure is mostly governed by a geostrophic balance

〈p〉
ρ
= 2Ω∆−1

〈ωz〉 +O(U2Ro). (2.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.109


Mean flow anisotropy without waves in rotating turbulence 889 A37-5

x x
y

H

Q

Tank

Viewing
planes
0.38H

0.75H

Forcing
mechanism

Forcing
points

z Laser

Lid

Pump
CMOS camera

Cylinder

Turntable
L

Ø

FIGURE 1. Side- and top-view sketch of the experimental set-up. Green regions and lines
show areas and positions of PIV planes used during measurements. In top-view (+) refers
to a source and (−) to a sink.

Scaling arguments do not permit us to further simplify (2.7), (2.8). The reason is
that, since columnar structures are far longer than wide (lI

z� l⊥), z-derivatives can be
approximated as ∂z∼ (lI

z)
−1, implying that all terms in (2.8) are O(U2/l⊥) and all terms

in (2.7) are O(U2/l2
⊥
). The potential influence of fluctuations on the anisotropy of the

average flow can, however, be analysed by experimentally evaluating the magnitude of
all the terms in (2.7) and (2.8). Of particular interest are the last two terms in (2.7)
and the last term in (2.8) as fluctuations and thus inertial waves, can only affect the
average flow through them.

3. Experimental methods
3.1. Experimental apparatus

The experimental set-up consists of a rectangular tank (600 mm×320 mm×320 mm)
fitted at the centre of a rotating turntable. The flow is forced by injecting and
subtracting fluid through four holes (diameter d = 1 mm) located at the corners of a
L= 53 mm square in the bottom wall of the tank (figure 1). All holes are connected
to a peristaltic pump simultaneously injecting fluid through holes along one diagonal
of the square and sucking fluid through the others, at the same constant flow rate Q
through each hole. This configuration was chosen to both cancel the injected mass
flux, and to minimise the displacement of vortices forming along the subtraction
and injection jets. A cylinder (height H = 400 mm, ∅ 300 mm) closed by an upper
transparent lid placed inside the tank prevents free-surface deformation and provides a
viewing window for the optical measurements. The set-up is spun up into solid body
rotation at a rotation speed Ω , before the pump is initiated. Prior to measurements,
the flow is left to settle into a statistically steady state. Statistical steadiness was
assessed through the convergence of statistical quantities, kept below 1 % in most
cases.

The governing parameters are the Ekman number E= ν/2ΩH2 and a forcing-based
Reynolds number, ReQ = 4Q/πνd. They are independently controlled by Ω and Q.
The flow intensity is measured a posteriori by means of average- and a fluctuation-
based Rossby numbers Ro= 〈|u|〉xt/2ΩL and Ro′ = 〈|u′2|〉1/2xt /2ΩL, built on time and
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space averages 〈·〉xt over the horizontal visualisation plane at z= 0.75H. Experiments
are performed over a range of parameters spanning E = {4.25, 5.67, 8.59, 17, 34} ×
10−5 and 3 × 102 6 ReQ 6 1.5 × 104. In this range, the jets penetrating the flow
are always turbulent. Velocity fields are measured with a two-dimensional (2D) PIV
system: a laser sheet illuminates horizontal planes (HP) at z= 0.38H or z= 0.75H, or
a vertical plane (VP) aligned on a injection/subtraction pair. For visualisations in the
HP, a 1.3MP CMOS camera records a 150 mm× 150 mm area centred on the tank at
30 fps. For the VP experiments, two cameras record an area of 400 mm× 150 mm
at 60 fps along the tank. The smallest resolvable distance is 2.1 mm in all planes.

3.2. Evaluating the average flow quantities
Evaluating 〈ω′ · ∇u′z〉, 〈u′ · ∇ω′z〉 and 〈u′ · ∇u′z〉, requires us to calculate expressions
such as ∂zωz that are not directly accessible from 2D-PIV data. It is, however, possible
to calculate rigorous upper bounds for these three-dimensional quantities, using the
two-dimensional quantities accessible through plane PIV measurements only. We start
by noticing that the symmetry of the forcing and the geometry imply that statistical
properties are invariant by rotation of π/2 followed by a symmetry with respect to any
vertical plane equidistant from two fluid injection/subtraction points located on any
one side of the square they form. Hence statistical properties in the x and y directions
are identical, so that

|〈u′ · ∇u′z〉| = |〈u
′

z∂zu′z〉| + 2|〈u′x∂xu′z〉| = |〈u
′
· ∇u′z〉|

e. (3.1)

Here, the superscript e refers to the estimates for the three-dimensional terms that we
built out of quantities that we actually measured with the 2D-PIV system. An upper
bound estimate is obtained for |〈ω′ · ∇u′z〉|, using Schwartz’s inequality to bound the
average of products with the product of averages, Minkowsky’s inequality to handle
sums and, again, statistical equivalence of directions x and y

|〈ω′ · ∇u′z〉|6 2〈|ω′y|
2
〉

1/2
〈|∂xu′z|〉

1/2
+ 〈|ω′z|

2
〉

1/2
〈|∂zu′z|

2
〉

1/2
= |〈ω′ · ∇u′z〉|

e. (3.2)

In the resulting estimate, all terms are evaluated from VP-PIV except 〈|ω′z|
2
|〉

1/2,
which is obtained from HP-PIV. Using a similar approach, an upper bound estimate
is obtained for the reminding three-dimensional term as

|〈u′ · ∇ω′z〉|6 |〈u
′

x∂xω
′

z〉 + 〈u
′

y∂yω
′

z〉| + 〈|u
′

z|
2
〉

1/2
〈|∂zω

′

z|
2
〉

1/2
= |〈u′ · ∇ω′z〉|

e. (3.3)

Additionally, contributions from inertial waves to these terms are estimated by filtering
out velocity and vorticity components whose frequency exceeds the maximum
possible frequency of inertial waves, 2Ω (Greenspan 1968). An upper bound for
the contribution of inertial waves is obtained by treating all remaining fluctuations
in terms filtered in this way as if they were inertial waves. As such, 〈|∂zω

′

z|
2
〉

1/2 is
estimated by replacing ∂z by an upper estimate VI(H)∂t, where VI(H) is the fastest
inertial wave group velocity, i.e. that associated with the largest possible scale in the
vessel, H.

To find an upper bound for the contribution of inertial waves to estimates for
the nonlinear terms derived in § 3.2, each of the measured velocity and fields
are split in their two components f > 2Ω and f < 2Ω . As such, nonlinear terms
express as four components, only one of which is exclusively built from wave-free
velocity contributions. The remaining three components form the upper bound for the
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contribution of inertial waves to the nonlinear term. Spatial derivatives are calculated
by means of a fourth-order centred finite difference scheme.

We stress again here that the derivation of these upper bounds requires no
simplifying assumption, other than assuming sufficient statistical convergence of
our dataset to achieve statistical equivalence of properties along x and y. As such
these upper bounds require no validation, as long as they are handled as such. In
particular, to show that the actual three-dimensional terms are negligible compared to
the contribution of the Coriolis force, it is sufficient to show that the two-dimensional
(2-D) upper bounds are, without further validation. The flip side of this approach
is that it is difficult to assess how close estimates are from the actual values.
Consequently, even if the estimates are not found significantly smaller than the
contribution of the Coriolis force, the actual three-dimensional quantities may still be.

4. Results
For the range of parameters we consider, turbulent jets form above the two

injection/subtraction points and feed a small turbulent patch dominated by inertia
rather than by the Coriolis force. This patch extends to a critical height hp such
that the local Rossby number at hp reaches unity. A similar patch exists in rotating
grid turbulence (Dickinson & Long 1983) and in turbulent convective plumes under
the effect of rotation (Maxworthy & Narimousa 1994). A more detailed analysis of
this region can be found in Brons, Thomas & Pothérat (2020). Columnar structures
develop above the patch where z > hp. The lower limit (Ro < 10−2) coincides with
a regime of weaker turbulence, dominated by a quadrupole of robust columnar
structures, reminiscent of the 2-D flow solutions identified by Gallet (2015) when
rotating flows become two-dimensional. The quadrupole sits above the turbulent
patch and is aligned with the 4 injection/subtraction holes. At higher Ro, the columns
unlock from the forcing points and become subject to mutual advection, pairing and
merging (Tabeling 2002).

4.1. Columnar length scale in forced rotating turbulence
We start by confronting the scalings for the vertical length scales (2.6) to experimental
data. We build two vertical length scales lz and l′z from experiments along the vertical
plane using two-point velocity correlations Cux(δz) and Cu′x(δz), respectively calculated
from the full velocity field ux or its fluctuating part u′x (Aujogue et al. 2018), using

Cux(δz)=
〈∫

A
ux(x, z+ δz)ux(x, z) dx dz

〉
t

. (4.1)

Here, A is the area of the flow field captured by the measurements along the vertical
plane, 〈·〉t is a time average and δz is the separation between two points along the
z-axis. These correlations are normalised by a constant C0 = Cux(0). Figure 2 shows
Cux(δz) across various control parameters. Similar behaviour is seen for Cu′x(δz). For
δz/H > 0.9 Cux(δz) tends to zero. This is caused by the upper boundary of the tank.

The characteristic length scales are generally determined by finding the first zero in
Cux(δz). Figure 2 shows that in practice Cux(δz) does not necessarily fully decorrelate
over hp 6 z6H. Hence, following Staplehurst et al. (2008), lz and l′z are derived using
an arbitrary threshold value β. At separation distance Z, when Cux(z)/C0 = β, lz is
defined using

`z =

∫ Z

0

Cux(z)
C0

dz. (4.2)
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FIGURE 2. Normalised two-point velocity correlations Cux(δz) based on separation
distance δz. (a) Cux across various ReQ for E = 8.50 × 10−5. (b) Cux for various E at
ReQ = 9000. Dashed black lines represent threshold value β used to calculate correlation
length lz across all experiments.

As can be seen in figure 2(a,b) the behaviour of correlations shift drastically across
both E and ReQ. Therefore we chose β = 0.5 so as to be able to apply the same
method across all experiments.

Due to the limited space across which the correlations can be applied (hp 6 z 6 H)
and the application of the arbitrary threshold there is scatter in the data for lz and l′z, as
seen in figure 3. Nevertheless, both lz and l′z closely follow the lz∼LRo−1 scaling from
(2.6). This confirms that columns above the turbulent patch form under the combined
influence of the Coriolis forces and inertia. Inertia may, however, be associated with
the average flow or to fluctuations, which in turn may be either random or driven by
inertial waves. Evaluating the relative importance of the terms in equations (2.7)–(2.9)
shall therefore highlight flow regimes where inertial waves are active.

4.2. Separating inertial waves from turbulent fluctuations
To this end, we first need to distinguish inertial waves from random turbulent
fluctuations. This is done by splitting the turbulent energy spectrum into fluctuations
of frequency f greater than the maximum frequency of inertial waves 2Ω (subscript
FT) (Greenspan 1968), and fluctuations of frequency f < 2Ω , which may result from
inertial waves or from random turbulence (subscript IW). The ratio of the total energy
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FIGURE 3. Columnar structure length lz based on ux and l′z based on u′z normalised by L.
Ro based on |u| and |u′| respectively. Solid and dashed black line show a fit of lz and l′z
data respectively. Data from PIV in the VP.

contained in the lower part of the spectrum E′IW to the total energy E′ provides an
upper bound for the fraction of the turbulent kinetic energy carried by inertial waves.
Although global, this approach is similar to Campagne et al.’s (2015) scale-dependent
disentanglement method. The frequency spectra in figure 4 show that most of the
fluctuations’ kinetic energy lies within the spectral range of inertial waves provided
Ro & 10−2 and ReQ < 4000. The sharp drop of energy in the spectra precisely at
f = 2Ω (figure 5a) suggests that the ratio E′IW/E

′ reflects the relative importance of
inertial waves, at least to some extent. The absence of inertial waves in the higher
range of either Ro or ReQ reflects their disruption by random turbulence. In freely
decaying turbulence, this phenomenon is controlled by the ratio between inertia and
the Coriolis force, and takes place at Ro′& 0.4 (Staplehurst et al. 2008). Here, inertial
waves vanish for ReQ & 104, independently of the intensity of the Coriolis force, most
likely on the grounds that both the inertial waves and the inertia that disrupt them are
driven by fluctuations in the turbulence patch whose intensity is entirely controlled
by inertia.

Di Leoni et al. (2014) and Yarom & Sharon (2014) made similar observations of a
spectral energy drop at f = 2Ω , down to lower values of E. These authors also found
that fluctuations in the range f < 2Ω obeyed a scaling law E( f ) ∝ f−1.35 consistent
with E( f ) ∼ ( f /2Ω)−1.39, which we found in the lower frequency range of that
region. Unlike these earlier experiments, however, our spectra exhibit an intermediate
region 0.2 . f /2Ω 6 1, where E( f ) does not clearly follow a power law. Since the
Rossby number associated with fluctuations in this range is larger than at the lower
frequencies, and that the effects of rotation are weaker here than in the regimes of
lower Ekman number considered by Yarom & Sharon (2014), it is likely that this
intermediate range of frequencies is significantly affected by inertial effects unlike
the range f /2Ω . 0.2, where the Coriolis force dominates.

Next, to better assess how well the 2Ω frequency separates inertial waves form
random fluctuations, we first analyse the flow patterns corresponding to frequencies
respectively lower and higher than 2Ω , for 10−2 6Ro6 10−1. Frequency-specific flow
patterns are obtained by applying a pass-band filter centred on a given frequency f ,
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FIGURE 4. Upper bound of energy carried by inertial wave fluctuations to energy carried
by the fluctuations versus (a) Ro′ and (b) ReQ for various E at z= 0.75H.
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FIGURE 5. Power spectra normalised by 〈E(2Ω)〉 at (a) ReQ = 2000 with varying E and
(b) E= 4.25× 10−5 with varying ReQ. Data from PIV in the VP.

to the time-dependent field (u′x, u′z), followed by phase averaging, as in Cortet,
Lamriben & Moisy (2010). The bandwidth of the filter df was kept constant at a
range of df /2Ω = 10−2. For f < 2Ω , the resulting field reveals individual inertial
wave packets being radiated from the turbulent patch (illustrated in figure 6a–c).
These waves propagate throughout the flow field at an angle θ , reflecting at the
walls. Since these patterns are detected far enough from the wall, they are nearly
axisymmetric on average, so the chevron patterns observed in figure 6(a–c) are
in fact the two-dimensional signature of the three-dimensional cones observed by
Duran-Matute et al. (2013). When f > 2Ω , by contrast, wave-like patterns give
way to random fluctuations that remain mostly localised near the turbulent patch
(figure 6d). The propagation angle θ of the patterns is found by seeking the
maximum of two-dimensional spatial cross-correlations of the frequency filtered
velocity components (u′x, u′z), averaged over time. Figure 6(e–g) shows the correlation
patterns for u′x. Similar patterns are seen for u′z. This technique reveals patterns with a
well-defined propagation angle when f < 2Ω . When f > 2Ω , by contrast, signals only
remain well correlated around the origin, confirming that no inertial waves are present
in this regime. The relation θ( f ) obtained in this manner is represented in figure 7,
and found in very good agreement with the dispersion relation of inertial waves (1.1).
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FIGURE 6. (a–d) Filtered vorticity field ω′y at various frequencies f . Dashed black lines
represent the angle of propagation θ predicted by the dispersion relation for inertial waves.
(+) and (−) represent the approximate locations of the source and sink, respectively.
When f < 2Ω wave-like patterns are found. (e–h) Two-dimensional cross-correlations of
u′x filtered at frequencies f for ReQ = 1200 and E = 4.25× 10−5. Red lines represent the
propagation angle θ predicted by dispersion relation for inertial waves.

This confirms that inertial waves are confined in the f < 2Ω range and that they
carry a significant fraction of the fluctuations’ energy in this range. Interestingly, the
presence of mean advection in the z direction does not incur any Doppler shift.

Finally, to quantify the relevance of the upper bounds for the nonlinear terms
obtained by filtering out the contribution of fluctuations of frequency larger than
2Ω , we now need to quantify the fraction of energy carried by inertial waves in
the range f < 2Ω . We start with the spectral energy distribution of the fluctuations,
represented in a (k, θ) plane in figure 8. These spectra are derived using techniques
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FIGURE 7. Propagation angle θ of wave-like patterns identified from vorticity fields ω′y
filtered at frequency f . Dashed black line represent the dispersion relation for inertial
waves (Greenspan 1968).

similar to Yarom & Sharon (2014). In this representation, inertial waves are located
near a line defined by their dispersion relation (1.1). Indeed, most of the energy
is located there in the limit of low Ekman and Rossby numbers while the lower
part of the graph is progressively contaminated as energy of frequency lower than
2Ω is increasingly carried by random fluctuations. Interestingly, only a very small
amount of energy is transferred to evanescent waves of frequency greater than 2Ω at
low Ro. The fraction of energy E′band/E

′

IW lying within 10 % of the dispersion wave
(i.e. | f − fIW(θ)|/f < 10 %, where fIW(θ) is the frequency of inertial wave propagating
at angle θ ), is represented in figure 9. As expected, the upper bound captures a
greater share of inertial waves in the Ro→ 0 limit, and indeed a fair fraction of
them up (up to 80 %, down to 30 %) for most of the values of Ro investigated. This
percentage is, however, only indicative, as it depends directly on how close to the
exact dispersion relation fluctuations have to lie to be counted as inertial waves.
Nevertheless, the fact remains that the simple filtering technique we employ not only
provides a rigorous upper bound for the contribution of inertial waves but also a
relevant one in the Ro→ 0 limit. As such whenever quantities involving these bounds
vanish in this limit, they provide unequivocal evidence that the contribution of inertial
waves do. The flip side of using rigorous upper bounds is that they are not indicative
of the behaviour of inertial waves for Ro & 0.1, and this shall have to be kept in
mind when interpreting our results.

4.3. Contributions of inertial waves to anisotropy
We are now in a position to estimate the nature and the magnitude of the contribution
to anisotropy within the vertical plane due to fluctuations arising from inertial waves
in (2.7)–(2.9). From figure 10(a), contributions to the inertial terms in (2.7)–(2.9) are
almost strictly due to fluctuations arising from inertial waves for Ro.0.1 at z=0.38H.
A similar trend is seen at z= 0.75H. Hence, for Ro� 0.1, we assume |〈u′ · ∇u′z〉|

e
≈

|〈u′ · ∇u′z〉|
e
IW, |〈u′ · ∇ω′z〉|e ≈ |〈u′ · ∇ω′z〉|eIW and |〈ω′ · ∇u′z〉|

e
≈ |〈ω′ · ∇u′z〉|

e
IW .
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From, figure 10(b), the ratio |〈u′ · ∇u′z〉|
e
IW/|〈u〉 · ∇〈uz〉| scales as a positive power

of Ro (around 2), both in the lower (z= 0.38H) and upper (z= 0.75H) parts of the
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FIGURE 10. (a) Ratio between contributions by inertial waves fluctuations (IW) and
random turbulent fluctuations (FT) to inertial terms in (2.7)–(2.9) at z= 0.38H. (b) Ratio
|〈u′ · ∇u′z〉|

e
IW/|〈u〉 · ∇〈uz〉| at z = 0.38H (circles) and z = 0.75H (squares). (c) Ratio of

|〈u′ · ∇ω′z〉|eIW and (d) |〈ω′ · ∇u′z〉|
e
IW to Coriolis term |2Ω∂z〈uz〉|. Black dashed lines show

trend seen across the whole experimental parameter range. Same colour legend across all
four graphs. Scalings are indicative only, they do not rely on any theoretical consideration
at this stage.

flow for Ro . 0.15. For Ro & 2 × 10−2, the estimate for fluctuations due to inertial
waves is greater than inertia due to the average flow. In this regime, however, the
estimate includes a significant contribution from random fluctuations (see § 4.2) and
is therefore not indicative of the contribution of inertial waves. For Ro. 2× 10−2, by
contrast, this ratio becomes lower than unity and in the limit Ro→ 0, fluctuations due
to inertial waves cannot balance the pressure gradient in (2.8) so waves play no part
in determining 〈uz〉. Note that all scalings reported in figure 10 are indicative only,
and that while the quantities plotted in all four graphs follow the same exponent in
Ro, there is no theoretical basis to expect that data obtained at different values of E
and different heights H collapse into the same curve. Consequently, it follows from
the asymptotic behaviour in the limit Ro→ 0, and from (2.8) and (2.10) that

〈u〉 · ∇〈uz〉 = 2Ω∆−1∂z〈ωz〉 + FT+O(Ro), (4.3)

where FT stands for any term involving fluctuations not due to inertial waves.
Consequently, if inertial waves are to influence the anisotropy of the mean flow,
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they can only do so through the last two terms of (2.7). Their part in this process is
measured by the ratio of their contribution to inertial terms |〈u′ ·∇ω′z〉| and |〈ω′ ·∇u′z〉|
(whose estimates are denoted |〈u′ · ∇ω′z〉|eIW and |〈ω′ · ∇u′z〉|

e
IW) to the Coriolis term

|2Ω∂z〈uz〉|. From figure 10(c,d), the variations of these ratios with Ro exhibit the
same two regimes singled out in the analysis of (2.8). For Ro & 2 × 10−2, they are
greater than unity and grow until they saturate at values between 10 and 102. The
saturation coincides with the regimes where inertial waves are superseded by random
fluctuations (see figures 4 and 10a), and marks the end of the rotation-dominated
turbulent regime. Again, estimates are not representative of the behaviour of inertial
waves in this range. Below the saturation and for Ro& 0.2, on the other hand, inertial
waves dominate and (2.7) chiefly expresses a transfer of energy between them and
the mean flow. For Ro . 2× 10−2 and in the limit Ro→ 0, the mean Coriolis term
dominates in (2.7) and from (4.3), it directly determines the flow anisotropy in the
vertical plane according to

(〈u〉 · ∇)2〈ωz〉 − 〈u〉 · ∇(〈ω〉 · ∇〈uz〉)' 4Ω2∂2
zz∆
−1
〈ωz〉 − 2Ω∂z〈u〉 · ∇〈uz〉 + FT. (4.4)

5. Conclusion and discussion

Equation (4.4) establishes our main result: in the limit Ro→ 0 inertial waves are
not part of the mechanism driving the anisotropy of the average turbulent flow in
background rotation. The actual mechanism involves a balance between advection of
the average flow and the Coriolis force. From this point of view, it also differs from
the diffusive process underpinning the formation of columns in Taylor’s experiment. In
both cases, however, anisotropy is materialised by a horizontally divergent flow either
driven by inertia (turbulent flows) or by viscous friction (Taylor columns).

The physical mechanism governing the anisotropy of the average flow along the
rotation axis is fully captured by (4.4), but more conveniently traced from the set of
averaged equations (2.7)–(2.9), stripped from the contributions of inertial waves. As
for the full flow field, the average flow 〈u〉 is columnar in the limit Ω→∞. Here,
however, the departure to two-dimensionality for the average flow arises out of the
inertial terms in (2.7), which presents itself in two forms: one is driven by inertia of
the average flow itself (terms involving averages only), the other by inertia associated
with fluctuations. Since we now know the contribution of inertial waves to these terms
to be small, compared to the dominant Coriolis term in the limit Ro→0, the divergent
flow has to be predominantly driven by the other contributions to inertia: either from
the average flow, or from random turbulent fluctuations. In turn, the vertical flow
sustained by this mechanism, drives an average vertical pressure gradient through (2.8),
and subsequently, a z-dependence on the vertical vorticity component through (2.9),
that defines its anisotropy.

This mechanism acts in two ways: the presence of inertia away from Ekman
boundaries drives a departure to two-dimensionality through the secondary flows, with
a mediating role played by the pressure. Conversely, if a localised horizontal force is
applied to drive the flow (adding an inhomogeneous forcing term ∇× f in (2.7)), then
an average secondary flow with a vertical velocity component ∂z〈uf

z〉=−(1/2Ω)∇× f
is driven by the Coriolis force to be able to balance the rotational part of f . Inertia
then diverts the vertical flow into secondary flows, up to a distance lz from the
location of the forcing, where the vertical flow driven by the forcing is exhausted.
This mechanism controls the vertical length scale (and anisotropy) of the average
length scale set in motion by f , as expressed by scaling (2.6).
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This mechanism explains how average anisotropy can develop along the rotation
axis without the involvement of inertial waves. It is closely related to the phenomenon
of inertial mixing put forward by McEwan (1976), but also generic in current-driven
flows, whether this current involves mass or electric charge (in MHD flows, see
Pothérat (2012), Pothérat & Klein (2017)). In magnetohydrodynamic (MHD) flows
within the quasi-static approximation, Alfvén waves, which are the MHD counterpart
of inertial waves, are altogether absent. Anisotropy develops through a diffusive
process, in which the electric potential plays a very similar mediating role to that
played by the pressure in rotating flows (Pothérat, Sommeria & Moreau 2000).
Similarly, electric current is driven along the magnetic field lines for the Lorentz
force to balance the rotational part of inhomogeneous forces and the point where
inertial forces have exhausted the current produced by them determines the length
scale of the flow structure set in motion (Pothérat & Klein 2017).

Finally, it is noteworthy that in the limit Ro→ 0, lI
z(l⊥)/H→∞ for all scales l⊥,

and the flow becomes quasi-two-dimensional. Hence, our main result also implies
that inertial waves are not responsible for the two-dimensionalisation of the average
flow either. Thus the new mechanism argued for here may explain the formation
of Taylor columns in average flows at high Reynolds numbers. We insist, however,
that it does not concern Taylor columns found in the fluctuating part of the flow. In
particular, flows with nil average flow, such as randomly forced turbulent flows in
three-dimensional periodic domains, may admit a basis of inertial modes. This implies
that the formation of the fluctuating columns in these flows involves interactions
between these waves, following either of the mechanisms proposed by Smith &
Waleffe (1999). By contrast, where a non-zero average exists, any basis must involve
non-oscillatory modes (such as the leading-order zonal flow in a sphere (Greenspan
1968)). The experimental configuration studied in this paper falls in this category and
it is precisely this steady component that is governed by the waveless mechanism we
put forward. As such, this result does not exclude that in complex turbulent flows,
the anisotropy of the average component may be driven by the waveless mechanism
while at the same time anisotropic turbulent structures may be shaped by inertial
waves.
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