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1. Introduction. Let P(x) =a,x" +-- -+ ajx+ag be an integer polynomial and
define H(P) = H :=maxo<<,{|a;|} to be the height of the polynomial P(x). Define the
classes of polynomials P, and P,(Q) by

P, = {P(x) € Z[x] : deg(P(x)) = n},
Pu(Q) :={P(x) € Z[x] : deg(P(x)) =n, H(P) < 0}.

We are interested in the following question: Given some w € R how big is the set of x € R
for which [P(x)| < H(P)™" for infinitely many polynomials P(x) € P,. Denote this set by
L,(w), i.e.

L,(w):={xeR:|P(x)| <HP)™" forimPeP,},

where i.m stands for infinitely many. For n > 1, it follows from Dirichlet’s pigeonhole prin-
ciple that £, (n) = R. In 1932, Mahler [17] conjectured that the Lebesgue measure of the set
L,(w), n(L,(w)), was zero when w > n, and indeed this was shown to be true by Sprindzuk
[20] in 1964. Before Sprindzuk, there were some partial results. Mahler himself [17] proved
the conjecture for w > 4n. This was improved by W. M. Schmidt [19] in 1961 to w > 2n. A
further improvement was given by Volkmann [21] in 1962 who showed that the result was
true for w > ‘3—‘}1.

With regard to the Hausdorff dimension of the set, dimy, (£, (w)), the first result was
proved by Jarnik [12] in 1928 and then independently, using a different method to Jarnik,
by Besicovitch [9] in 1932. It is known as the Jarnik—Besicovitch Theorem:

THEOREM 1 (Jarnik—Besicovitch Theorem (1932)). Let w > 1. Then

2
dimy (L1 (w)) = W——l—l
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This was extended for n > 1 by A. Baker and W. M. Schmidt [1] in 1970 who showed that

1 1
nt - = dimyy(£,(0) < 2%.

w+
In the same paper, it was conjectured that for w > n

n+1
w41

dimy, (L, (W) =
It had been shown previously by Kasch and Volkmann [13] that

dim(£20) < ——.
These two results prove that the conjecture is true for n =2. In 1976, R. C. Baker
[2] showed that when w > 3, one has dimy, (L3(w)) < Wiﬂ and furthermore, when n > 4 if
w> (n* +n — 3)/3 one has dimy (L, (w)) < % This result together with that of A. Baker
and W. M. Schmidt proves the conjecture for n =3 and for n >4 if w> (n*> +n — 3)/3.
The conjecture was finally proved in 1983 by Bernik [6]. In his paper Bernik uses different
methods to those of Baker and Schmidt which are based on the following lemma from the

same paper.

LEMMA 1. Let 8,1, n € RT and let Qy(8,s) be a sufficiently large real number:
Furthermore, let P(x), T(x) € Z|[x] be polynomials of degree s > 1 without common roots
such that max(H(P), H(T)) = Q", where Q> Qy(8, s). Assume that the interval I C
(—s, s) C R with |I| = Q7. If there exists T > 0 such that for all x € [

max (|P()], [Tx)]) <07,
then
T+p+2max (t4pu—n,0) <2us+3.

Lemma 1 can be thought of as a quantitative description of the fact that two relatively prime
polynomials in Z[x] cannot both have very small absolute values (in terms of their degrees
and heights) in an interval unless that interval is extremely short.

In [6], and for many results since, Lemma 1 was a key tool in disproving the existence
of certain cases by obtaining contradictions. Generally speaking, Lemma 1 is useful when
dealing with problems that are concerned with small first derivatives since Lemma 1 also
shows that two polynomials P(x), T (x) € P,(Q) cannot be simultancously small at a point
as well as having simultaneously small derivatives at that point. See [7], [8] and [10] for
just some of the many examples of Lemma 1 being used.

In this paper, we improve on Lemma 1 and give an example of its use when considering
the number of polynomials with bounded discriminants. We also provide an extension to
the lemma and give reference to another application.

2. Main results. To begin, the necessary notation must first be introduced. It should
be acknowledged that almost all of the following notation and definitions are due to
Sprindzuk. Considering the roots of the polynomial P define «(P), ..., a, (P) to be
the real roots and S (P), ...,,3%2 (P) to be the non-real roots located in the upper-
half plane. The set of non-real roots located in the lower-half plane will be denoted
,3%2 £1(P), ..., B, (P). It is clear that each non-real root in the lower-half plane is just
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the complex conjugate of one of the non-real roots in the upper-half plane. With this
in mind, the non-real roots in the lower-half plane are labelled so that Ei(P) =B n +(P)
for i=1,..., % Clearly n; 4 ny =n. Furthermore, define the roots of P in Q, as
Y1(P), ..., ¥, (P) with n3 < n. The roots of a second polynomial 7" are similarly spilt into
the sets {o; (1)}, {B;(T)} and {y,(T)}, where 1 <i <my, 1 < j <my with m; 4+ my =n, and
1<k<m;<n.

For each real root o;(P), the set S' (a;(P)) will be defined by

S'(@i(P) = {xeR:lx - ()| = min |x— ).

In a similar fashion, analogues for C and Q) are defined in the obvious way as follows:

.....

where |.|, denotes the p-adic norm, C':={zeC:Im(z)>0} and C :={zeC:
Im(z) <0} . Clearly,ifz € C* andz € S*(8;(P)) forsomej € 1, ..., %, thenZ € §?(B,(P)).
In Lemma 2, z will be taken in a disk in C and differences of the form |z — g;| for some
z € C and some non-real root B; will be estimated. If it can be assumed that z € S? (B;(P))
(i.e. z is such that im(z) > 0) and that j € {1, ..., %2} then, as will be seen, estimating
|z — B;| will be simplified greatly. This is the reason for considering the sets Sz(ﬁj (P)) and
S? (Ej (P)) separately. Furthermore, by symmetry, estimating |z — ;| will give an estimate
for [z — /. Differences of the form |z — B;| and |z — B;| will also have to be considered but
unfortunately nothing is known about these and so Lemma 6, which is stated in Section 3,
will be used to estimate these.
The following notation will also be used:

S(ai(P), Bi(P), vi(P)) = S" (@:(P)) x S*(Bi(P)) x S*(yi(P)).

The sets S'(a:(T)), S*(Bi(T)), S*(B,(T)) and S* (yi(T)) are defined similarly.

Suppose (x, y, z) € S(x1 (P), B1(P), yi(P)) NS(a1(T), Bi(T), y1(T)). The other roots
are then ordered according to their distance from «;(J), B;(J) and y;(J), where
J(x) = P(x) or T'(x), as follows:

le1 (/) — ()| =i () —ez(N] < -~ <1 (J) — ap (J)],
1B1) = (D] = |B1()) = Bs(N)] = -+ = 1)) = B (J)I,

) = = Int) =vsDlp =< - = W) = ¥u, (D)

Note that the set of differences |8 (P) — B;(P)| is only taken up as far as i = 5 since

|B1(P) — Bi(P)| = |B,(P) — B,(P)|, and so only i < need to be considered since any
resulting calculations, as already discussed, will be the same for ”72 <i<mn. This is a
common technique, see, for example, [8].
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Define the real numbers p;(J), A;(J), 0;(J) such that
len()) —e;())]| = 0", i=2,...,ny,
1BL() — BN = QMY i=2,..., —,

) —yiDlp= 0", i=2,...  n.

Furthermore, define

GiN= Pt 4+ o (), i=1, m =1,
n

A= k(D) e hn (), =1 21,

siN=opJ)+---+0,0), i=1,--- ,n3—1.

Let / C R be an interval, C C C be a disk and K C Q, be a cylinder, and define the
parallelepiped Q=7 x C x K CR x C x Q,. Fix §; > 0. Any complex number z lying
in C with |Im(z)| < §; will be excluded. As long as §; is an arbitrary small number, this
can be done without loss of generality. Later in the paper will appear inequalities of the
form |z — B| < Q7. From this, with the condition |Im(z)| > §;, one obtains |Im(8)| > %‘
i.e. B € R. In particular, this implies that |3; — Ejl > 81, and for any real root a;, |ot; — B =
i — B, > 6.

Let p(4) be the Haar measure of a measurable set 4 C Q,. The first of the main
results of this paper is the following extension of Lemma 1.

LEMMA 2. Let 8,1, € RT for r=1,2,3 and let Qy(8, n) be a sufficiently large real
number. Furthermore, let P, T € P,(Q) be polynomials without common roots such that
max(H(P), H(T)) =Q, where Q> Qy(8,n). Take Q=1 x Cx KCR x C x Q, with
n) =0, diam(C) =0~ ™, u,(K) = Q7. If there exist 1|, T2, 13 > 0 such that for all
(x,z, 0) € QNS (a1 (P), f1(P), vi(P) NS (i (D), pi(T), i(T))

max (|P()], [T(x)]) < Q7™
max (|P@2)]. IT()]) <0 ®.
max (|P(@)l,, IT(@)],) <0 ®,
and for J(x) = P(x) or T(x)
T +1>q1(J) + (),
T+ 1>rW)+10),
73 2 51(J) + 02(J), (D
then
2

n—1 n3—1

T+2n+5+342( Y W) +2 ) WD+ Y sl) | <2n 48, 2)
i=1 j=1 k=1
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and furthermore,
ni—1 "7271
42 +13+34+2 Zmax(tl +1—jn1,0)+2 Z max (1, + 1 —jn, 0)
Jj=1 J=1

n3—1

+Zmax(r3 —jn3,0) <2n+34. 3)
j=1

We will in fact show that (3) follows from (2). Although (2) is more powerful than (3),
it is more difficult to use; see remark 1 in Section 5.1.

The second result we present is the first generalisation of Bernik’s original lemma that
removes the restriction on the size of the polynomials and allows for some of the values, 7,
i=1,2, 3, to be negative. In particular, this allows |P(x)| to be very large. More notation
is needed. Define the set I15 by

[;=1 x I, X13C|R3,
with
H3ﬂ{(x1,x2,X3)eR3:|x,~—xj| < €p, 1 §i<j§3}=@.

So I3 is a three-dimensional box which does not intersect the thickened (by 2¢() planes

Xi = Xj.
Let P(x), T'(x) € Z[x] be of degrees n; and ny, respectively, with 3 <ny, ny <n.
Furthermore, let a, ay, .. ., o, be the roots of P(x) and let By, B, ..., By, be the roots

of T'(x). Define the intervals
(P :=LNS @), i=1.....m, r=1273,
VI(T):=1N8"B), j=1,....m, r=1,2,3. 4)

Although it is possible that for some i and j, v/ (P) =0, er (T) =0, the following lemma
guarantees that the sets are not empty for all i and ;.

LEMMA 3. There exist at least one pair i and j, such that for eachr =1, 2, 3,

, L] , 1L
Wi (P)| = — and |vi ()| = —.
n n
Proof. Assume that foralli=1, ..., ny,
, 2|
i (P)] < —,
n

and note that since v/ (P) =1, N S'(ay),

e =1.
i=1

and so
ny ni n
R I ny|l
Uﬁ®=m<uﬂi< u=””dm
. n . n n
i=1 i=1
which is a contradiction. The proof is the same for the set vj’ (7). O
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We will denote one such pair of roots for which v; (P) # @, v/ (T) # ¥ by o and B for
each =1, 2, 3. Using this new notation, the second of the main results is now presented.

LEMMA 4. Let 8, u, 0, € RT for r=1,2, 3, and let Hy(8, n) be a sufficiently large
real number. Furthermore, let P(x), T(x) € Z[x] be polynomials without common roots
of degree n| and ny, respectively, with 3 <ny, ny <n such that max(H(P), H(T)) = H",
where H > Hy(8, n). Assume that the intervals I, CR with |I,|=H™" for r=1,2,3. If
there exists Ty >0 and 1y, 13 € R such that for all (x1, x;, x3) € T3 ﬂSP(a}, af, af) N

Sr(Bl, B, BY) with

of o and BI£BL, for 1<r<r <3 (5)
the inequality

max (|P(x,)|, IT(x)) <H ™™, 1<r<3,

holds, then

3
D (vt n+2max (t. 4+ p—n,,0) < (m +m)u+3.

r=1

It will become evident from the proof of Lemma 4 that there is nothing special about
choosing to state the lemma for three values. In fact, it will be clear that the proof can be
adapted for any & values with 2 < k < n provided that (5) holds.

If 71, 72, 73 > 0, one does not need (5) since by definition of IT3 for x € S(a]) and
ye S(a;’), 1 <r<7# <3, one has that |x — y| > €. Using this and Lemma 5, which is
stated in Section 3, one can easily show that |o] — o/} | > <. Similarly, |8] — B} | > £ for
1 <r <7 <3.Otherwise, if even one of the 7; < 0, then without (5) it would not be possible
to ensure that there exist three distinct roots which are essential for the proof of Lemma 4
as will be seen.

3. Preliminary results. In this section, several very useful lemmas are presented.
The proof for the real inequalities below can be found in [5] and for the complex and
p-adic inequalities in [16].

LEMMA 5. Let P € P,(Q) and let u represent x or z and 6 represent o or B. Then for
ueS'(6) orueS*6) andw e S*(y1), the inequalities

|u—91|5n|f,((f)'| for P'(u) #0,
|w—y1|p5n|'£((va))'|‘1’] Jor P'(w) #£0,
|u—91|52"*‘% Jor P'(61) #0,
|w—y1|,,52“% Jor P'(y1) #0
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hold, together with

J i
ju— 6] < min (2”‘f|P(u)||P’(91>|—11"[|91 —ek|> for P'(6) #0,
2<j<n

k=2

J J
W=yl < min (2”‘j|f’(W)|IP’()/l)I‘l [T - J/klp) for P'(y1) #0.
T k=2

The proof for the following lemma can be found in [11].

LEMMA 6. Let P(x) be a polynomial of degree n, with roots oy, oz, . . ., a, and leading
coefficient a,. Then for any k-tuple of distinct roots «;,, ..., o, 1 <ij <)y <...<ix<n,
k<n,

H(P)
loj oy -0 | < c(m) ——,
||

where c(n) is a positive constant depending only on n.

4. Proof of main results. Under the assumptions of Lemma 2, it was shown in [6]
that ¢;(P) > 71 + 1 — jn;. In [8], it was shown that r;(P) > 7, + 1 — jn, and s5;(P) > 73 —
jn3. Thus under the assumptions of Lemma 2, the following system of inequalities can be
taken to hold,

q(P) =t +1—jm,

ri(P) > 1+ 1—jn,

5;(P) =13 — jn3. (6)
It is clear that using (6), (3) follows immediately from (2). Thus proving Lemma 2 is now
equivalent to proving (2) holds.

Proof of Lemma 2. All the following calculations are analogous to those carried
out in [6] and [8]. To begin define K(a;, ) = |ei(P) — B;(P)||et;(P) — Bi(T)||ei(T) —
Bi(P)|a;(T) — B;(T)| and note that since, by assumption, P and 7 have no common
roots:

L=< [RP, T)IR(P, T)|p

<la,l"lb," ] lea®—exDl ] 18 — (D)

I<i<j<m I<i<j<m

< ] m®-ynLx [ K@ 8.
1<i<j<n3 1<i<m
1<j<n,

Here the basic property of the p-adic norm that for any a € Z one always has 1 < |a||al, is
being used.

Suppose that |a,| = 0%, for 0 < ¢ <1, and |b,| = 0%, for 0 < ¢, < 1. Furthermore,
recall that B, +2 (P):= Bi (P) and note
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[T B@-gDI= ] 1B@-DI J] B.EP)—BD

l<i<j<m I<i<j<? 1<i<j<?2
<[] B®=-8m] [ 1BE =D
l<i<,1<j<% I<i<,1<j<%

2

=| I B®-sD1 [] 1BE-BMDI] .

i<i<™ <™ 1<j<™
l<isj=3 1=i<2 1< /<4

since it is clear that |B;(P) — B;(T)|=|B;(P) — B;(T)| and |B:(P) — B,(D)| = |B;(P) —
B;(T)|. Nothing is known about the distances |8;(P) — Ej(T )| and in fact these could be
very large. Similarly, nothing is known about the distances |o; — B;| which again could be
very large. Using Lemma 6, however, the differences |S;(P) — Ej(T )| and |or; — B;| can be
bounded. This can be done since for each i, j, the triangle inequality gives that |B;(P) —
B;(D)| < 2max{|B:(P)|, |B;(T)]}, and so for some 0 <fi, ... ,f%z, 8l,.... 812 < 7

[T 1B -B@|=2%B@N . ipz @2 B .. [fz|

I<i<j<2
2 (HENE (HONE 3
% (P) (7) <2 Q-0
|| [Dn] B

< ey (m)QEI-a+E(—0)

for some constant ¢ (n) > 0.

The same argument can be made for the differences |o; — f;|, so that [ ] |o; — ;| <
c,(n)Q:1=8+30-8)  for some constant c,(n) > 0. Thus, for Q sufficiently large, 0° >
c1(n)cy(n) and R(P, T) can be rewritten as

L <[RP, DIIRP, T)lp

< (@n)"(by)" @ T TT Py =M [ 18P = B

1<i<j<m I<i<j<2
<[] @ -y,
I<i<j<n3
< ot 1_[ |t (P) — o;(T)| l—[ |B:(P) — Bi(T)| l_[ 1Vi(P) = (D).
I<i<j<m I<i<j<"2 1<i<j<n;

()

Now the proof revolves around bounding each of the products of (7). It is assumed without
loss of generality that

q1(T) < q1(P),
ri(T) <ri(P),
s1(T) < s1(P). 3

This assumption can be made since the real, complex and p-adic roots can now be
considered separately.
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First consider the differences of the real roots and recall the identity, for P € P,(Q),
[P'(e)l= [I lanlla; —;l. Then forx € S' (a1 (P)) by Lemma 5,

J=1...n,

|P(x)]

< Q_Tl—l‘i‘ql(P).
[P (1)

b —a(P)| <2"!

Similarly for y € S'(«; (T)),
y—a(D] <@ HHad,
So for x € S (a1 (P)) and y € S' (a1 (7)), using (6) and (8),

ler (P) — a1 ()| < |or(P) — x|+ |x —y[ + |y — a1 (D)
< Q—f1—1+q1(P)+Q—m+Q—t1—l+q1(T) < Q—T1—1+671(P)‘

This gives

[] la®—es(Di< T] (|a1<P>—al(T>|+|a1<T>—a,-<T>|)

2<j=m 2<j=m

<« l_[ (Q—Tl—l"'ql(P)_i_Q—ﬂj(T))’

2<j=m

Recall that (1) gives 71 + 1 — g1 (P) > p2(P). Using this it is seen that

1_[ lay (P) — o (T)| < 1_[ (Q—pz(P)+Q—p/(T)) < l_[ QmaX(—ﬁz(P)»_pj(T)). )

2<j<m 2<j<m 2<j<m

Similarly

1_[ la:(P) — ay (T)] < 1_[ (Q_)Oi(P) + Q—pz(P)> < 1_[ Q—p[(P) — Q_ql(P)‘ (10)
2<i<m 2<i<m 2<i<m

Combining (9) and (10) gives
[T i@ =D [] lewtP) —er(DI < [] @mx-~®-atgma®,

2<j<m 2<i=<m 2<j=m
If there exists ¢ € Z with 2 < ¢ < ny, such that
-0 P)<—pi(T) YV jel2,¢] and — p2(P)>—pi(T) V je (¢, n],
then

1_[ QmaX(—pz(P),—p,-(T)) _ Q—pz(T)—~~—p¢(T)—(n1—¢)pz(P)

2<j=m

< Q—ﬂz(T)—--~—p¢(T)—p¢+1(P)—---—pnl ®) < Q—Ln(P)‘

If, on the other hand, no such ¢ exists, i.e. —p,(P) > —p;(T) for all j € [2, n{], then

1_[ Qmax(—pz(P),—pf(T)) — Q—(m—l)pz(P) < Q—pz(1’)—03(1”)—~~—pnl Py _ Q_‘II(P)'

2<j=m
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In either case

[T la® =D [ 1ei(P) —er ()] < 0721, (11)

2<j<m 2<i<nm
Now consider

l_[ laz(P) — o (1) < 1—[ (laa(P) — a1 (P)] + |et1 (P) — et (D] + e (T) — (7))

3<j<nm 3<j=m
< l_[ Qmax(fpz(P),*pj(T)).
3=j=m
Similarly

H lai(P) — (D) K ]_[ Omax(=piP).p2(D)

3<i<m 3<i<nm

Arguing in an identical fashion to (11), it is clear that

[T lei® —exl T loa(P) - o(1) < 0727,

3<i<m 3<j=m

More generally, using the same approach

[ 1P s T o1 (P) = (D] < 072515,

k<i<m k<j<m
The final case that needs considering is when i = > 2. Note

|oti(P) — ai(T)| < |eti(P) — a1 (P)] + |1 (P) — e (T)| + |ei (T) — eei(T))]

< QPP 4 0P | 9=  gmaxt=p(P)=pD). (12)
So finally
1_[ la;(P) —a;(T)| = 1_[ lot; (P) — coj (D)ot (P) — a1 (T)] - - - ey, (P) — oty (T)]
1<i<j<m I<i<j=m
e
np—1
2% )
Lo (P) —ai ()] - oy, (P) —a, (DQ =
m np—1
<o ] Qmax(—p,-(P),—mT))Q‘z z o
=2
-1
< g HaP g-a® Q‘2 P
—(n+1+2"lilql-<P>>
—o \" A (13)

Identical calculations are carried out when considering the differences between the
complex roots. Using Lemma 5 along with equations (6) and (8) gives

1B1(P) — B (1) K Q—r2—1+r1(P).
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Using this and (1), it can be shown that

[T B@E -1 [ 1Ba®) =B < 07,

2<ksi<F 2<k=j<F
Furthermore, by the same method used to obtain (12), it can be shown that

|Bi(P) — Bi(T)| < Qmax(=H(P)=4(T)),

So finally
- 142 71 (P)+12(P)+--+rn P
l_[ |:3i(P)—,3,'(T)|<<Q (tz+ + (1( )42 (P)+++ 72*1( )))
lsi<j<%
Thus
-2 142 71 (P)+--- rn_P))
l_[ 1Bi(P) — B(DI* <0 (IH + (‘ st @) ) (14
I<i<j<2

Finally, the p-adic case is considered. Again almost identical calculations are carried
out. Using Lemma 5 along with equations (6) and (8) gives

y1(P) = yi(D)], €« Q7791 ®
Using this and (1), it can be shown that

[T @ -yl [ a®—nd), <0,

2<k<i<ns 2<k<j<n
Furthermore, it can be shown that
Y(P) = 7Tl < QU0
So finally

— '[3+2<S1(P)+SZ(P)+"'+S;1 (P))>
[T me-ynD,<0 ( e

1<i<j<n3

Using (13), (14) and (15) in (7) gives

(15)

L<[RP, THIR(P, T)lp

- (Tl +14+2(q1 (P)++++qn -1 (P))+2 (Tz+1+2 (Fl (P)+“-+r"72 o (P)> ) +134+2 (Sl (P)++4spy -1 (P)))

< Q2n+z§Q
so that
n—1 "7271 ny—1
T4+2n+n4+3+2( D aP+2 ) P+ ) sP) | <20+,
i=l j=1 k=1
as required. O

The proof of Lemma 4 below requires only the real calculations from above.
Furthermore, in Lemma 4, no assumptions such as (1) are made. In particular, as was
shown in obtaining equations (34) and (35) in [6], when only dealing with real intervals, 7,.,
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inequalities of the form of (1) can be shown to always hold under the assumptions of the
lemma. See also [18] for more details.

With regard to the complex inequality of (1), it is almost certain that, under the
assumptions of Lemma 2, this holds always also since the argument should follow the real
argument made in [6]. With regard to the p-adic inequality of (1), it is not clear whether
this will always hold, under the assumptions of Lemma 2, but it is not difficult to show
that there are infinitely many cases for which it does. As an example of a polynomial
for which Lemma 2 can be applied to consider P(z) =2z* + 2> — 22> + 2z — | with [ =
[1.3]. C={zeC:lz— ¥ <} and K S {z€ Qi9: [P(@)]19 < 15} U {4}. One can eas-
ily check that in this case p, = — log,(+/5), Ay = — log, (4), 0, =0, 11 =—log, (k)
7, = — log, (25) and 73 = 1. Thus (1) can be seen to hold.

Proof of Lemma 4. Let ay, . .., a,, be the roots of the polynomial P and B, ..., B,,
be the roots of the polynomial 7', where n; and n; are the degrees of the polynomials P
and 7, with ny, n, <n. Now defining v/ (P) and vj’ (T) as in (4) and using Lemma 3, it will
again be taken that one such pair of roots for which v} (P) # ¥, v/(T) # @ is denoted by o}
and B for each r =1, 2, 3. In particular, to ensure v} (P), v/ (T) # ¢, from this point only
the intervals

VI(P)=1NS@]), r=1,2,3, (16)
VI(T):=1L,NSB), r=1,2.3 (17)

will be considered.

Throughout the proof, it will be necessary to consider differences of the form |x, —
a!| for some x, € v (P). From this point on, x, € v"(P) will be chosen so that |x, — a/| >
%|v’(P)|. Similarly, when dealing with the roots of 7'(x) choose x, € v (T) such that |x, —
Bl > 31V (D).

Choose € > 0 so that for 1 <r <7 <3, the following inequality holds:

|87 = B7|) > o

It is clear that such an ¢ exists by (5). The roots of the polynomials P and 7T are then
ordered in one of three ways depending on their distances from o and B} as follows.
Define a,, b, € Z such that forr=1, 2, 3,

min (|of — of

of —e3] << af —ap | < T <lof e | <o <o — e .

Bi—Bil < <|B =By = T < |B = Bral =< B =Bl
Define the real numbers o, A; € R such that
|a{—af|=H"’iy, i=2,...,n,
B —B/|=H", j=2.....m.
Furthermore, define
F=p/+- 4oL, i=2,....a,

=p;t-+p,, i=a+1,...,n,

mi=A 4 +A . j=2.....b,
N;:A;+...+A;2, j=b.+1,... n.
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For the polynomial P(x) = a,,x" + - - - + a1x + ao suppose that |a,, | =H",0 <y, <
W, and for the polynomial 7'(x) =b,,x"> 4 - - -+ bix + by suppose that |b,,| =H", 0 <
y2 < . Then following the method used by Bernik in [6] in the natural way, one obtains
(18) and (19) below which are similar to equations (25) and (26) of [6].
For x, € V"' (P),

Tu=l
[ —af| <« min H™ "7, (18)
l<j=a
and for x, € v'(T),
. k=g
|x. — B{| < min H™ 7. (19)
1<j<b,

Let the minimum on the right-hand side of (18) be achieved at j =% and the minimum on
the right-hand side of (19) be achieved at j = j° .
From the definition of /!, one obtains for any i, 1 <i <a,

el ety
H 7 <H .
This gives the inequality
(vt —1) 20 (5 = 1), (20)

By the way, the interval v"(P) was defined for »=1, 2,3, Lemma 3 gives that
[V"(P)| > c(n)H~". Furthermore, recall that x,. € v{(P) was chosen so that |x, —af| >
[v"(P)]. Thus by (18),

_ rr+#*1}‘
H 7 =H"
Rearranging gives
T+ u—10
n>——-=->= j=1,...,a,. (1)
J
For the polynomial 7', the following analogous inequality to (21) can be obtained:
T+ u—m
n>———> j=1,...,b. (22)
J

Using (20) and assuming without loss of generality that

THpu—my  r4u—1
Jr > Jr

> . : (23)

J Je
then again following an adapted method to that in obtaining equations (40) and (44) in [6]
one finds that

rrﬂrl;.}g
o — i < (24)
and
1_[ l_[ |al{’ _ ﬂjr| <« H—jf(ry-Ht)_ (25)

Isizar 1< j<f
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Since the polynomials P and 7 have no common roots |R(P, T))| > 1 and so using (25),
one obtains

1 <|R(P, T)|
1 1 2 2 3 3
<mreen T of =i [T led =87 [T | = 87> [Tl = 7] @6)
1<i<ay 1<i<a, 1<i<a; R
1<j<j} 1<j<jy l<j<j

where the set R is defined by

/"

€0
2
foreach ¥ = 1,2, 3and /€ {1, 2, 3}}.

R::{(i,j)e{l,...,nl}x{l,...,nz}:|a;’—a;”|>%and|ﬁ(_ﬁ/r

It is possible that R = ¥ in which case recall that by definition y,, y» < u and so
yiny + yany < u(ny +ny).

If, however, R # @, then using Lemma 6 the product
1_[ |alr -8B jr|
R

is bounded by H™>"—+m =y Tn either case, inequality (26) can be rewritten as

1« H("’l+n2)M_J'/15(ﬁ“‘l‘«)f/‘é‘(fz"'.uv)_jg(TS'H‘«)’

Rearranging gives that
H@ AW /5 @+ ) 45 @+ 1) < (n +m)p
In the case of jf , jz’g , jf > 3, one obtains the inequality

(m+n)u =3t +p)+3(m2+p) +3(3+ 1)

3
> Z(r, + u +2max(t, + 1 — 1, 0)),

r=1

which clearly proves Lemma 4. Thus, only the cases in which at least one of j’f , jg or j‘;
is less than 3 needs to be considered. To do this two arguments which depend on whether
jf =2 orjf = 1 will be used.
First consider when j’f =2 and jz’g , j3’3 >3 If
1
A i

v

: , 27)
i
then carrying out calculations in a similar manner to those in achieving (9) and (10) in the
proof of Lemma 2 or those carried out in [6] and [8] one finds

[T le! = B3| <=4, (28)

1<i<a
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Using this and (25), one obtains

1 <|R(P, T)|

& HOmn=2@+0 =@+ =5 et = 5 (w40,

which gives the lemma for jg , jf > 3. If (27) does not hold, then

rl+,t,L—m;,Sx
1

)\; <
i
Using this and (24), one obtains that for any j > 3,

fl+}L—{/lCl(

o = B} | < et = B[ +[B1 = | <HH +HY <H.
Thus

[T let =8| <t (29)
3<j<bn
This together with (25) leads to
[T IT le-81< 2@ =my =) @)= (T + o m)u

1<i<m 1<j<m

From (22), m}, > 1, 4+ 1 — 2n; therefore, the exponent above can be replaced by

—(r W) =2+ =) =5 (T ) — (3 )+ (m F mo)pe,
which also leads to the proof of Lemma 4.

Now consider the case when jf =1and jf , jf > 3. Assume

T+ pu—m T4+ pu—m
Ms— T oand al s
J1 Ji
Then as in the case of inequality (28), one obtains
1_[ 1_[ iail _ ﬂj1| << H*z(fl“rﬂ)_
I<i<a 2< <3
This together with (25) implies the result. Next assume
r1+,u—m;ﬂ | r1+u—m;ﬁ
3 - and Ay < 3 !

)\é> - -
J1 J1

The first inequality leads to the inequality

1_[ |0‘i1 _ ,321| < @+

1<i<a

and the second to the inequality (29). Together these inequalities imply the result.
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Finally assume

1 1

T+ —my T —my
)»é < —jl and )xé < 7 2l
J1 J1
Then one obtains
[T lel 8| <™. (30)
2<j<b
Suppose furthermore
Py <,

then when 2 <i <a,, one gets

o} — B3| <H ",
leading to
[T le) = B3| <H 31)
2<i<a
If on the other hand
Py = Ay,

then for 2 < j < by, one obtains
ot — 8| < H
so that

[T led -8} | <E™. (32)

2<j<b
Using (25), (30), (31) and (32) leads to
1 <|R(P, )| <K = =mi—min(m}) =73 (rat ) =78 (v m) (33)
From the definition of v (P) and (23), one can show that
min (l}, m}) >t +u—n.
Thus inequality (33) can be rewritten as

1_[ 1_[ |air _ ﬂ]’| < H—Tl—M—zmax(ﬂ"’/‘«"llaO)—]'g(TZ"".“«)_./?(T}+#)+.U«(nl+”2)7

I<i=n 1<j=m

which clearly proves Lemma 4 for jf , jf > 3. The arguments above will hold for jf <2 for
any 7 =1, 2, 3 and so all remaining cases are combinations of these arguments. O

It should now be evident that the proof of Lemma 4 can easily be adapted for any &
variables, with 2 < k < n , provided

of ot and B #£B], for 1<r<r <k
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When dealing with & variables, all arguments will be identical to those made in the proof
for & = 3 with the two exceptions. Firstly, the indices will now be of the form jf + -4 j,’f .
Secondly, increasing the number of variables will of course increase the number of cases
to be considered. However, one can again begin by considering the cases in which j’ls <3
while jr’g >3 forr=2,3,...,k, and then simply work down through all other cases (such
as j’f , jzﬁ < 3 while j‘f >3 forr=3, ..., k)in an identical fashion to above. The arguments
will not change; however, the number of different products required to be bounded will
certainly become larger depending on how many of the j’f <3.

5. Examples. For an application of Lemma 4, see [7]. In this section, an example of
how Lemma 2 can be used will be discussed. It will also be shown why (2) is stronger than
(3); see remark 1 in Section 5.1

Let D(P) be the discriminant of the polynomial P(x) € P,(Q) with roots oy, . .., a,,
then it is well know that

D) =ay? ] (-

1<i<j<n

It can also be shown that D(P) is expressible as the determinant of a 2n — 1) x 2n — 1)
Sylvester matrix; see [4] for details. This, in particular, implies that D(P) € Z.
Define P, (Q) for 0 <v <n — 1 as follows:

PUQ) = {P(x) € P,(Q): 1 < |ID(P)| < 0272},

Letting #U represent the cardinality of some set U, we are interested in finding bounds
for #P)(0). In 2010, Koleda [14] obtained both upper and lower bounds for the cardinality
of PY(Q) in the case n =3 and 0 < v < 3/5. In particular, it was shown that for 0 <v < 3/5
and ¢y, a positive constant that depends only on # and is independent of Q,

#P3(0.v) = 10" (1 + o(1)).
In 2013, Koleda and Korlukova [15] showed that for 0 <v < 1,
#P,(0, v) = 20> (1 +0(1)), A =20(1 +1n2).

It was shown by Beresnevich, Bernik and Gotze [4] in 2016 that for 0 <v <n — 1,

n+2

#PZ(Q) >> Q’H_l_TV_

Using (2) of Lemma 2, it will now be shown that the upper bound is in fact of the same
order of the lower bound in a very particular case. The result is believed to hold true in
general and the proof of this will be the subject of future work.

Consider Lemma 2 in the one-dimensional setting. Just as was done in [4], we will
consider only the unit interval [— %, %] as all results may be extended to any arbitrary
interval in R; see [3] for appropriate techniques. We begin by assuming that the upper
bound is not of the same order as the lower bound, in particular, assume that

n+2

#PY(Q) > Qe
Then there must exist an interval I of size 0P containing a root of P(x) such that

n+2

#PV(Q, [) > Qn-H—Tv—pz(P)-f-e’
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where P (Q, I) is the set of polynomials P € P, (Q) which have a root in the interval /. If
not, we would have that #P?(Q, I) <« @'~ v=2(P+< in all 07P subintervals I, but this
contradicts the assumption that #P)(Q) > Q”“‘%V“. Note that choosing the interval to
be of size Q=P is for convenience only.

Letm=n+1-— %v — p2(P). Using (2) of Lemma 2, a contradiction to the assump-
tion that #P) (0, I) > Q"¢ will now be obtained in the case that m > 0.

Using Taylor series, it is not difficult to show that on the interval /
IP(x)| < Q]_ql(P)—PZ(P).
In [4], it was shown that if
P2(P) +2p3(P) + -+ -+ (n = 1) p,(P) > v,

then P(x) € P)(Q) (see how equation 40 was obtained in [4] for details). Moving forward,
we will assume that p,(P) +2p03(P) + -+ -+ (n—1)p,(P) > v.
Consider first the case in which m € N and define the set

M(Qlfm(P)*pz(P)’ ap, - .., an—l+1) = {P e P, (0) :|P(x)| < QI*qI(P)*PZ(P)
and a;(P)=aj,j=1, ..., n},

so that M(Q'=1P=r®P q @, ;.1) is the set of polynomials in P,(Q) with the
n — [+ 1 coefficients a;, . . . , a, equal that satisfy |P(x)| < Q"= =~®) Now fix Py(x) €
M(Ql—ql(P)_PZ(P), an, .., ay_1+1) and for Pj(x) IS M(Ql_ql(P)—Pz(P), Aps - -+ Ay—i+1) CON-

struct the polynomials R;(x) = P;(x) — Py(x) with

2
IR;(x)| < Q' P =, and deg(R;(x)) =n—m = 0P — 1.

If there exist at least two R;(x) without common roots, then by (2) with
€
n+li=t+1 =Q1(P)+pz(P)+§,
one has

T+ 1+2(qi(P)+ - -+ gu1(P)) < 2deg(R)) + 6.

Suppose p2(P) =vand § < 5. Then by the definition of m

2v
l<m=n+1—-2v— — <n+1-2v,
n

i.e. v <7 and by (2) of Lemma 2

714+ 142(qi(P)+ -+ gu-1(P))

= % +3q1(P) + p2(P) + 2(q2(P) + - - - + gu1 (P))
- % +4p2(P) + 5p3(P) + Tps(P) + - - - 4+ (2n — 1) p,y(P)

4
>2p2(P) +2v+ —v—2+4 8§ =2deg(R)) + 6,
n

since v < po(P) + 2p3(P) + - - - 4+ (n — 1) p,(P). Thus we have a contradiction to Lemma 2.
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If m ¢ N define m €N such that m+ 1> m > m. Then we construct polynomials
Rj(x) = Pj(x) — Py(x) with

2
IR;(x)| < Q' 1P =~ and deg(R(x)) =n—im<n—m= nte, + p(P) —1

and the proof follows as it did before. Thus it has been shown that

#PY(0) < Q"1
2

provided there exist at least two R;(x) without common roots and m=n+1 — %v —
p2(P) > 0.

5.1. Remarks.

REMARK 1. By using (2) of Lemma 2 in the above, a contradiction was obtained. It can
easily be seen that, although easier to use, (3) is weaker than (2) since it does not always
guarantee a contradiction. To see this recall that by (3)

- 4
T4+ 142 Z(r + 1 —jn) <2(deg(R;(x)) + 8 =202 (P) +2v+ v 2+36.

J=1
Then taking t =8, v=9 = p,(P) and n = 12, a contradiction is not obtained for (3).

REMARK 2. It is clear that there is a lot left to do in order to completely prove
#P(Q) < O

In particular, the case in which there does not exist two polynomials R;(x) without common

roots must be considered. Completing this proof will be the subject of future work. It would

appear that we can follow a similar method of proof to that used in [7] when dealing with

reducible polynomials, with some slight modifications. Also the case when m=n+1 —

#v — p2(P) < 0 must be dealt with.

ACKNOWLEDGEMENTS. Both authors would like to thank Dr. Detta Dickinson for
pointing out some mistakes and for many helpful comments. The second author would
like to give particular thanks to Dr. Dickinson for her constant support and dedication to
helping him improve both mathematically and grammatically. Without her, none of this
would be possible.

We would also like to thank the referee for her/his suggestions and corrections which
have assisted in making the paper more accessible.

REFERENCES

1. A. Baker and W. M. Schmidt, Diophantine approximation and Hausdorff dimension, Proc.
Lond. Math. Soc. 21 (1970), 1-11.

2. R. C. Baker, Sprindzuk’s theorem and Hausdorff dimension, Mathematika 23(2) (1976),
184-197.

3. V. Beresnevich, On approximation of real numbers by real algebraic numbers, Acta Arith.
90 (1999), 97-112.

4. V. Beresnevich, V. I. Bernik, and F. G6tze, Integral polynomials with small discriminants
and resultants, Adv. Math. 298 (2016), 393—412.

5. V. I. Bernik, A metric theorem on the simultaneous approximation of zero by the values of
integral polynomials, Math. USSR-Izv. 16(1) (1981), 21-40.

https://doi.org/10.1017/5S0017089519000077 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089519000077

280 VASILI BERNIK AND STEPHEN Mc GUIRE

6. V. I. Bernik, Application of the Hausdorff dimension in the theory of Diophantine
approximation, Acta Arith. 42(3) (1983), 219-253. (in Russian)

7. V. L. Bernik, N. Budarina, D. Dickinson, and S. Mc Guire, The distribution of algebraic
conjugate points, in preparation.

8. V. I. Bernik and N. I. Kalosha, Approximation of zero by integer polynomials in space
R x C x Q,, Proc. Nat. Acad. Sci. Belarus Phis. Math. Ser. 1 (2004), 121-123.

9. A. Besicovitch, Sets of fractional dimensions. IV: On rational approximation to real
numbers, J. Lond. Math. Soc. 9 (1934), 126-131.

10. N. Budarina and D. Dickinson, Simultaneous Diophantine approximation of integral
polynomials in the different metrics, Chebyshevskii Sbornik 9(1) (2008), 169—184.

11. N. L. Feldman, Approximation of certain transcendental numbers, /. Izv. Akad. Nauk SSSR
Ser. Mat. 15 (1951), 53—79; English transl. in Amer. Math. Soc. Transl. 59(2) (1966).

12. V. Jarnik. Diophantische approximationen und hausdorffsches maB, Rec. Math. Moscou 36
(1929), 371-382.

13. F. Kasch and B. Volkmann, Zur Mahlerschen Vermutung iiber S-Zahlen, Math. Ann. 136
(1958), 442-453. (in German)

14. D. V. Koleda, An upper bound for the number of integral polynomials of third degree with
a given bound for discriminants, Vestsi Nats. Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk 3 (2010),
10-16. (in Russian)

15. D. V. Koleda and 1. A. Korlukova, Asymptotic quantity of integral quadratic polynomials
with bounded discriminants, Vesnik of Yanka Kupala State University of Grodno, Series 2. 2(151)
(2013), 6-10.

16. E. Kovalevskaya, A metric theorem on the exact order of approximation of zero by values
of integer polynomials in @Q,, Dokl. Nats. Akad. Nauk Belarusi 43(5) (1999), 34-36.

17. K. Mahler, Uber das Mass der Menge aller S-Zahlen, Math. Ann. 106 (1932), 131-139.

18. N. A. Pereverzeva, The distribution of vectors with algebraic coordinates in R?, Vestsi Akad.
Naavuk BSSR. Ser. Fiz.-Mat. Navuk 4 (1987), 114-116, 128. (in Russian)

19. W. M. Schmidt, Bounds for certain sums; a remark on a conjecture of Mahler, Trans. Amer.
Math. Soc. 101 (1961), 200-210.

20. V. G. Sprindzuk, Mahler'’s problem in the metric theory of numbers, vol. 25 (American
Mathematical Society, Providence, RI, 1969).

21. B. Volkmann, Zur metrischen Theorie der S-Zahlen, J. Reine Angew. Math. 209 (1962),
201-210.

https://doi.org/10.1017/5S0017089519000077 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089519000077

	How small can polynomials be in an interval of given length?
	Introduction
	Main results
	Preliminary results
	Proof of main results
	Examples



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


