
1 Introduction

Our immediate environment is a magnificent tapestry of information-bearing signals
of many kinds reaching us from many directions and from many sources, both large
and small. Some signals arise as a response to some form of human-made illumination
probing a scene or object of interest. Other signals occur naturally in the environment.
Most signals are not readily compatible with our human senses. Only those signals
such as optical signals in the visible band and certain acoustic signals are imme-
diately compatible with our human senses. Other signals – such as electromagnetic
signals in the infrared, ultraviolet, and X-ray bands, or waves in the radio and radar
bands, or acoustic waves at ultrasonic frequencies – are not compatible with our natu-
ral senses, such as they are. To perceive any of these signals, which to our senses are
invisible, sophisticated imaging algorithms are used to convert the sensed data into an
understandable form such as an image.

A great variety of sensors now exist that collect signals and process these signals
to form some kind of image, normally a visual image, of an object or a scene of
objects. We refer to these as sensors for forming images, often requiring extensive
computation to render the raw data into the form of an image. There are many kinds
of sensors collected under this heading, differing in the size of the observed scene,
as from classical microscopes to modern radio telescopes; in complexity, as from the
simple lens to synthetic-aperture radars; and in the current state of development, as
from photography to microscopy, holography, and tomography. Each of these systems
collects raw sensor data and processes that sensor data into imagery that is useful to
a user. This processing might be done by a digital computer, by an analog computer,
or by an optical computer as may consist of a system of lenses. The development
and description of a processing algorithm often requires a sophisticated theory and a
precise mathematical formulation.

In this book, we bring together a number of signal-processing concepts that will
form a background for the study and design of the many kinds of image formation
system used for clinical evaluation or for remote surveillance. The signal-processing
principles that we study include or adjoin the methods of medical imaging, classi-
cal radar and sonar systems, electromagnetic propagation, tomography, and physical
optics, as well as estimation and detection theory.
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2 1 Introduction

1.1 Image Formation

Mankind has designed a variety of devices that are used to observe the general envi-
ronment and specific objects of interest in that environment. Images are formed by
processing acoustic, pressure, or magnetic variations or by processing electromag-
netic radiation in the radio and the microwave frequency bands, the infrared band, and
the optical and X-ray bands. The many varieties of such medical imaging systems,
and of radar and sonar systems, are examples of such systems. An image formation
system may be active, using its own energy to illuminate the environment, or it may
be passive, relying on signals already in the environment or signals produced by the
scene itself.

The theory of image formation studies the design of signals to probe the envi-
ronment as well as the design of computational procedures for the extraction of
information from received signals within which that information may be deeply
buried. As such, this theory comprises that branch of information theory that is
explicitly concerned with the design of systems to observe the environment and
with their performance of those systems. The theory herein is concerned specifically
with the mathematical structure of the image-formation algorithms needed to extract
information from the received signals.

An image formation system is any system that collects signals and creates an
observable image by processing those signals by computation or otherwise to form
that image. Figure 1.1 illustrates a computational image formation system partitioned
into the “sensors” and the “algorithms.” We will be concerned with the details of
the image-formation algorithms and with the performance of those algorithms. We
will be concerned with the physics of the sensors only insofar as is necessary to
explain the relationship between the object of interest and the observed data or with
the development of the algorithms.

The “image,” which is the end product of the image formation system, is always
some kind of depiction of an “actual” scene, usually a two-dimensional or three-
dimensional scene, which we denote as ρ(x, y) or ρ(x, y, z). The scene may emit its
own signals that the sensors intercept, or it may be probed with signals generated by
the image formation system. Figure 1.2 shows a representative configuration in which
the scene ρ(x, y) is probed by a signal generated as a one-dimensional waveform.
In this case, the sensors collect one or more reflected one-dimensional waveforms,
sm(t), and from these reflected waveforms, the computational algorithms must form
a suitable two-dimensional image of the scene. In this case, the computational task
is to estimate the two-dimensional function, ρ(x, y), (or a three-dimensional func-
tion, ρ(x, y, z)), when given a set of one-dimensional scattered waveforms, sm(t) for
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Figure 1.1 A computational imaging system
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1.1 Image Formation 3
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Figure 1.2 Probing a scene with waveforms

m= 1, . . . , M , that depend on ρ(x, y). The task of forming an image of an object or
scene from a relevant signal is called an inverse problem. Among the most useful
mathematical tools that we will develop for this task are the two-dimensional Fourier
transform, the projection-slice theorem, and the ambiguity function. Probability the-
ory, especially the notion of the likelihood function, is also an important tool in later
chapters.

The many forms of reconstructed imagery, such as medical imagery and radar
imagery, may often look very different from the visual imagery or conventional pho-
tographs of that same scene or object. This means that the user of that sensor may need
training and experience in interpreting the generated image. To the novice, it may seem
to be a limitation of that specialized image, but a more sophisticated view is that a new
sensor opens a new window in our way of perceiving reality. A bat or a dolphin lives
in a world that is perceived in large measure by means of acoustic or sonar data. This
kind of sensor has nothing like the high angular resolution of our optical world, yet
it does have other attributes, such as a strong doppler shift and the ability to resolve
objects instantly by their velocities. Because it uses a different kind of data, the dol-
phin or the bat undoubtedly perceives the world differently from the way in which we
do. Thus, it may be argued that modern image formation does change the way that
society sees the world around us.

One way of defining the kind of imaging system to be studied is as a system in
which raw signals in the environment that the human cannot sense directly are turned
into processed signals that are compatible with one of the human senses. Thus a radar
receiver converts an electromagnetic wave into a visual image compatible with the
human eye, and a tomographic medical scanner turns an X-ray signal into a visual
image of an anatomy. The image need not be a realistic replica of a photograph. Other
details may be more important. An X-ray image of the human body does not look
like a photograph of a human skeleton, but it may be preferred by the diagnostician
because it contains useful information of other kinds.

An important topic also studied herein is the relationship between the illumination
at the input of an aperture, such as an antenna or a lens, and the wavefront radiated
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4 1 Introduction

by that illumination. The reflection of these wavefronts, however, will be modeled in
a simple way. Simplified models for both reflection and spontaneous emission will
be adequate for most of our purposes. The detailed relationship between the wave
incident on a reflecting object or scene and the wave reflected by that object or scene
is called the forward problem. The forward problem is of interest in this book only
insofar as it sets up the inverse problem. This is the problem of forming an image of
that object or source from the reflected signal or from other observed data.

Radar and sonar are surveillance systems that are included among the imaging sys-
tems that will be studied. Originally, radar and sonar systems used simple waveforms
and simple processing techniques that could be implemented with simple electronic
circuits such as filters and threshold detectors. But over the years a new level of sophis-
tication began to find its way into many of these systems. By maintaining a precise
phase record of long-duration signals, and processing the signals phase-coherently,
one can obtain new levels of system performance. Systems that depend on phase
coherence over time are called coherent surveillance systems. Some early coherent
systems in the radar bands were designed to use optical processing. More recently,
digital processing of coherent electromagnetic waveforms has become practical.

Imaging algorithms depend on the angles available for viewing the target. Most
radar systems view a target from only a single, or limited, viewing angle. The same
is usually true for microscopy, photography, and astronomy. Medical imaging, in
contrast, is often able to view an object from many angles, and the principles of tomog-
raphy can be applied. Our goal is to develop a general theory of imaging systems in a
common mathematical setting. We will be concerned with a range of processing algo-
rithms, such as those used for forming the images of remote radar reflectors, X-ray or
magnetic-resonance tomography, microscopy, and astronomy.

1.2 The History of Image Formation

The subject of image formation consists of the common overlap of a number of well-
developed subjects such as physical optics, electromagnetics, and signal processing.
From a broad point of view, the historical roots of imaging go back to the roots of these
various subjects. We are interested here in a narrower view of this history, especially
the history of clinical imaging systems, diffraction imaging systems, surveillance sys-
tems, and tomography. Our brief discussion in this section serves only to sketch the
historical background of the material in this book.

Many kinds of imaging systems were developed independently, but share com-
mon fundamentals of signal processing and a common mathematical framework.
These include: optical imaging, holography, medical imaging, radio astronomy, sonar
beamforming, microscopy, diffraction crystallography, imaging radars, moving-target
detection radars, as well as more recent topics such as seismic processing and passive
source location.

Optical image formation systems within the topic of photography are among the
earliest, the most developed, and the most familiar to the user. Credit for the invention
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1.2 The History of Image Formation 5

of photography is usually given to Niépce, who produced a photograph in 1826 or
1827 using the three principal components: an aperture, a lens, and a photosensitive
medium. Photography passed into common use in 1839 after the work of Daguerre.
Photographic imaging systems may be passive, using reflected light and occasion-
ally using radiated light, or they may be active, using a source of light to illuminate
the scene. The optics of a basic photographic system is adequately described using
geometrical optics, but modern, high-performance multitone photography is based on
wave optics. Multitone optical images are usually quite sharp with high resolution and
excellent color contrast.

Image formation systems may use passive radiation in the infrared bands. These
systems are similar to optical systems, but can form images of temperature variations
in a scene because the intensity and wavelength of the radiation emitted by an object
varies according to the temperature of that object.

Imaging was introduced into medical diagnostics by Roentgen in 1895 with the
invention of X-ray radiography, which exposes a photographic film to X-rays transmit-
ted through a body, then processes that film. Edison, by introducing an X-ray-sensitive
fluorescent screen or fluoroscope in 1896, eliminated the delay required to process the
film. The development of X-ray tomography in the modern sense of computerized
image reconstruction for medical applications began in Great Britain. The key fea-
ture, based on the projection-slice theorem and the Radon transform, is the algorithmic
reconstruction of images from their X-ray projections, first developed by Cormack in
1963 and reduced to practice by Hounsfield in 1971. The 1979 Nobel prize in phys-
iology and medicine was awarded to Hounsfield and Cormack for the development
of computerized tomography. The ideas of tomography are closely related to sim-
ilar methods used in radio astronomy, especially the formulation of reconstruction
algorithms by Bracewell (1956). Other kinds of computerized tomography are now in
use for medical diagnostic imaging systems. In addition to the method of projection
tomography based on X-ray projections, there are the methods of emission tomog-
raphy and diffraction tomography. Photon- or positron-emission tomography (PET)
based on radioisotope decay was proposed by Kuhl and Edwards (1963).

Magnetic resonance imaging (MRI) is yet another kind of tomographic imaging
system based on magnetic excitation of atomic nuclei and the induced magnetization
of the hydrogen nuclei distribution. The ground-breaking idea that enables MRI – for
which Lauterbur and Mansfield shared the 2003 Nobel prize in medicine – is to use
gradients of a magnetic field to encode spatial information into the transient response
of a nuclear spin system after excitation by a magnetic pulse. Whereas X-ray tomog-
raphy gives an image of the electron density, MRI gives an image of the distribution
of hydrogen nuclei (isolated protons) in a body, though in principle it can be tuned to
observe instead the distribution of other species of nuclei. The physical phenomenon
of nuclear magnetic resonance had been observed independently in 1946 by Bloch and
Purcell, for which they received the 1952 Nobel prize in physics. It was later realized
that magnetic resonance effects varied with the kind of tissue excited but it was not
known how to use this effect to make images. Lauterbur conceived and demonstrated
his method of using the magnetic resonance phenomenon to form images by spatially
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6 1 Introduction

encoding the magnetic field, for which Lauterbur shared in the 2003 Nobel prize in
medicine. Since then, magnetic resonance imaging has become an important modal-
ity in medical diagnosis. By using both static and time-varying magnetic excitation
fields, an MRI system causes all nuclei of a given kind – selected by the resonance
frequency of those nuclei – to precess (or oscillate), but with an amplitude and fre-
quency modulation that depends on position as determined by the magnetic excitation
at that position. The magnetization that is produced by the selected species of nuclei,
usually hydrogen nuclei, is measured and sorted by frequency analysis. Because of the
spatially-varying magnetic excitation, the frequency distribution of the induced mag-
netic field corresponds to the spatial distribution of the sources of radiation, which
equates to the spatial density distribution of the target nuclei. Repeated scans at dif-
ferent angles allows the methods of tomography to be used to sort the data in other
ways. Sophisticated mathematical algorithms based on the methods of tomography
have been developed to so extract a high-resolution image of the hydrogen density dis-
tribution from the frequency distribution for each of multiple projections of measured
magnetic resonance data.

The diffraction of X-rays by crystals was demonstrated in 1912 by Max von Laue,
thereby demonstrating the wave properties of X-rays. Sir William Henry Bragg then
immediately inverted the point of view to turn this diffraction phenomenon into a way
of probing crystals, which has since evolved into a sophisticated imaging technique.
The 1914 Nobel prize in physics was awarded to von Laue, and the 1915 Nobel prize
in physics was awarded to Bragg and his son, Sir William Lawrence Bragg, who for-
mulated the famous Bragg law of diffraction. This early work was directed toward
finding the lattice structure of the crystal as a whole, but was not much concerned
with the structure of the individual molecules making up the crystal. Attention soon
turned to the finer question of finding the scattering structure within an individual cell
of the crystal, and so to form an image of the molecule by processing that signal. A
difficulty of this task is that, because of the small wavelength of X-rays, the phase of
the diffracted X-ray wavefronts cannot be measured. Only the intensity (or amplitude)
can be measured. Herbert Hauptman and Jerome Karle (1953) showed how to bypass
this problem of missing phase by using prior knowledge about the molecules that com-
pose the crystal, for which they shared the 1985 Nobel prize in chemistry. Earlier, in
1953, James Watson and Francis Crick – using the X-ray diffraction images produced
by Rosalind Franklin – discovered the structure of the DNA molecule, for which they
shared the 1962 Nobel prize in medicine.

Closely related to the methods of the Fourier transform and signal processing are
many kinds of optical processing, many of them using diffraction phenomena that
are describable in terms of the two-dimensional Fourier transform. A method known
as the schlieren method was proposed by Jean Foucault in 1858 as a way to image
density variations of air. Fritz Zernicke in 1935 developed phase-contrast methods to
improve microscopy images, for which he was awarded the 1953 Nobel prize in phys-
ics. Aaron Klug developed methods for the imaging of viruses using the diffraction
of electron microscope images, for which he won the 1982 Nobel prize in chemistry.
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1.2 The History of Image Formation 7

The 1914 Nobel prize in chemistry was awarded to Betzig, Moerner, and Hell for the
development of superresolution fluorescence microscopy.

Dennis Gabor, influenced by the techniques used in microscopy and crystallogra-
phy, proposed the idea of holography in a series of papers in 1948, 1949, and 1951. He
originally intended holography as a method of microscopy but later as a replacement
for photography. The work earned Gabor the 1971 Nobel prize in physics. Gabor real-
ized that, whereas conventional photography first processes the raw optical wavefront
to form an image which is then recorded on film, it is also possible to record the raw
optical wavefront on the photographic film directly and place the processing of the
optical wavefront in the future with the viewer. He called his method for the photo-
graphic recording of the raw optical data a hologram. Because the raw optical data
contains more information than a final photographic image, in principle, the hologram
can be used to create images superior to a photograph. Most striking in this regard is
the creation of three-dimensional images from a two-dimensional hologram. Holog-
raphy is technically much more difficult than photography because recording the raw
optical data requires precision on the order of the optical wavelengths. For this reason,
the idea of holography did not immediately draw the attention it deserved. Holography
became more attractive after the invention of the laser and also after the more practi-
cal reformulation of the method by Leith and Upatnieks (1962), which was strongly
influenced by Leith’s other work on the optical processing used in synthetic-aperture
radar.

Early radars used simple electronic circuits for processing the received signal while
modern radars may use processing that is quite sophisticated. Sophisticated radar sig-
nal processing first appeared in the development of those imaging radars known as
synthetic-aperture radars. The principle of such radars has been credited to a sugges-
tion in 1951 by Wiley, although he did not then publish his ideas nor did those ideas
then result directly in the construction of such a radar. Wiley observed that, whereas
the azimuthal resolution of a conventional radar is limited by the width of the antenna
beam, each reflecting element within the antenna beam from a moving radar has a dop-
pler frequency shift that depends on the angle between the velocity vector of the radar
and the direction to the reflecting element. Thus he concluded that a precise frequency
analysis of the radar reflections would provide finer along-track resolution than the azi-
muthal resolution defined by the antenna beamwidth. The following year, a group at
the University of Illinois arrived at the same idea independently, based upon frequency
analysis of experimental radar returns. During the summer of 1953, these ideas were
reviewed by the members of a summer study, “Project Wolverine,” at the University
of Michigan and plans were laid for the development of synthetic-aperture radar. It
was recognized that the processing requirements placed extreme demands on the tech-
nology of the day. Many kinds of analog processors (filter banks, storage tubes, etc.)
were tried. Meanwhile, Emmett Leith, at the University of Michigan, turned to the pro-
cessing ideas of holography and adapted the optical processing techniques to satisfy
the processing requirements for radar. In 1957, by using optical processing, the first
synthetic-aperture radar was successfully demonstrated. Later, Green (1962) proposed
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8 1 Introduction

the use of the range-doppler techniques of synthetic-aperture radar for remote radar
imaging of the surface of rotating planetary objects. This method is closely related to
synthetic-aperture radar except using the rotation of the object itself to provide relative
motion. High-resolution radar images of Venus from the earth gave us our first view
of the surface of that planet unobstructed by the cloud cover of that planet.

Optical processors1 are analog processors using the Fourier transforming property
of a lens to compute two-dimensional Fourier transforms. Early on, these have been the
processors of choice for imaging radars because of the sheer volume of data that can be
handled. However, to form an image with an optical processor requires developing the
photographic film twice within the processing, once to create the optical input signal
and once to record the output. Optical processors are very sensitive to vibration, and
so they are limited by the environment and also by the form of computations that can
be included. Hence attention now has turned to other methods for processing. The
advent of high-speed, digital array processors has had a large impact on the massive
processing needed for synthetic-aperture imagery, and optical processing now plays a
diminished or vanishing role.

The development of search radars for the detection of moving targets is spread
more broadly, and individual contributions are not as easy to identify. From the first
use of radar, it was recognized that the need to detect moving targets could be satisfied
by using the doppler shift on the return signal. A moving object causes a doppler-
shifted echo. However, the magnitude of the doppler shift is only a very small fraction
of the transmitted pulse bandwidth. At that time, the technology did not exist to fil-
ter a faint, doppler-shifted signal from a strong background of signals echoed from
other stationary emitters. Hence the development of search radars did not depend so
much on invention at the conceptual level as it did on the development of technology
to support widely understood requirements. By the end of World War II, radars had
been developed that used doppler filters to suppress the clutter signal reflected from
the stationary background. These early radars used simple delay lines to cancel the
stationary return from one pulse with the (nearly identical) return from the previous
pulse, thereby rejecting signals with zero doppler shift. In this way, large rapidly mov-
ing objects could be detected from stationary radar platforms and the radial velocity
of these objects could be estimated.

Later, the requirements for search radars shifted to include moving, airborne radars
for observing small, slowly moving target objects at long range. It then became nec-
essary to employ much more delicate techniques for finding a signal return within a
large clutter background. These techniques employ coherent processing with the aid
of large digital computers.

Like radar, sonar is based on the reflection of a passband waveform from an object
or scene, in the case of sonar, it is an acoustic wave. The carrier frequency might typi-
cally be between one kilohertz and one megahertz. Although sonar is similar to radar in
principle, the speed of propagation is smaller by a factor of approximately 106, leading
to practical consequences in beamforming. The concept of a synthetic-aperture radar

1 Not to be confused with photonic processors.
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1.3 Baseband and Passband Waveforms 9

leads naturally to the notion of a synthetic-aperture sonar. High-resolution synthetic-
aperture sonar using hydrophone arrays for beam steering has been developed for
imaging the ocean floor and for other applications.

Meanwhile, astronomers had come to realize that a large amount of astronomical
information reaches the earth in the microwave bands. Astronomers are well grounded
in optical theory where beamwidths smaller than one arc second are obtained. In the
microwave band, a comparable beamwidth requires a reception antenna that is many
miles in diameter. Under the impact of wind, ice, and temperature gradients, such an
antenna would need to be mechanically rigid. Clearly, such antennas are not practical.
Around 1952, Martin Ryle, at the University of Cambridge, began to study methods
for artificially creating a kind of an aperture by pairwise combinations of many indi-
vidual antenna elements, or by allowing the earth’s rotation to sweep an array of fixed
antenna elements through space. In retrospect, this development of radio astronomy
may be viewed as a passive counterpart to the development of active synthetic-aperture
radar. The aperture is synthesized by recording the radio signal received at two or
more antenna elements and later processing these records coherently pairwise within
a digital computer. The first such radio telescope was the Cambridge One-Mile Radio
telescope completed in 1964, followed by the Cambridge Five-Kilometer radio tele-
scope in 1971. More recently, other synthetic-aperture radio telescopes have been built
and put into operation throughout the world. (The continent-sized Very Large Base-
line Array has an angular resolution of 0.0002 arc second.) For the development of
synthetic-aperture radio telescopes, Ryle was awarded the 1974 Nobel prize in phys-
ics (jointly with Hewish who discovered pulsars with the radio telescope). Much of our
knowledge of the extragalactic universe comes from the signal-processing algorithms
that form the galactic images from the data gathered by the radio telescope antennas.

1.3 Baseband and Passband Waveforms

We will have frequent occasion to use real or complex baseband signals and also occa-
sions to use passband signals. A real baseband signal, s(t), is any real function of time
with its spectral energy density concentrated near zero frequency. The baseband sig-
nal s(t) may also be called a baseband waveform when it is regarded as a complicated
signal or a baseband pulse when it is regarded as a relatively simple signal of finite
energy. The support of s(t) is the closure of the set of t for which s(t) is nonzero.

A complex baseband signal, s(t) = sR(t)+ jsI (t), where j =
√
−1, is any complex

function of time with its spectral energy density concentrated near zero frequency. The
real (or in-phase) component sR(t) and the imaginary (or quadrature) component sI (t)
are both real baseband signals. The complex baseband signal s(t) may also be called a
complex baseband waveform or a complex baseband pulse as may be appropriate.

A passband signal, which is denoted by s̃(t), with a tilde overbar is a function of
the form

s̃(t) = sR(t) cos 2π f0t + sI (t) sin 2π f0t,
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10 1 Introduction

where f0 is a constant known as the carrier frequency and sR(t) and sI (t) are real func-
tions of time whose Fourier spectra SR( f ) and SI ( f ) are zero for | f | ≥ f0. The signals
sR(t) and sI (t) are called the modulation components of s̃(t). For a radar system, the
carrier frequency f0 lies somewhere in the interval from 0.1 to 35 gigahertz and is
often in the interval from 1 to 10 gigahertz. For a sonar system, f0 is usually measured
in kilohertz. For an ultrasound system, f0 may be measured in megahertz.

The passband signal s̃(t) may also be called a passband waveform, usually when it
is regarded as a complicated signal; or a passband pulse, such as when it is regarded
as a relatively simple signal of finite energy.

The complex baseband signal s(t) corresponding to the passband signal s̃(t) is

s(t) = sR(t)+ jsI (t).

The real passband signal s̃(t) corresponding to the complex baseband signal s(t) is2

s̃(t) = Re[s(t)e−j2π f0t].

The signals s̃(t) and s(t) are regarded as essentially the same signal but for the detail of
the multiplying complex exponential. To emphasize this, these may be called the real
passband representation and the complex baseband representation of the same signal.
It is often convenient to suppress the real part operator and write

s̃(t) = s(t)e−j2π f0t.

In such a case, this is called the complex passband representation of the signal.
There are two reasons for replacing the passband signal s̃(t) with the complex base-

band signal s(t). From the notational point of view, the complex baseband signal is
preferred because the complex baseband signal is notationally more compact than
the passband signal, and mathematical manipulations of complex baseband equations
exactly mimic mathematical manipulations of the corresponding passband equations
and are much easier. Moreover, within a transmitter or receiver, it is often convenient to
translate a real passband signal into the complex baseband representation. Ultimately,
the simplest and most rewarding point of view is to think of the complex baseband
signal as the more fundamental form which is temporarily represented as a passband
signal for purposes of transmission and reception. While we study it and process it,
the signal is a complex baseband signal; when we transmit it and receive it, the signal
is a passband signal. To convert between the two forms is trivial, and is often the last
operation in a transmitter and the first operation in a receiver.

2 The sign in the exponent is arbitrary. It is chosen here so that Fourier transform relationships in optics
and antenna theory have the conventional form. This choice leads to the positive sign convention
appearing in the passband waveform. However, the opposite sign convention is used in modulation
theory.
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1.4 Monodirectional Waves

Many imaging modalities are based on the processing of waves that are reflected
from objects in a scene. The image formation algorithms are developed based on the
structure and behavior of waves. A wavefront propagating in free space may have a
complicated structure, both temporally and spatially. To gain an understanding of the
general case, one can begin with a study of the simple case of a plane wave. More com-
plicated situations can be built up from multiple plane waves. The Huygens–Fresnel
principle, which is developed in Chapter 4, describes how any planar surface in free
space crossed by a wave can be viewed as the source of that wave.

Physically, a wave may be a time-varying and space-varying electric or magnetic
vector field associated with an electromagnetic wave, or it may be the time-varying and
space-varying pressure field associated with an acoustic wave. A wave may be a vector
function as in the case of the electromagnetic wave, or it may be a scalar function, as in
the case of the acoustic wave. Our primary concern is with the mathematical descrip-
tion of the wave. Usually, we are content to deal with scalar-valued waves because of
analytical simplicity. Although an electromagnetic wave is a vector-valued wave, this
property of the wave does not often affect the properties of propagation that are of
interest herein. With some exceptions, the wave can be regarded as a scalar wave for
most of our purposes.

The propagation of electromagnetic waves at optical frequencies obeys the same
fundamental laws as it does at microwave frequencies. However, the great difference
in the wavelengths leads to a difference in the phenomena that we perceive. The wave-
length of a microwave is on the order of centimeters, while the wavelength of a light
wave is on the order of a micron. A microwave antenna rarely has dimensions of more
than a few hundred wavelengths – and usually much less – while an optical lens has
dimensions of more than 104 wavelengths. Consequently, an everyday optical beam
is usually much sharper than a microwave beam and often is described adequately by
geometrical optics and ray tracing.

Monochromatic Monodirectional Waves
A monochromatic wave is a wave at a single frequency. A monodirectional wave is a
wave traveling in a single direction. Mathematically, a spatially uniform, monodirec-
tional, monochromatic, scalar plane wave traveling in the z direction is given by

s̃(t, x, y, z) = A cos(2π f0(t − z/c)+ θ )

= A cos(2π f0t − kz+ θ ),

where the constant k = 2π f0/c = 2π/λ is called the wave number and λ is called the
wavelength. This passband wave is also written as

s̃(t, x, y, z) = Re[Ae−jθe−j
(

2π f0(t−z/c)
)
]

= Re[Ae−jθe−j
(

2π f0(t−kz)
)
],
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12 1 Introduction

Figure 1.3 Direction cosines and spherical coordinates

where Ae−jθ is called the complex amplitude of the wave at z = 0. The complex
baseband representation of this wave at arbitrary z is

s(x, y, z) = Ae−jθe j2π f0z/c

= Ae−jθe jkz,

with the time dependence now removed. This is the complex baseband representation
of a monodirectional, monochromatic wave moving in the z direction. Such a wave is
called a plane wave. A plane wave has the same value at every point of the wavefront
plane.

The most general form of a spatially uniform, monodirectional, monochromatic
wave that satisfies the wave equation is given by

s̃(t, x, y, z) = A cos(2π f0(t − (αx+ βy+ γ z)/c)+ θ )

= A cos (2π f0t − αkx− βky− γ kz+ θ) .

The variables α, β, and γ are called direction cosines. The direction cosines specify
the direction of travel of the plane wave. They are equal, respectively, to the cosines of
the angles between the direction of travel of the plane wave and the three coordinate
axes:

α = cosφx,

β = cosφy,

γ = cosφz.

The direction cosines are related to spherical coordinates, as shown in Figure 1.3, by

α = cos θ sinφ = cosφx,

β = sin θ sinφ = cosφy,

γ = cosφ = cosφz,

and so they are related by

α2
+ β2

+ γ 2
= 1.
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1.4 Monodirectional Waves 13

The angles θ and φ are two of the three angles, called eulerian angles, relating two
coordinate systems.

Three alternative complex baseband representations of the monodirectional, mon-
ochromatic wave with direction cosines α, β, and γ are3

s(x, y, z) = Ae−jθe j2π f0(αx+βy+γ z)/c

= Ae−jθe jk(αx+βy+γ z)

= Ae−jθe j(k1x+k2y+k3z).

The quantities k1, k2, and k3 are called the wave numbers of the plane wave. The wave
numbers are related to the direction cosines by

k1 = (2π f0/c)α = (2π/λ)α,

k2 = (2π f0/c)β = (2π/λ)β,

k3 = (2π f0/c)γ = (2π/λ)γ .

The vector k = (k1, k2, k3) is called the vector wave number of the plane wave.
The complex baseband representation using complex exponentials is more conven-

ient to work with than is the passband representation. The real passband representation
is recovered by

s̃(x, y, z, t) = Re
[
s(x, y, z)e−j2π f0t].

Time-Varying Monodirectional Waves
When the complex amplitude Ae−jθ is replaced by a time-varying complex amplitude
A(t)e−jθ (t), the waveform is no longer monochromatic. A monodirectional waveform
with time-varying amplitude and phase traveling in direction (α,β, γ ) has the general
form

s̃(x, y, z, t) = A(t − τ (x, y, z)) cos
(
2π f0(t − τ (x, y, z))+ θ (t − τ (x, y, z))

)
,

where τ (x, y, z) = (αx+ βy+ γ z)/c. This is called the passband representation of the
time-varying monodirectional wavefront. Using the complex amplitude A(t)e−jθ (t), the
passband representation can be written concisely as

3 A wave of the form

s̃(t, x, y, z) = A(x, y) cos(2π f0(t − z/c)+ θ ),

does not satisfy the wave equation

∂ 2̃s

∂x2
+
∂ 2̃s

∂y2
+
∂ 2̃s

∂z2
=

1

c2
∂ 2̃s

∂t2

whenever A(x, y) is not the constant A. Consequently, it is not properly among the waves that are studied
herein. Sometimes, it may be convenient to write a wave in this form. In such cases, s̃(t, x, y, z) should
be regarded only as an approximation (geometrical optics) of a wave that does satisfy the wave equation.
This approximation is studied in Chapter 4.
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14 1 Introduction

s̃(x, y, z, t) = Re
[
A(t − τ (x, y, z))e−jθ (t−τ (x,y,z))e−j2π f0(t−τ (x,y,z))]

= Re
[
s(t, x, y, z)e−j2π f0t],

where s(x, y, z, t) is the complex baseband representation of the wavefront given by

s(x, y, z, t) = A(t − (αx+ βy+ γ z)/c)e−jθ (t−(αx+βy+γ z)/c)e−j2π f0(t−(αx+βy+γ z)/c).

At the origin, the real passband waveform is

s̃(0, 0, 0, t) = Re
[
A(t)e−jθ (t)e−j2π f0t].

Let S( f ) be the Fourier transform of s(t, 0, 0, 0). A narrowband wave is one for which
the support of S( f ) is narrow compared to f0 insofar as the needs of the appli-
cation may require. In most of this book, narrowband waves are approximated as
monochromatic waves having a single wavelength λ.

1.5 Wavefront Diffraction

A monochromatic monodirectional wavefront is a wavefront that is traveling in only
one direction. A wavefront that is not monodirectional is the superposition of waves
traveling in multiple directions. We will see that when the waveform amplitude is
spatially varying in every plane, the waveform is no longer monodirectional. It is a
superposition of such monodirectional plane waves traveling in multiple directions.
The complex amplitude in the x, y plane of each plane wave now depends on the
distribution or spectrum of the wavefront directions.

Space-Varying Monochromatic Waves
When multiple monochromatic waves are simultaneously traveling in a finite number
of directions, indexed by `, the composite wave at complex baseband is

s(x, y, z) =
L∑
`=1

A`e−jθ`e j2π f0(α`x+β`y+γ`z)/c,

where α`, β`, and γ` are the direction cosines specifying the direction of the `th plane
wave.

When monochromatic waves are simultaneously traveling in all directions with an
infinitesimal amplitude in each direction, then the complex baseband representation
of the wavefront becomes an integral over the extent of wavefront directions. A mon-
ochromatic wavefront that has a continuum of directions has the complex baseband
representation

s(x, y, z) =
∫
∞

−∞

∫
∞

−∞

a(α,β)e j2π f0(αx+βy+γ z)/cdαdβ,

where the pair (α,β) of direction cosines specifies a direction and γ =
√

1− α2 − β2

is the third direction cosine. The term a(α,β)dαdβ is the infinitesimal complex ampli-
tude of the wave propagation in direction (α,β). Even though the direction cosines
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1.5 Wavefront Diffraction 15

range only between −1 and 1, the limits of integration have been written from −∞
to∞. This allows some important flexibility later. For now, the excess region of inte-
gration can be temporarily suppressed by requiring that a(α,β) = 0 when α2

+ β2 is
larger than one. This constraint will be dropped later.

When the wave s0(x, y) = s(x, y, 0) in the plane z = 0 is specified, the integral

s0(x, y) =
∫
∞

−∞

∫
∞

−∞

a(α,β)e j2π (αx+βy)/λdαdβ

implicitly defines a(α,β) in terms of s0(x, y). This equation can be interpreted as an
instance of the inverse two-dimensional Fourier transform. The function a(α,β) is
called the angular spectrum of the input signal s0(x, y) = s(x, y, 0) in the plane z = 0.
The angular spectrum completely describes the propagation of a monochromatic wave.
The “input” in the plane at z equal to zero is s0(x, y), which implicitly determines the
angular spectrum a(α,β). In turn, in the plane with z equal to d, the complex amplitude
sd(x, y) = s(x, y, d) is given in terms of a(α,β) by the expression

sd(x, y) =
∫
∞

−∞

∫
∞

−∞

a(α,β)e j(2π/λ)
√

1−α2−β2
e j2π (αx+βy)/λdαdβ.

We follow this line of thought in Chapter 4 to derive the important Huygens–Fresnel
principle.

Evanescent Waves

There is also a less-familiar, monochromatic and monodirectional solution of the wave
equation called an evanescent wave. An evanescent wave is a wave of the form

s̃(x, y, z, t) = cos(2π f0(t − (αx+ βy)/c))e−2π f0γ z/c,

satisfying the wave equation, where now the term involving z is a real decaying
exponential. To satisfy the wave equation, (α,β, γ ) must satisfy

α2
+ β2

− γ 2
= 1,

where here γ 2 is led by a negative sign.
An evanescent wave has the complex baseband representation

s(x, y, z) = e j2π f0(αx+βy)/ce−2π f0γ z/c,

with γ now defined as

γ =

{ √
1− α2 − β2 for α2

+ β2
≤ 1,√

α2 + β2 − 1 for α2
+ β2

≥ 1.

The two lines are defined differently so that γ is real in both cases. Thus α2
+β2
−γ 2

= 1 for evanescent waves.
The evanescent wave is an exponentially decreasing wave in the z direction. This

wave is needed by the mathematics or the physics in order to meet boundary conditions
that cannot be met with a propagating wave in the z direction.
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16 1 Introduction

Clearly, the amplitude of the evanescent wave becomes infinite as z goes to nega-
tive infinity. Therefore an evanescent wave can only exist in a half-space and requires
special boundary conditions on the boundary of this half-space. When the half-space
is taken to be the half-space for which z is nonnegative, the boundary conditions are
on the plane at which z = 0. The evanescent wave decays quickly with increasing z,
becoming negligible after a few wavelengths. Along the plane at z = 0 in the direction
specified by α and β runs an evanescent wave with a velocity of c/

√
α2 + β2, which

is smaller than c.
With the introduction of evanescent waves, the equation

s(x, y, z) =
∫
∞

−∞

∫
∞

−∞

a(α,β)e j2π f0z
√

1−α2−β2/ce j2π f0(αx+βy)/cdαdβ,

introduced earlier, can now be interpreted more generally. The infinite limits of inte-
gration allow the direction cosines to be larger than one. Physically, this allows
evanescent waves to be included within the angular spectrum a(α,β).

Transverse Vector Waves

Besides scalar-valued waves, there are also vector-valued waves. A vector-valued wave
may be regarded as three scalar-valued waves comprising the three components of
the vector in a suitable coordinate system. A monodirectional, monochromatic vector
wave at complex baseband has the form

s(x, y, z) = [sxix + syiy + sziz]e j2π f0(αx+βy+γ z)/c,

where (ix, iy, iz) forms a triad of orthogonal unit vectors along the three axes of the
coordinate system. When the three scalar components sx, sy, and sz can be independ-
ently specified, then such a wave amounts to nothing more than three independent
scalar waves.

There are certain vector waves of widespread physical interest satisfying a spe-
cial constraint that makes the components dependent. These vector waves, called
transverse-vector waves, are those waves that satisfy an additional constraint. Elec-
tromagnetic waves in free space are transverse vector waves.

A transverse vector wave is a vector wave that takes only values perpendicular to
its direction of propagation. For the wave to be a transverse wave, the direction of the
vector field must be perpendicular to the direction of propagation. The dot product
of the field vector and the direction of propagation must be zero. For a plane wave,
the direction of propagation αix + βiy + γ iz is constant. The direction of the field is
sxix + syiy + sziz. This means that for a transverse-vector plane wave, the dot product

sxα + syβ + szγ = 0

must be satisfied as a side condition.
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1.6 Temporal and Spatial Coherence 17

1.6 Temporal and Spatial Coherence

The words “coherent” and “noncoherent” continually recur. These words are used to
designate the quality of the phase angle of a passband waveform. Every passband
signal is a sinusoid that can be expressed in terms of the time-varying amplitude and
phase

s̃(t) = A(t) cos(2π f0t + θ (t)),

where A(t) is the time-varying amplitude, f0 is the carrier frequency, and θ (t) is the
time-varying phase. The complex baseband representation then has the form

s(t) = A(t)e−jθ (t).

The phase θ (t) may be intentional and known, or it may be partially or wholly unin-
tentional and unknown. The phase angle may be random phase noise. When the phase
angle θ (t) of the signal s̃(t) is known to the extent that knowledge of θ (t) is critical to
the application, the signal s̃(t) is called a coherent signal. Otherwise, s̃(t) is called a
noncoherent signal.

The term “coherent” may also arise in connection with the processing of a real
passband signal, perhaps in the form of a complex baseband signal. The processing
may be the kind known as coherent processing, which fully uses both A(t) and θ (t), or
the kind known as noncoherent processing, which makes only limited – or no – use
of θ (t).

Coherence not only refers to a deterministic relationship between the phase angles
of a waveform at different time instants, but may also refer to a deterministic relation-
ship between the phase angle of two different waveforms, s̃1(t) and s̃2(t). The former
case is then referred to as a temporally coherent waveform. The latter case is referred
to as a spatially coherent waveform when a common wavefront is incident on two
antennas or two lenses at different locations, or at two regions of the same antenna
or lens. The deterministic relationship between points in a spatially coherent wave-
front may be due to the different times at which the wavefront reaches those different
points. Two signals, s̃1(t) and s̃2(t), may be spatially coherent even though they are
jointly temporally noncoherent. For example, in photographic systems, the light from
a point source incident on a lens may be temporally noncoherent, but across the lens
it is spatially coherent. Otherwise, the lens could not focus the light into an image of
that point source. Moreover, when there are multiple point sources, the light emitted
by the multiple point sources can be mutually spatially noncoherent because the point
sources are mutually noncoherent, yet the light reaching the lens from each individual
point source can be spatially coherent.

A pulse train is a common example of a passband radar waveform. A pulse train
has the form

p̃(t) =
N−1∑
n=0

s(t − nTr) cos(2π f0t + θ0),
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18 1 Introduction

(a)

(b)

Figure 1.4 A coherent pulse train (a) and a noncoherent pulse train (b)

where s(t) is a single pulse, Tr is a constant called the pulse repetition interval, and θ0

is a constant. The pulse train consists of N uniformly spaced translates of the pulse s(t)
modulated onto the carrier cos(2π f0t + θ0). In complex baseband notation, the pulse
train is denoted

p(t) =
N−1∑
n=0

s(t − nTr)e−jθ0 .

This pulse train might be called coherent to mean that θ0 remains constant from pulse
to pulse even though θ0 may be unknown. Instead, the waveform might be called coher-
ent to mean that the pulses all have the same known constant phase θ0. Hence whether
or not a given waveform is called coherent might depend on the circumstances of the
discussion.

A pulse train in which the phase is not the same from pulse to pulse is given in the
passband representation by

p̃(t) =
N−1∑
n=0

s(t − nTr) cos(2π f0t + θn),

and in the complex baseband representation as

p(t) =
N−1∑
n=0

s(t − nTr)e−jθn .

This is called a noncoherent pulse train when the θn are random and independent (or
weakly correlated). Then the θn may form a sequence of independent random vari-
ables, perhaps taking values uniformly between 0 and 2π . Figure 1.4 compares the
coherent pulse train with a noncoherent pulse train. It is important to the usage here
that the phase angles are unknown. When the phase angles are known, even though
different, the waveform is a coherent waveform because the known values of the phase
angles can be included in the processing of the waveform.

More generally, θ (t) may separate into two parts: a phase angle that is known,
and a phase angle that is unknown. For an arbitrary waveform in the passband
representation, this may be written as

s̃(t) = A(t) cos[2π f0t + θs(t)+ θn(t)].
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1.7 Deterministic and Random Models 19

The complex baseband representation is

s(t) = A(t)e−j[θs(t)+θn(t)],

where θs(t) is the intentional and known part of the phase modulation associated with
the signal, and θn(t) is the unintentional and unknown part of the phase modulation.
The unknown part is called phase noise. When described in this way, a coherent wave-
form could mean a waveform in which θn(t) is negligible, and a noncoherent waveform
could mean a waveform in which θn(t) is not negligible. In some applications, surpris-
ingly large values of unknown phase noise may be acceptable. Even phase errors as
large as one radian can sometimes be tolerated, though with a significant loss of system
performance. Chapter 15 is devoted to the quantitative analysis of the effect of phase
error and phase noise on performance, including the notion of coherence in various
situations.

1.7 Deterministic and Random Models

The usual goal of an image formation system is to form the best image of an object
based on the available data. However, it is difficult to formulate a precise statement of
optimality because a general criterion of optimality can be elusive and prior knowl-
edge may be subjective. This is due partly to the fact that the underlying physical
reality is much richer than the desired image, and it is difficult to state the real goal
as an abstraction of the physical reality, and also because prior knowledge or prior
assumptions about the image must be accommodated. Such considerations require
that a model of the problem be developed. Such a model may be either deterministic
or random. In the early chapters of this book, deterministic models of the image are
usually used. Such models assume that a “true” image does exist, and our task is to
estimate that image by processing the observed data. Randomness enters the problem
in those chapters only because the measurements can be random or noisy. There is a
single underlying image that is to be found.

In later chapters, we turn to a more abstract view of imaging, regarding the task
as one of selecting an image from a space of possible images. In that more abstract
view, an image is a realization of a random variable characterized by a probability
distribution on a predefined space of images. The goal is not to pick the “true” image,
but to select that image from the space of images that best explains the observed data.
This reformulation of the task of imaging may be seen as nearly the same task as
before, but it does suggest alternative approaches.

For these reasons, both to model measurement noise and to model a random image,
probability theory inevitably enters the topics of this book. We will need the notions
of a random variable and a random process. Here we briefly review some of the
fundamentals of probability theory that are used.

The reason for introducing the topic of random variables described in this section
and the topic of random processes described in more detail in Section 2.8 of Chapter 2
is to study randomness arising in various situations of imaging. Imaging theory uses
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quantities such as probability density functions and correlation functions. They must
be meaningful and known. Eventually, we even deal with the doubly vague situation
in which the probability density function p(x) associated with the random variable X
is itself unknown. Such formulations provide structure and lead to useful procedures
for image formation.

Random Variables
A random variable, X , consists of a set of values that the random variable can take
and a probability distribution on this set of values. A random variable, X , may be
restricted to a finite, or countable, number of values, in which case it is called a discrete
random variable. Then it is characterized by the probability vector p with a finite, or
countable, number of components denoted pj. Likewise, a pair of discrete random
variables, (X , Y ), is associated with a joint probability distribution, P, with an array of
components denoted Pjk . A joint probability distribution is associated with marginals,
defined by pj =

∑
k Pjk and qk =

∑
j Pjk , and conditionals, defined by Qk| j = Pjk/pj

and Pj|k = Pjk/qk . This leads to the Bayes formula

Qk| j =
qkPj|k∑
k qkPj|k

as a consequence of the definitions of marginals and conditionals.

A real random variable is a random variable that takes values in the set of real
numbers. A real random variable may take values in a finite set of real numbers, in
which case it is called a discrete real random variable, or values in a continuous set of
real numbers, in which case it is called a continuous real random variable. Whereas a
discrete random variable is described by a probability vector p, a continuous random
variable is described by a function, p(x), called the probability density function, or
a conditional function p(x|y), called the conditional probability density function. We
consider only discrete random variables and continuous random variables. We do not
consider mixed random variables.

A discrete or continuous real random variable has a mean, x, denoted by

x =
∑

j

pjxj,

or by

x =
∫
∞

−∞

xp(x)dx,

and a variance, σ 2, denoted by

σ 2
=

∑
j

pj(xj − x)2,

or by

σ 2
=

∫
∞

−∞

(x− x)2p(x)dx.
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1.8 The Electromagnetic Spectrum 21

Similar definitions can be made for complex random variables, which are random
variables taking values in the set of complex numbers.

An important random variable is a gaussian random variable, which is the only
example of a random variable given in this section. Other random variables appear
later in the book. The real gaussian random variable is defined by its probability
density function

p(x) =
1

√
2πσ

e−(x−x)2/2σ 2
.

The gaussian random variable has the mean x and variance σ 2. Likewise, the com-
plex gaussian random variable X = XR + jXI with circular symmetry has probability
density function

p(xR, xI ) =
1

2πσ 2 e−|x−x|2/2σ 2

=
1

2πσ 2 e−x2
R/2σ

2
e−x2

I /2σ
2
,

where σ 2
=E[X 2

R]=E[X 2
I ]=E[XX ∗]/2 and E[XRXI ]= 0 for the circularly symmetric

complex gaussian random variable.
A real (or complex) multivariate random variable, X = (X1, . . . , Xn), also called

a vector random variable, with zero mean has a probability density function,
p(x1, . . . , xn) and a covariance matrix, 6| , whose ij entry is the expectation
E[XiXj] (or E[XiX ∗j ]). A covariance matrix is always nonnegative-definite because4

a6| a†
= aE[XX†]a†

=E[(aX)2], which is always nonnegative because it is the expec-
tation of a squared term.

Random Processes
A random process or a stochastic process, X (t), on the variable t consists of a set of
functions that the random process can take and a probability distribution on this set of
functions. The values that X (t) can take may be continuous or discrete. The independ-
ent variable t can be continuous or discrete. Usually, a discrete random process refers
to a random process for which t is discrete.

1.8 The Electromagnetic Spectrum

Signals throughout the electromagnetic spectrum are everywhere and carry a great
deal of information, much of it hidden from our senses. Table 1.1 shows the remark-
able twenty orders of magnitude of the electromagnetic spectrum that are of interest.
The table shows the spectrum broken into bands annotated with individual names. The

4 The symbol † denotes the transpose of a real-valued matrix or the complex conjugate of the transpose
for a complex-valued matrix.
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Table 1.1 Common names of electromagnetic spectrum intervals

Radiation type Frequency range (hertz)

Radio waves 2× 104 to 1× 109

Microwaves 1× 109 to 3× 1011

Infrared 3× 1011 to 4× 1014

Near infrared 1× 1014 to 4× 1014

Visible 4× 1014 to 7.5× 1014

Ultraviolet 1× 1015 to 1× 1017

X-rays 1× 1017 to 1× 1020

Gamma rays 1× 1020 to 1× 1024

naming of these frequency bands is not standardized and the usage may vary some-
what. The boundary between the bands is not sharply defined. The various topics in
this book range throughout the electromagnetic spectrum shown in Table 1.1.

The electromagnetic spectrum is labeled using one of three measurement units.
These three measurement units are the frequency f , the wavelength λ, and the photon
energy E, only one of which is mentioned in Table 1.1. These three quantities are
related by the expressions

λ = c/f E = hf = hλ/c,

where c is a constant called the speed of light and h is a constant called the Planck
constant. Each of these three measurement units is most convenient to use in a dif-
ferent region of the spectrum according to how the electromagnetic signal presents in
that region. Only the frequency designation is given in Table 1.1.

Our senses lack the ability to observe most of the electromagnetic spectrum directly.
Our sense of vision allows us to observe only the very narrow range of frequencies
known as the visual band. Although our sense of touch is sensitive to frequencies in the
near infrared and near ultraviolet, this sensitivity is only a vague awareness of radiation
in these frequencies with no awareness of a corresponding image. The remainder of
the immense electromagnetic spectrum, though teeming with information of many
kinds, is outside of our immediate experience.

The electromagnetic spectrum is indeed full of signals. Both natural signals and
man-made signals are present. Many image formation systems are based on sensing
these electromagnetic signals throughout the electromagnetic spectrum. Even in the
visible spectrum, our natural vision is now augmented by many man-made devices,
such as eyeglasses, cameras, microscopes, and telescopes.

Table 1.1 partitions the electromagnetic spectrum according to general terms that
are in common usage. A more systematic partition of a part of the spectrum is given
in Table 1.2. The terms in this table are also in common use.

Other kinds of image formation systems are based on acoustic (seismic) signals.
The acoustic spectrum is also large, extending into the ultrasound frequencies.
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Table 1.2 Decades of the electromagnetic spectrum

Decade designation Frequency range

Very low frequency (VLF) 3× 100 to 3× 101 kHz

Low frequency (LF) 3× 101 to 3× 102 kHz

Medium frequency (MF) 3× 102 to 3× 103 kHz

High frequency (HF) 3× 100 to 3× 101 MHz

Very high frequency (VHF) 3× 101 to 3× 102 MHz

Ultra high frequency (UHF) 3× 102 to 3× 103 MHz

Super high frequency (SHF) 3× 100 to 3× 101 GHz

Extremely high frequency (EHF) 3× 101 to 3× 102 GHz

1.9 Imaging by Tomography

In many situations, such as in medical imaging, it is possible to observe projections
of the two-dimensional object ρ(x, y) (or the three-dimensional object ρ(x, y, z)) of a
certain kind, even though direct observations of that object are not possible. Using X-
rays, a nuclear beam, or magnetic resonance gradients, the object ρ(x, y), as perceived
by that energy source, can be integrated along lines. The results of these integrations
are called projections. An image of ρ(x, y) is computed from the set of its projections.
The process of imaging from projections is known as tomography.5 The central theo-
rem of tomography is the projection-slice theorem. The set of all projections of ρ(x, y)
is called the Radon transform of ρ(x, y). While ρ(x, y) is not directly observable, the
Radon transform of ρ(x, y) is observable as a collection of projections.

A familiar example is an elementary X-ray projection of internal body organs. As a
single ray passes along a line, say the y axis with x held constant and ignored for now,
the intensity is attenuated at each y by an amount described by an attenuation function
ρ( y). That is, the intensity, denoted I ′, leaving a small interval of width 1y, centered
at y1, is related to the intensity, denoted I , entering that interval by

I ′ = I[1− ρ( y1)1y].

This is approximated as

I ′ ≈ Ie−ρ( y1)1y

under the condition that the attenuation is small for a sufficiently small interval
1y. Over two consecutive intervals, each of width 1y, the intensity attenuation is
described approximately as

I ′′ = Ie−ρ( y1)1ye−ρ( y2)1y.

5 The term tomography has been broadened, by some, to include other forms of medical imaging
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Consequently, over a sequence of many such intervals, the output intensity Iout is
related to the input intensity Iin by

Iout = Iine−
∑

i ρ( yi)1y.

In the limit as 1y goes to zero,

loge
Iin

Iout
=

∫
∞

−∞

ρ( y)dy,

where the integration limits can be replaced by the support of the function ρ( y).
By introducing a ray in the y direction at each value of x, passing through the two-

dimensional function ρ(x, y), one can define the projection p(x) onto the x axis for
each value of x:

p(x) =
∫
∞

−∞

ρ(x, y)dy.

The function on the left is the projection of ρ(x, y) onto the x axis.
In the general case, the attenuation of an X-ray at angle θ integrates the function

ρ(x, y) along each ray in the direction indicated by angle θ . The projection at angle θ

pθ (t) =
∫
∞

−∞

ρ(t cos θ − r sin θ , t sin θ + r cos θ )dr,

at each t, consists of the integration of s(x, y) along each ray in the r direction as
a function of t. By varying the viewing angle θ , such projections can be observed
from many directions. One wants to process such a set of projections to form an esti-
mate of ρ(x, y), as may show the internal organs of the body. The signal-processing
topic of tomography is studied in Chapter 6. The central theorem of signal processing
that underlies the methods of tomography is the projection-slice theorem, which is
introduced in Chapter 3.

The origins of tomography can be traced back to 1917 when the Austrian mathema-
tician Radon showed that the spatial function ρ(x, y, z) can be reconstructed from the
complete set of its projections. Because the reconstruction of images from projections
arises in many diverse situations, it is not surprising that this mathematical principle,
first discovered by Radon, was independently rediscovered many times and in many
fields. It has been used in radio astronomy and in the field of electron microscopy.
In the context of medical applications, tomography has led to important advances in
the noninvasive imaging techniques available in recent years for clinical practice and
medical research. Tomography is used in many other applications, such as geophys-
ical applications, where it can be used for subsurface exploration, or in atmospheric
sensing, where it can be used, for example, to form images of pollutant densities in the
upper atmosphere.

In Chapter 6, the mathematical principles underlying tomography are studied,
especially the projection-slice theorem, which relates the one-dimensional Fourier
transform of the projection to the two-dimensional Fourier transform of the object. A
number of algorithms for the reconstruction of images are described. The central idea
of these algorithms is the method of back projection. Reconstruction of an arbitrary

https://doi.org/10.1017/9781009356190.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009356190.002


1.10 Radar and Sonar Systems 25

object from projections is exact only when the uncountably infinite set of projections
from all angles is known. However, mild prior conditions on the object, such as a spa-
tially bandlimited Fourier transform, can soften this statement. Many good algorithms
are known that compute an approximate reconstruction of an image from a finite set of
its projections. These images may be satisfactory for practical applications even when
the individual projections are weak or noisy.

In addition to projection tomography, many other important forms of tomography
go by names such as emission tomography, diffraction tomography, diffusion tomogra-
phy, and coherence tomography. These forms are also studied in Chapter 6. Emission
tomography requires that the scene itself emits some form of emission that provides
the received signal from which the image is computed. This usually means that the
scene must receive an excitation that provides the energy for the emission. There are
two methods that are in wide use to excite an object so that it will produce a useful sig-
nal. The important method of magnetic resonance imaging (MRI) uses a time-varying
and spatially varying magnetic field to provide energy to the scene. This time-varying
magnetic field causes isolated protons, or perhaps other selected nuclei, to resonate
and thus generate signal-dependent magnetic fields. The magnetic field is intercepted,
measured, and processed by the methods of tomography to form an image of the
density of isolated protons (hydrogen atoms). Another method of excitation, called
positron-emission tomography, uses a radioactive isotope that is selectively absorbed
by a tissue of interest, usually a diseased tissue. The radioactive isotope then decays,
thereby releasing radiation energy in the form of positrons. These positrons immedi-
ately combine with electrons to produce photons. The photons are captured by an array
of photosensors. From the positions and times at which these photons are detected, an
image is formed. Through this method, a specific tissue can be selectively imaged as
a function of x and y by its tendency to acquire a particular radioactive isotope.

Diffraction tomography and diffusion tomography deal with situations in which the
geometrical-optics approximation to propagation is not adequate. It may be necessary
to treat wave propagation in a more exact way by considering the effect of diffraction.
This is particularly important when observing details that are small compared to the
relevant wavelengths. Another difficult instance of tomography is based on the propa-
gation of a wave in a strongly scattering medium. This is the difficult topic of diffusion
tomography.

A related form of tomography is geophysical tomography in which seismic waves
are used to image geophysical features. Then the dispersion of the wave is not caused
by diffraction, but rather is caused by scattering anomalies in the propagation medium.

1.10 Radar and Sonar Systems

A radar obtains information about an object or a scene by illuminating the object or
the scene with electromagnetic waves, then processing the echo signal that is reflected
from that object or scene and intercepted by the radar receiving antenna. A sonar
obtains information about an object or a scene by illuminating the object or scene
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with acoustic waves, then processing the echo signal that is reflected from that object
and intercepted by the sonar hydrophones.

By using electromagnetic waves in the microwave bands, a radar is able to penetrate
optically opaque media such as clouds, dust, soil, or foliage. In this way, it is possible
to form radar images of objects hidden by such obstructions. Similarly, a sonar or
ultrasound system can form an image of an object that is optically masked by an
opaque medium.

Most instances of radar or sonar are monostatic. This means that the transmitter and
the receiver are colocated. A monostatic radar may use the same antenna for transmis-
sion and reception, as is the usual case. For a bistatic radar or sonar, the transmitter
and the receiver are at separate locations.

In some cases, the broad beamwidth of a radar antenna or a sonar hydrophone is
appropriate as a way of viewing a large region of space. For reasons such as these,
radar and sonar have long been popular as imaging systems for surveillance.

While there may be a great deal of difference between the propagation of electro-
magnetic waves and the propagation of acoustic or pressure waves, there is also a great
deal of similarity.6 This similarity carries over to radar and sonar systems. From our
point of view, each is a system that forms a complex baseband pulse, s(t), that is trans-
mitted as the amplitude and phase modulation of the passband pulse s̃(t), and receives
an echo pulse, ṽ(t), that is a composite of delayed and frequency-shifted copies of the
passband pulse s̃(t) and contaminated by noise. The transmitted pulse s̃(t) propagates
at a velocity c over a path of length R1 from the transmitter to the reflector, and then
over a path of length R2 from the reflector to the receiver. The received pulse ṽ(t) is a
superposition of echoes of the transmitted pulse from multiple reflectors. Because the
received signal is contaminated by noise and other impairments, it is difficult to rec-
ognize individual reflectors. We are interested in methods of processing the received
pulse to extract useful information from it. The same basic ideas apply equally to radar
pulses and to sonar pulses although the propagation medium is not uniform for sonar.
The terminology of the discussion will favor radar systems.

The received signal is distributed both in space across the aperture of an antenna
and in time. The distribution in space may be processed by the antenna system to
gather all of the received spatially distributed signal into a single, time-dependent sig-
nal. Simple linear processing of the signal across the aperture is usually summarized
by referring to the shape and width of an antenna “beam.” The time variations of
the received signal are processed so as to determine the time-varying distance to the
reflecting objects. The space distribution may be processed in other ways to deter-
mine the direction of arrival of the signal. The processing of the space distribution
of the signal across an aperture is studied in Chapter 5. The processing of the time
distribution of the signal is studied in Chapters 10, 11, and 12.

6 As a transverse-vector wave, an electromagnetic wave also has the property of polarization which is
sometimes useful to a radar system.
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Figure 1.5 A spotlight-mode airborne radar

The typical airborne radar transmits a passband microwave signal consisting of a
train of uniform pulses. A moving transmitter illuminates a scene with this waveform.
This is illustrated in Figure 1.5, which shows the position of the antenna for each
transmitted pulse. The figure shows a spotlight-mode radar in which the antenna or
antenna system moves the antenna beam to illuminate a chosen scene. The pulses may
be processed individually, in which case a noncoherent pulse train suffices. Such would
be a rather simple radar for the detection of fixed or moving objects as described in
Chapter 12.

A more advanced radar maintains coherence across the entire pulse train and pro-
cesses the pulse train echo coherently as a whole. Coherent processing of a received
passband signal is the form of processing that employs the carrier phase structure
of the waveforms. A coherent system is informally defined as any system for which
coherent processing is fundamental to its operation. The extraction of maximum infor-
mation from a received passband signal requires a waveform that supports coherent
processing over long time intervals, and this can lead to the use of sophisticated signal
processing.

When the transmitter or receiver is in motion with respect to the object reflecting
the signal, coherent processing becomes a potent technique because of the resulting
frequency shifts, called doppler, in the echo. One system of this kind that is used for
imaging is called a synthetic-aperture radar because of the heuristic notion of synthe-
sizing a long, fixed antenna by the sequence of positions of a short, moving antenna
as suggested by Figure 1.5. A synthetic-aperture imaging system depends on motion.
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The motion can be described as a time-varying position. This description is often sim-
plified as a straight line that is specified by an initial position and a constant velocity.
Whenever this description suffices, the received electromagnetic signal depends on the
scene parameters through the time delay and the doppler frequency shift of that signal.

The received echo signal corresponding to each pulse is converted to a precision
optical or digital replica, maintaining both the amplitude modulation and the phase
modulation. A history of such received pulses is accumulated, each pulse occurring
at a slightly different position along the trajectory of the radar. From this history, an
image of the illuminated scene is assembled by coherent processing.

The performance of a waveform for search or imaging is studied with the aid of
a two-dimensional function called the ambiguity function or the Woodward function.
The ambiguity function of any pulse s(t) or pulse train p(t) is unique for that pulse or
waveform. The ambiguity function of a pulse or waveform is the key to understanding
the performance of an imaging or detection radar that uses the pulse or waveform. The
ambiguity function is studied in detail in Chapter 10.

Problems
1.1 Show that the gaussian density function

p(x) =
1

√
2πσ

e−(x−x)2/2σ 2

has mean E[x] = x̄ and variance E[(x − x̄)2] = σ 2, and so these constants in the
gaussian density function have been aptly named.

1.2 Sketch and label your own diagram of the electromagnetic spectrum on a log
scale. Label your diagram with the three systems of units: frequency; wavelength;
and frequency. Comment on which unit might be the more appropriate to use in each
region of the spectrum.

1.3 Explain how the Bayes formula follows from the definitions of marginals and
conditionals.

1.4 Prove that a waveform of the form

s̃(x, y, z, t) = A(x, y) cos
(
2π f0(t − z/c)+ θ

)
does not satisfy the wave equation

∂ 2̃s

∂x2 +
∂ 2̃s

∂y2 +
∂ 2̃s

∂z2 =
1

c2

∂ 2̃s

∂t2

unless A(x, y) is a constant, A, and so is independent of x and y. Conclude that a
spatially modulated plane wave satisfying the wave equation does not exist.

1.5 A scalar-valued plane wave has the complex baseband representation

s(x, y, z) = Ae j2π f0(αx+βy+γ z)/c+θ ,
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where A is a complex constant and the direction cosines α, β, and γ are constants.
Show that, in general, the sum of two scalar-valued plane waves is not a plane wave.
When is the sum a plane wave?

1.6 Answer the following:

(a) Is convolution of finite-energy functions commutative? That is, is f (x) ∗ g(x)
equal to g(x) ∗ f (x)?

(b) Is convolution of finite-energy functions associative? That is, is
(

f (x) ∗ g(x)
)
∗

h(x) equal to f (x) ∗
(
g(x) ∗ h(x)

)
?

1.7 The general form of a bivariate gaussian density function on the vector random
variable x = (x, y) is

p(x) =
1

√
det(2π6| )

e−(x−x)†6|−1(x−x)/2,

where

6| =

 σ 2
x ρσxσy

ρσxσy σ 2
y


and |ρ| ≤ 1. Find the marginals p(x) and p( y) and find the conditionals p(x|y) and
p( y|x).

1.8 The general form of a multivariate gaussian density function on the vector
random variable x is

p(x) =
1

√
det(2π6| )

e−(x−x)†6|−1(x−x)/2,

where x is a random vector of length n.
Compute E[x] and E

[(
x−E[x]

)2], showing that these are equal to x and 6| , respec-
tively. Can we conclude that these two quantities of p(x) are well-named and
well-designated as the mean and the covariance matrix?
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