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Abstract

This note provides an affirmative answer to Problem 2.6 of Praeger and Schneider [‘Group factorisations,
uniform automorphisms, and permutation groups of simple diagonal type’, Israel J. Math. 228(2)
(2018), 1001–1023]. We will build groups G (abelian, nonabelian and simple) for which there are two
automorphisms α, β of G such that the map

T = Tα × Tβ : G −→ G ×G, g 7→ (g−1gα, g−1g β)

is surjective.

2010 Mathematics subject classification: primary 20E36; secondary 20D40.
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1. Introduction

The purpose of this paper is to provide an affirmative answer to [3, Problem 2.6], by
proving the following theorems.

Theorem 1.1. Let G be a group and let α, β ∈ Aut(G). Then it is possible to embed G
in a group G̃ with α̃, β̃ ∈ Aut(G̃) such that the map

T = Tα̃ × Tβ̃ : G̃ −→ G̃ × G̃, g̃ 7→ (̃g−1g̃ α̃, g̃−1g̃ β̃)

is surjective, α̃|G = α and β̃|G = β. Moreover, |G̃| = max{ℵ0, |G|}.

Theorem 1.2. Under the hypotheses of Theorem 1.1, if G is countable, then G̃ can be
made simple.

For completeness we will also prove the following result.

Theorem 1.3. Let G be an abelian group and let α, β ∈ Aut(G). Then it is possible
to embed G in an abelian group G̃ with α̃, β̃ ∈ Aut(G̃) such that the map Tα̃ × Tβ̃ is
surjective, α̃|G = α and β̃|G = β.
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We will now try to motivate our results in the light of the paper [3].
The O’Nan–Scott theorem is an invaluable tool in the theory of finite permutation

groups. Its proof is closely linked to the classification of finite simple groups (CFSG)
and therefore any extension to the case of infinite groups is generally extremely
difficult.

In a recent paper [3] devoted to quasiprimitive permutation groups of simple
diagonal type, Praeger and Schneider applied new ideas which allowed them to extend
some results to infinite groups and at the same time to make the proofs independent of
CFSG. A fundamental tool in their arguments is the concept of uniform automorphism.
An automorphism α of a group G is called uniform if the associated map

Tα : G→ G, g 7→ g−1gα

is surjective.
Let G = G1 ×G2 × · · · ×Gk be a direct product of k groups and, for i ∈ {1, 2, . . . , k},

let πi : G→ Gi be the coordinate projection. A subgroup H of G is a strip if, for all i,
the restriction πi|H is injective or Hπi = 1. If H is a strip, we define J = { j | Hπ j , 1}.
The strip H is called nontrivial if |J| ≥ 2 and full if Hπ j = G j whenever j ∈ J.

Let G be a group and let X, Y be direct products of pairwise disjoint nontrivial full
strips in Gk with k ≥ 2. If Gk = XY , then Gk is said to be factorised by (direct products
of) strips. Lemma 2.4 of [3] asserts that if d ≥ 1, then

G2d has a factorisation by strips ⇐⇒ G has a uniform automorphism.

Example 1.4 [3, Lemmas 2.3 and 2.4]. Let G be a group and α a uniform automorphism
of G and define X = {(g,g) | g ∈G} and Y = {(h,hα) | h ∈G}. Let (x, y) ∈G ×G. Choose
h such that h−1hα = x−1y and let g = xh−1. Then ghα = xh−1hα = y and gh = x. So
(g, g)(h, hα) = (x, y) and therefore G ×G = XY .

The strips involved in Example 1.4 (and in [3, Lemma 2.4]) have length two. In
order to factorise G6, say, as G6 = XY where X is a direct product of two strips of
length three and Y is a direct product of three strips of length two, it is necessary to
assume that G admits uniform automorphisms with very particular properties.

Example 1.5 [3, Example 2.5]. Consider a group G and suppose that there are two
(uniform) automorphisms α and β of G such that the map

Tα × Tβ : G→ G ×G, g 7→ (g−1gα, g−1g β)

is surjective. Set

X = {(t, t, t, s, s, s) | t, s ∈ G}, Y = {(u, v,w, u, vα,w β) | u, v,w ∈ G}.

Let (x1, x2, x3, x4, x5, x6) ∈ G6 and choose t ∈ G such that

tt−α = x1x−1
4 x5(x−1

2 )α and tt−β = x1x−1
4 x6(x−1

3 )α.

Let s = x4x−1
1 t, u = t−1x1, v = t−1x2 and w = t−1x3. Then it follows by the assumptions

above that (t, t, t,u,u,u) · (u, v,w,u, vα,w β) = (x1, x2, x3, x4, x5, x6). Therefore G6 = XY .
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We remark that Example 1.5 is only hypothetical, as it depends on the following
problem posed in [3].

Problem 1.6 [3, Problem 2.6]. Exhibit a group G that admits a pair (α, β) of
automorphisms such that the map

T = Tα × Tβ : G −→ G ×G, g 7→ (g−1gα, g−1g β) (>)

is surjective (or prove that no such group exists).

If G is a nontrivial finite group, then |G ×G| > |G|, and hence such automorphisms
cannot exist for finite G.

In this paper we will give an affirmative answer to Problem 1.6 and therefore we
show that Example 1.5 is effective. We will build groups G of every infinite cardinality
endowed with two automorphisms α and β that satisfy property (>). Moreover, with a
refinement of our construction (Theorem 1.2), we will show that G can be simple.

2. Uniform automorphisms

In a paper of the late 1950s, Zappa [8] introduced the definition of uniform
automorphism with the aim of extending to infinite groups some results hitherto known
only for finite groups. An automorphism α of a group G is fixed point free if CG(α) = 1,
that is, if the map Tα : G→ G, g 7→ g−1gα is injective. If the map Tα is onto, then α is
called uniform. For finite groups these two properties are evidently equivalent; but not
for infinite groups, as some examples will show.

If ι : Q→ Q, x 7→ −x, then Z is an ι-invariant subgroup of Q. It is easy to verify the
following assertions.

Example 2.1. If α ∈ Aut(G) is fixed point free and H ≤G is α-invariant, then α induces
a fixed point free automorphism on H. So ι is fixed point free on Z but it is not fixed
point free on Q/Z.

Example 2.2. If α ∈ Aut(G) is uniform and N E G is α-invariant, then α induces a
uniform automorphism on G/N. So ι is uniform on Q/Z but it is not uniform on Z.

In general, for an infinite group, to possess a uniform automorphism is a stronger
condition than to possess a fixed point free automorphism. As an example, consider
G = 〈x, y〉, the free group with two generators x and y. The automorphism α defined by
xα = y and yα = x is fixed point free but not uniform. This happens because the normal
subgroup N = 〈x2, xy−1, y2〉 is α-invariant but α induces the identity on G/N ' C2. It
can be proved that a free group of finite rank cannot admit uniform automorphisms.

It is known that if a finite group G admits a fixed point free automorphism, then G
is solvable. A brief proof of this fact is provided in [6]. (The proof relies on the fact
that each simple group has a cyclic Sylow group and therefore CFSG is required.)

It has been conjectured that a finitely generated group with a uniform automorphism
cannot be simple. Zappa in [8] proved that if a polycyclic group G has a uniform
automorphism of prime order, then G is a finite p′-group and this result has been
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extended in [1] (see also [4]) in which it is proved that any finitely generated
hyperabelian group having a uniform automorphism of prime-power order must be
finite. It is interesting to observe that the automorphism α of G = Z × Z (in additive
notation) defined by (x, y)α = (y,−x + y) is uniform and has order six.

To the best of our knowledge there is only one class of examples of simple groups
that admits a uniform automorphism (Example 2.3 below) and none of these groups
are finitely generated.

Example 2.3. Let G be a connected algebraic group over the algebraic closure Fp
of Fp and let α be the automorphism naturally induced on G by the Frobenius map
Fp → Fp, k 7→ kp. Then, by a deep result of Lang (see [7, 4.4.17]), α is uniform and
we can easily verify that α has infinite order.

Let G = SLn(Fp) with n ≥ 2. Since Z(G) is characteristic in G it follows that
G/Z(G) = PSLn(Fp) is a simple group admitting a uniform automorphism.

We remark that in (>) the automorphisms α and β of G must necessarily be uniform
and therefore we do not believe that it is possible to find an example in which G is
finitely generated and simple (see Remark 3.5).

3. The proof of Theorems 1.1, 1.2 and 1.3
We begin this section with the following simple lemma.

Lemma 3.1. Let (Gρ)ρ<τ be a set of groups for some limit ordinal τ and suppose that
αρ, βρ ∈ Aut(Gρ). Suppose that the following three conditions are satisfied:

(a) if ρ < σ < τ, then Gρ ≤ Gσ;
(b) if ρ < σ < τ, then ασ|Gρ

= αρ and βσ|Gρ
= βρ;

(c) if ρ < σ < τ, then Gρ ×Gρ ⊆ Tασ(Gσ) × Tβσ(Gσ).

Let G =
⋃
ρ<τ Gρ be the direct limit of (Gρ)ρ<τ and let α, β ∈ Aut(G) be the

automorphisms naturally induced by (αρ)ρ<τ and (βρ)ρ<τ on G. Then the map Tα × Tβ :
G→ G ×G is surjective.

Proof. For g, h ∈ G, there is ρ < τ such that g, h ∈ Gρ. From the hypothesis there is
x ∈ Gρ+1 such that (g, h) = (x−1xα, x−1x β). �

In our proofs we will use free products and their universal property. We recall the
definition.

Definition 3.2. Let {Xi | i ∈ I} be a set of groups. A free product of the Xi is a group
P and a family of homomorphisms ji : Xi → P such that, for every group Y and every
family of homomorphisms fi : Xi → Y , there is a unique homomorphism φ : P→ Y
with φ ◦ ji = fi for all i ∈ I, that is, the diagram

P = ∗i∈I Xi

Xi Y

φ
ji

fi

https://doi.org/10.1017/S0004972719000649 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000649


84 E. Bettio and E. Jabara [5]

is commutative (see [5, Theorem 11.51]). Since a free product exists and is unique up
to isomorphism, we can speak of the free product of {Xi | i ∈ I} and we write P = ∗i∈I Xi.

Lemma 3.3. Let G be a group and let α, β ∈ Aut(G). Then we can construct an
overgroup Ĝ of G and α̂, β̂ ∈ Aut(Ĝ) such that α̂|G = α, β̂|G = β and

G ×G ⊆ Tα̂(Ĝ) × Tβ̂(Ĝ).

Moreover, |Ĝ| = max{ℵ0, |G|}.

Proof. If G is infinite, let G0 = G, α0 = α and β0 = β. If G is finite define G0 = G ∗ 〈x〉
(or G0 = G × 〈x〉) where 〈x〉 is an infinite cyclic group, α0|G = α, β0|G = β and
xα0 = x = x β0 .

We can well-order the elements of G0 ×G0,

G0 ×G0 = {(gρ, hρ) | 0 ≤ ρ < τ},

and since G0 is infinite we can do this with τ a limit ordinal. Moreover, we can impose
the condition (g0, h0) = (1, 1).

For every ρ < τ we define a chain of groups (Gρ)i∈ρ with αρ, βρ ∈ Aut(Gρ) such that
if ρ < σ < τ, then

(i) Gρ ≤ Gσ;
(ii) ασ|Gρ

= αρ and βσ|Gρ
= βρ;

(iii) there is an element yρ ∈ Gσ such that

(y−1
ρ yασρ , y

−1
ρ y βσ) = (gρ, hρ).

If ρ = 0, then G0, α0 and β0 have already been defined, and since (g0, h0) = (1, 1)
we can set y0 = 1. Suppose that Gρ, αρ and βρ have been constructed for all ρ < σ.
If σ is a limit ordinal, simply define Gσ =

⋃
ρ<σ Gρ and let ασ, βσ ∈ Aut(Gσ) be the

automorphisms naturally induced by (αρ)ρ<σ and ( βρ)ρ<σ in Gσ. If σ is not a limit
ordinal we can choose ρ such that σ = ρ + 1. Let 〈xρ+1〉 be an infinite cyclic group
such that Gρ ∩ 〈xρ+1〉 = 1 and define Gρ+1 = Gρ ∗ 〈xρ+1〉. It is clear that the maps

αFρ : Gρ → Gρ+1, g 7→ gαρ ; γ : 〈xρ+1〉 → Gρ+1, xρ+1 7→ xρ+1gρ+1

and

βFρ : Gρ → Gρ+1, g 7→ g βρ ; δ : 〈xρ+1〉 → Gρ+1, xρ+1 7→ xρ+1hρ+1

define homomorphisms. Let j1 : Gρ → Gρ+1 and j2 : 〈xρ+1〉 → Gρ+1 be the natural
embeddings. From the universal property of free products we can draw the diagrams
shown in Figure 1. We can easily verify that conditions (i) and (ii) are fulfilled and,
moreover,

x−1
ρ+1xαρ+1

ρ+1 = x−1
ρ+1xρ+1gρ = gρ and x βρ+1

ρ+1 = x−1
ρ+1xρ+1hρ = hρ,

so condition (iii) is also satisfied with yρ = xρ+1.
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Figure 1. Diagrams for the proof of Lemma 3.3.

Define
Ĝ =
⋃
ρ<τ

Gρ.

Let g ∈ Ĝ and let ρ < τ be such that g ∈ Gρ. Since condition (ii) is fulfilled we
can define α̂, β̂ ∈ Aut(Ĝ) by putting gα̂ = gαρ and gβ̂ = g βρ . Then Lemma 3.1 gives
us the conclusion. Moreover, |Gσ| = max{ℵ0, |Gρ|} for every ρ < σ < τ and hence
|Ĝ| = max{ℵ0, |G|}. �

Proof of Theorem 1.1. Let G be a group and let α, β ∈ Aut(G). We define a chain
of groups (Gi)i∈N with αn, βn ∈ Aut(Gn) satisfying the conditions of Lemma 3.1 (with
τ = ω).

If n = 0, then we define G0 = G, α0 = α and β0 = β. If n > 0 then, with the notation
of Lemma 3.3, we define Gn = Ĝn−1, αn = α̂n−1 and βn = β̂n−1.

Let G̃ =
⋃

n∈NGn and let α̃, β̃ ∈ Aut(G̃) be the automorphisms naturally induced
by (αn)n∈N and ( βn)n∈N on G̃. From Lemma 3.1 we can conclude that the map
Tα̃ × Tβ̃ : G̃→ G̃ × G̃ is surjective and |G̃| = max{ℵ0, |G|}. �

Proof of Theorem 1.3. To prove Theorem 1.3 we can use the same technique adopted
for Theorem 1.1. The only difference is that a direct sum is used instead of a free
product. With the same hypotheses as in Definition 3.2, we know that if Xi (i ∈ I) and
Y are abelian groups, then the diagram

P =
⊕

i∈I Xi

Xi Y

φ
ji

fi

is commutative [5, Theorem 10.9]. �

In order to prove Theorem 1.2, the previous construction must be slightly modified.
We recall the following result proved using the technique of HNN extensions.
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Theorem 3.4 [2, Theorem IV.3.4]. Every countable group G can be embedded in a
countable, simple (and divisible) group G•.

Remark 3.5. A remarkable theorem of P. Hall asserts that every countable group can
be embedded in a finitely generated simple group [2, Theorem IV.3.5]. Unfortunately,
we cannot use this result to produce examples of finitely generated simple groups that
satisfy condition (>). This is because all our proofs employ direct limits of groups.

Proof of Theorem 1.2. Let G be a countable group and α, β ∈ Aut(G). Let G0 = G,
α0 = α and β0 = β. For every n > 0, let

Kn = (Gn−1 o 〈αn−1, βn−1〉)•

be the group defined in Theorem 3.4 and let α•n, β
•
n ∈ Aut(Kn) be the inner

automorphisms induced by αn−1 and βn−1 on Kn. Applying Theorem 1.1, we can define
Gn = K̃n and αn = α̃•n, βn = β̃•n such that Tαn × Tβn : Gn → Gn ×Gn is surjective. We
remark that |Gn| = ℵ0.

Let Ĝ =
⋃

n∈NGn and let α̂, β̂ be the automorphisms naturally induced by αn and βn

in Ĝ. From Lemma 3.1, the map Tα̂ × Tβ̂ : Ĝ→ Ĝ × Ĝ is surjective. Since a countable

union of countable sets is again countable, it follows that |Ĝ| = ℵ0.
If N , 1 is a normal subgroup of Ĝ, let m ∈ N be such that N ∩Gm , 1. Then for

every n ≥ m, we have 1 , N ∩ Kn+1 E Kn+1 and, since Kn+1 is simple, Kn+1 ≤ N. Hence
Gn ≤ Kn+1 ≤ N for every n ∈ N and so N = Ĝ. This proves that Ĝ is simple. �

Remark 3.6. Our constructions can be easily generalised to exhibit groups G with r
automorphisms α1, α2, . . . , αr ∈ Aut(G) such that the map

Tα1 × Tα2 × · · · × Tαr : G −→ Gr

is surjective.
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