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1. Introduction

In an earlier paper [1] definitions were given of various incomplete Bessel functions and
some of their properties were derived. A typical definition is

Kν(z, w) = Kν(z) − J(z, ν, w), (1.1)

where Kν(z) is the modified Bessel function and

J(z, ν, w) =
∫ w

0
e−z cosh t cosh νt dt. (1.2)

Among the properties established was the asymptotic behaviour as |z| → ∞ when w is
real. The purpose of the following is to extend the analysis to complex values of w. This
involves consideration of the integral representation

Kν(z, w) =
∫ ∞+iσ

w

e−z cosh t cosh νt dt (1.3)

for |ph z + σ| < π/2.
It will be convenient to suppose that the phase of the symbol Z satisfies |phZ| < π/2,

while z may have any phase unless it is specifically limited.
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2. Preliminary results

The integral in (1.3) has saddle points where sinh t = 0, i.e. for t = nπi with n an integer.
The asymptotic behaviour changes as w approaches one of the saddle points. To avoid
such a complication in this section it will be assumed that w is kept away from the saddle
points. The first restriction that will be imposed on w is that α0 > 0 when w = α0 +iβ0.

Three types of integral are relevant to (1.3) and they will be discussed separately.

2.1. Case 1

The first integral that will be discussed is

L1(Z) =
∫ ∞

w

e−Z cosh t−νt dt (2.1)

subject to α0 > 0. If the path of integration from w can be chosen so that I(cosh t −
cosh w) = 0 and R(cosh t − cosh w) increases, the main contribution as |Z| → ∞ will
come from the neighbourhood of w. The equation of the desired path when t = α + iβ is
sinhα sin β = sinhα0 sin β0.

When 0 � β0 < π, the desired path is a horizontal U-bend (⊂) with endpoints at
infinity where β = 0 and β = π. The desired direction of integration goes towards the
endpoint with β = 0. For −π < β � 0 the desired path is also a horizontal U-bend and
the desired direction goes from the endpoint at β = −π to that at β = 0. Hence, when
|β0| < π, the path of integration can be deformed as desired and

L1(Z) = e−Z cosh w

∫ ∞

0

e−Zu−νt

sinh t
du

after the substitution cosh t = cosh w + u.
For small u the expansion

e−νt

sinh t
= e−νw

∑
s=0

as(ν, w)us

is available. Here

a0(ν, w) = 1/ sinhw, a1(ν, w) = −(ν + coth w)/ sinh2 w, (2.2)

a2(ν, w) = (ν2 + 3ν coth w + 2 + 3/ sinh2 w)/2 sinh3 w. (2.3)

The expansion leads to
L1(z) ∼ f(ν, Z),

where

f(ν, Z) = e−Z cosh w−νw
∑
s=0

s!
as(ν, w)
Zs+1 . (2.4)

When (2n− 1)π < β0 < (2n+1)π the paths just described are replicated but go off to
infinity near β = 2nπ. Therefore, deformation of the path in L1 to the desired direction
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cannot be carried out. Instead
∫ ∞+2nπi

w

e−Z cosh t−νt dt ∼ f(ν, Z). (2.5)

Now, for integer m,
∫ ∞+2mπi

∞+2(m−1)πi
e−Z cosh t−νt dt = 2πie(1−2m)νπiIν(Z), (2.6)

where Iν(Z) is the usual modified Bessel function. Consequently,
∫ ∞+2nπi

∞
e−Z cosh t−νt dt = 2πie−nνπi sin nνπ

sin νπ
Iν(Z). (2.7)

From (2.5) and (2.7),

L1(Z) ∼ f(ν, Z) − 2πie−nνπi sin nνπ

sin νπ
Iν(Z) (2.8)

when (2n − 1)π < β0 < (2n + 1)π.
The general asymptotic formula (see [2])

Iν(z) ∼ ez

(2πz)1/2

∑
s=0

(−)s As(ν)
zs

− i
e−νπi−z

(2πz)1/2

∑
s=0

As(ν)
zs

, (2.9)

valid for |ph z| < 3π/2 with A0(ν) = 1 and

As(ν) =
(4ν2 − 12)(4ν2 − 32) · · · {4ν2 − (2s − 1)2}

s!8s
, (2.10)

can be employed in (2.8) but it is more economical to retain the form (2.8) as long as
possible.

Notice that, at boundaries where the coefficient of Iν(Z) in (2.8) alters, coshw =
− cosh α0, so Iν(Z) is exponentially smaller than f(ν, Z). In other words, the changes in
(2.8) should take place relatively smoothly. On the other hand, Iν(Z) is likely to dominate
near β0 = 2nπ (n �= 0).

2.2. Case 2

The integral to be considered here is

L2(Z) =
∫ ∞+πi

w

eZ cosh t−νt dt. (2.11)

In this case the preferred paths of integration are the same as in Case 1 but traversed in
the opposite direction. Accordingly, if 2nπ < β0 < (2n + 2)π,

∫ ∞+(2n+1)πi

w

eZ cosh t−νt dt ∼ f(ν,−Z). (2.12)
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From (2.6), ∫ ∞+(2m+1)πi

∞+(2m−1)πi
eZ cosh t−νt dt = 2πie−2mνπiIν(Z), (2.13)

and so
L2(Z) ∼ f(ν,−Z) − 2πie−(n+1)νπi sin nνπ

sin νπ
Iν(Z) (2.14)

when 2nπ < β0 < (2n + 2)π.
A deduction from (2.11) and (2.14) is

∫ ∞−πi

w

eZ cosh t−νt dt ∼ f(ν,−Z) − 2πie−nνπi sin(n + 1)νπ

sin νπ
Iν(Z) (2.15)

when 2nπ < β0 < (2n + 2)π.

2.3. Case 3

Another integral for which the asymptotic behaviour is required is

L3(Z) =
∫ ∞+ 1

2 πi

w

eiZ cosh t−νt dt. (2.16)

The equation of the desired path of integration is coshα cos β = cosh α0 cos β0 now and,
as a result, the pattern of paths is more complicated than in the preceding cases.

If |cosh α0 cos β0| > 1 the path is a horizontal U-bend. Typically, it will start at ∞ +
(2n − 1

2 )πi or ∞ + (2n + 3
2 )πi and end at ∞ + (2n + 1

2 )πi when traversed in the desired
direction.

If |cosh α0 cos β0| � 1 the path can cross the imaginary axis. There are two typical
paths when the desired direction is taken into account. One starts at −∞ + (2n + 1

2 )πi
and goes to ∞ + (2n + 1

2 )πi. The other is traversed in the opposite direction going from
∞ + (2n − 1

2 )πi to −∞ + (2n − 1
2 )πi. Thus the paths on which |cosh α0 cos β0| < 1 and

(2n − 1)π < β0 < 2nπ are quite different from the other curves because they end up on
opposite sides of the imaginary axis. These exceptional values of w will require a separate
treatment.

When the exceptional paths are ignored and (2n − 1
2 )π < β0 < (2n + 3

2 )π,

∫ ∞+(2n+ 1
2 )πi

w

eiZ cosh t−νt dt ∼ f(ν,−iZ). (2.17)

Since ∫ ∞+(2m+ 5
2 )πi

∞+(2m+ 1
2 )πi

eiZ cosh t−νt dt = 2πie−(2m+ 3
2 )νπiJν(Z), (2.18)

with Jν(Z) the customary Bessel function, it follows that

L3(Z) ∼ f(ν,−iZ) − 2πie−(n+ 1
2 )νπi sin nνπ

sin νπ
Jν(Z) (2.19)

for (2n − 1
2 )π < β0 < (2n + 3

2 )π and w not on an exceptional path.
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For the exceptional paths on which (2n − 1)π < β0 < 2nπ,

∫ −∞+(2n− 1
2 )πi

w

eiZ cosh t−νt dt ∼ f(ν,−iZ).

Also, ∫ ∞+(2n+ 1
2 )πi

−∞+(2n− 1
2 )πi

eiZ cosh t−νt dt = πie−(2n− 1
2 )νπiH(1)

ν (Z), (2.20)

H
(1)
ν (Z) being the standard Hankel function, so that

∫ ∞+(2n+ 1
2 )πi

w

eiZ cosh t−νt dt ∼ f(ν,−iZ) + πie−(2n− 1
2 )νπiH(1)

ν (Z).

Consequently, when |cosh α0 cos β0| < 1 and (2n − 1)π < β0 < 2nπ,

L3(Z) ∼ f(ν,−iZ) + πie−(2n− 1
2 )νπiH(1)

ν (Z) − 2πie−(n+ 1
2 )νπi sin nνπ

sin νπ
Jν(Z). (2.21)

It may be inferred from (2.19) and (2.21) that, when (2n − 3
2 )π < β0 < (2n + 1

2 )π in
the normal case,

∫ ∞− 1
2 πi

w

e−iZ cosh t−νt dt ∼ f(ν, iZ) − 2πie−(n− 1
2 )νπi sin nνπ

sin νπ
Jν(Z) (2.22)

and, when |cosh α0 cos β0| < 1 with (2n − 2)π < β0 < (2n − 1)π,

∫ ∞− 1
2 πi

w

e−iZ cosh t−νt dt

∼ f(ν, iZ) + πie−(2n− 3
2 )νπiH(1)

ν (Z) − 2πie−(n− 1
2 )νπi sin nνπ

sin νπ
Jν(Z). (2.23)

3. Formulae for Kν(z, w)

An asymptotic expression for Kν(Z, w) can be obtained from (1.3) by means of (2.8).
The linear combination f(ν, Z) + f(−ν, Z) occurs; it may be rewritten by defining

bs(ν, w) = 1
2{e−νwas(ν, w) + eνwas(−ν, w)}.

Then

b0(ν, w) =
cosh νw

sinhw
, b1(ν, w) =

ν sinh νw − cosh νw coth w

sinh2 w
, (3.1)

b2(ν, w) =
ν2 cosh νw − 3ν sinh νw coth w + (2 + 3/ sinh2 w) cosh νw

2 sinh3 w
(3.2)

from (2.2) and (2.3).
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One concludes that, when |ph z| < π/2 and (2n − 1)π < β0 < (2n + 1)π,

Kν(z, w) ∼ g(z, ν, w) − πi
sin nνπ

sin νπ
{e−nνπiIν(z) + enνπiI−ν(z)}, (3.3)

where

g(z, ν, w) = e−z cosh w
∑
s=0

s!
b(ν, w)
zs+1 . (3.4)

An alternative version of (3.3) is supplied by the substitution

I−ν(z) = Iν(z) + (2/π) sin νπKν(z). (3.5)

It is
Kν(z, w) ∼ g(z, ν, w) + (1 − e2nνπi)Kν(z) − πi

sin 2nνπ

sin νπ
Iν(z). (3.6)

Note that (2.9) can be inserted into (3.6) and also

Kν(z) ∼ e−z

(
π

2z

)1/2 ∑
s=0

As(ν)
zs

(3.7)

for |ph z| < 3π/2.
The range of ph z can be extended by taking advantage of (2.14) and (1.3). Put Z =

zeπi so that −3π/2 < ph z < −π/2. By means of the general relations

Iν(zemπi) = emνπiIν(z), (3.8)

Kν(zemπi) = e−mνπiKν(z) − πi
sin mνπ

sin νπ
Iν(z), (3.9)

it is found that (2.14) leads to (3.6). Thus (3.6) holds for −3π/2 < ph z < −π/2 and
2nπ < β0 < (2n + 2)π.

Similarly, it can be deduced from (2.15) with Z = ze−πi that (3.6) is valid for π/2 <

ph z < 3π/2 and (2n − 2)π < β0 < 2nπ.
Another way of obtaining the result of the preceding paragraph is to start with the

formula for −3π/2 < ph z < −π/2 and invoke the general relation

Kν(ze2πi, w) = Kν(z, w) + (e−2νπi − 1)Kν(z) − 2πi cos νπIν(z). (3.10)

The expansion (3.6) is also valid for −π < ph z < 0 and (2n − 1
2 )π < β0 < (2n + 3

2 )π
by (2.19) as well as for 0 < ph z < π and (2n − 3

2 )π < β0 < (2n + 1
2 )π by (2.22) provided

that w is not exceptional.
In the exceptional case (R(cosh w) < 1), (2.21) is relevant when −π < ph z < 0. Then

Kν(z, w) ∼ g(z, ν, w) + (1 + e−2nνπi)Kν(z) − πi
sin 2nνπ

sin νπ
Iν(z) (3.11)

for (2n − 1)π < β0 < 2nπ. Furthermore, when 0 < ph z < π, (2.23) gives (3.11) subject
to 2nπ < β0 < (2n + 1)π.
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The formulae (3.6) and (3.11) cover the range −3π/2 < ph z < 3π/2. Other ranges of
the phase can be handled by calling on (3.10).

The expansions are governed by the restriction R(w) > 0. However, it is straightfor-
ward to check that J(z, ν,−w) = −J(z, ν, w) and so

Kν(z,−w) = 2Kν(z) − Kν(z, w). (3.12)

Thus the asymptotic behaviour for R(w) < 0 can be written down from the foregoing
and (3.12).

When R(w) = 0, the formulae can be expected to be applicable so long as w is
sufficiently distant from any saddle point. The behaviour at a saddle point is considered
in the next section.

4. Saddle points

The integral representation of Kν(z, w) has saddle point at t = nπi. So far these have
been excluded from the asymptotic expansions. This section is concerned with their
contributions, which, as will be seen, are somewhat different from those already derived.

A change in the variable of integration gives

∫ ∞+2nπi

2nπi
e−Z cosh t cosh νt dt = Kν(Z) cos 2nνπ + i sin 2nνπ

∫ ∞

0
e−Z cosh t sinh νt dt.

(4.1)
The asymptotic performance of the integral on the right-hand side is obtained by

putting cosh t = 1 + 1
2u2 or u = 2 sinh(t/2) and expanding the factor of the exponential

in powers of u. This requires the expansion of sinh νt/cosh(t/2) but it is more useful to
consider eνt/cosh(t/2). Let

F (u) =
eνt

cosh(t/2)
=

∑
m=0

cmum

for small u. Then

cosh2(t/2)F ′′(u) + 3
2 sinh(t/2)F ′(u) = (ν2 − 1

4 )F (u)

or
(u2 + 4)F ′′(u) + 3uF ′(u) = (4ν2 − 1)F (u).

Take a derivative m times by Leibnitz’s theorem and then set u = 0. There results

F (m+2)(0) = {4ν2 − (m + 1)2}F (m)(0)/4.

Since F (0) = 1 it follows that, for m > 0,

F (2m)(0) = (4ν2 − 12)(4ν2 − 32) · · · {4ν2 − (2m − 1)2}/4m

= m!2mAm(ν)
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with Am(ν) defined as in (2.10). Hence

c2m = π1/2Am(ν)/(m − 1
2 )!2m. (4.2)

On the other hand, F ′(0) = ν so that

F (2m+1)(0) = ν(ν2 − 12)(ν2 − 22) · · · (ν2 − m2).

Therefore,
c2m+1 = νBm(ν)/m!2m, (4.3)

where B0(ν) = 1 and, for m > 0,

Bm(ν) = π1/2(ν2 − 12)(ν2 − 22) · · · (ν2 − m2)/(m + 1
2 )!2m+1. (4.4)

The coefficients Am(ν) and Bm(ν) are even functions of ν. It may therefore be deduced
that

cosh νt

cosh(t/2)
=

∑
m=0

c2mu2m (4.5)

with c2m as in (4.2) and
sinh νt

cosh(t/2)
=

∑
m=0

c2m+1u
2m+1 (4.6)

with c2m+1 given by (4.3).
By virtue of (4.6), ∫ ∞

0
e−Z cosh t sinh νt dt ∼ h(ν, Z), (4.7)

where

h(ν, z) =
ν

z
e−z

∑
m=0

Bm(ν)
zm

. (4.8)

Hence, via (2.7), (3.5) and (4.1),

Kν(Z, 2nπi) ∼ (1 − i sin 2nνπ)Kν(Z) − πi
sin 2nνπ

sin νπ
Iν(Z) + ih(ν, Z) sin 2nνπ. (4.9)

As regards the remaining saddle points, commence with
∫ ∞+2nπi

(2n+1)πi
e−Z cosh t cosh νt dt

=
∫ ∞−πi

0
eZ cosh t{cosh νt cos(2n + 1)νπ + i sinh νt sin(2n + 1)νπ} dt.

Now, ∫ ∞−πi

0
eZ cosh t cosh νt dt = 1

2

∫ ∞−πi

−∞+πi
eZ cosh t−νt dt

= 1
2

∫ ∞+πi

−∞+πi
eZ cosh t−νt dt − 1

2

∫ ∞+πi

∞−πi
eZ cosh t−νt dt

= e−νπiKν(Z) − πiIν(Z).
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Also, ∫ ∞−πi

0
eZ cosh t sinh νt dt ∼ h(ν,−Z).

Consequently,

Kν(Z, (2n + 1)πi) ∼ {1 − ie−νπi sin(2n + 1)νπ}Kν(Z)

− πi sin(2n + 1)νπ cot νπIν(Z) + ih(ν,−Z) sin(2n + 1)νπ. (4.10)

5. Transition formulae

An expansion of Kν(Z, w) when w is not near a saddle point is supplied by (3.6). In
contrast, (4.9) is available when w coincides with a saddle point. How the expansion
(3.6) transforms into (4.9) as w approaches a saddle point is the topic of this section.

Consider Kν(Z, w) as w approaches the saddle point at the origin. Change the variable
of integration to v, where v = 2 sinh(t/2) − 2 sinh(w/2). Then

Kν(Z, w) = e−Z

∫ ∞

0
e−Z(v−b)2/2f0(v) dv,

where b = −2 sinh(w/2) and

f0(v) = cosh νt/cosh(t/2).

Let
f0(v) = C0 + D0(v − b) + v(v − b)g0(v)

so that C0 = f0(b) and C0 − bD0 = f0(0). Then

Kν(Z, w) = C0e−Z

(
π

2Z

)1/2

erfc{−b(Z/2)1/2}

+
D0

Z
e−Z(1+ 1

2 b2) + e−Z

∫ ∞

0
v(v − b)g0(v)e−Z(v−b)2/2 dv, (5.1)

where
erfc(z) =

2
π1/2

∫ ∞

z

e−y2
dy.

Integration by parts provides
∫ ∞

0
v(v − b)g0(v)e−Z(v−b)2/2 dv =

1
Z

∫ ∞

0
f1(v)e−Z(v−b)2/2 dv,

where
f1(v) =

d
dv

{vg0(v)}. (5.2)

Repeat the process carried out with f0 by putting

f1(v) = C1 + D1(v − b) + v(v − b)g1(v).
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This changes (5.1) by replacing C0, D0 and g0(v) by C0 + C1/Z, D0 + D1/Z and g1(v),
respectively. Further repetition leads to

Kν(Z, w) ∼ e−Z

(
π

2Z

)1/2

erfc{−b(Z/2)1/2}
∑
n=0

Cn

Zn
+

e−Z cosh w

Z

∑
n=0

Dn

Zn
. (5.3)

The coefficients Cn and Dn are derived from the function fn(v). As v tends to b, t → 0,
and so, by (4.5),

f0(v) =
∑
m=0

c2m(v − b)2m. (5.4)

Now assume that
fn(v) =

∑
m=0

fnm(v − b)2m,

which implies that Cn = fn0 and f0m = c2m. The analogue of (5.2) is

fn+1(v) =
d
dv

fn(v) − Cn

v − b

=
∑
m=0

(2m + 1)fn,m+1(v − b)2m. (5.5)

Hence,

fn+1,m = (2m + 1)fn,m+1 = (2m + 1)(2m + 3)fn−1,m+2

=
(m + n + 1

2 )!
(m − 1

2 )!
2n+1f0,m+n+1.

It follows that

Cn =
(n − 1

2 )!
π1/2 2nc2n = An(ν) (5.6)

from (4.2).
The coefficient Dn satisfies

Cn − bDn =
∑
m=0

fnmb2m, (5.7)

which shows that Dn → 0 as b → 0.
An alternative expansion for fn(v) stems from Case 1 and

cosh νt

sinh t
=

∑
m=0

bm(ν, w)um,

where u = cosh t − cosh w. Thus

f0(v) = (v − b)
∑
m=0

bm(ν, w)um.
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Now make the assumption that

fn(v) = (v − b)
∑
m=0

bnmum +
n∑

m=1

Bnm

(v − b)2m
,

the last term being absent for n = 0. From (5.5),

fn+1(v) = (v − b)
∑
m=0

(m + 1)bn,m+1u
m −

n+1∑
m=2

(2m − 1)Bn,m−1

(v − b)2m
+

Cn

(v − b)2
.

Consequently,

bn+1,m = (m + 1)bn,m+1 = (m + 1)(m + 2)bn−1,m+2

= (m + n + 1)!bm+n+1(ν, w)/m!. (5.8)

Also, Bn+1,1 = Cn and, for m = 2, . . . , n + 1,

Bn+1,m = (−)(2m − 1)Bn,m−1 = (−)2(2m − 1)(2m − 3)Bn−1,m−2

= (m − 1
2 )!(−2)m−1Cn+1−m/ 1

2 !. (5.9)

Since u and v both vanish when t = w,

Cn − bDn = −bbn0 +
n∑

m=1

Bnm

b2m
,

whence

Dn −
n∑

m=0

(m − 1
2 )!(−2)m

π1/2b2m+1 Cn−m = n!bn(ν, w) (5.10)

via (5.8) and (5.9).
On account of (3.7) and (5.6), (5.3) can be rewritten as

Kν(Z, w) ∼ Kν(Z) erfc{−b(Z/2)1/2} +
e−Z cosh w

Z

∑
n=0

Dn

Zn
. (5.11)

As w → 0, b → 0 and Dn → 0. Also, erfc(0) = 1 so that, in the limit, (5.11) agrees with
(4.9). On the other hand, when w is moved sufficiently far from the origin for |bZ1/2| to
be large, the formulae

erfc(z) ∼ e−z2

π1/2z

{
1 +

∑
p=1

(p − 1
2 )!(−)p

π1/2z2p

}
, |ph z| < 3π/4

and
erfc(−z) = 2 − erfc(z)

can be employed. Then, if |I(w)| < π but w is not near ±πi, (3.7), (5.10), (5.6) and (3.4)
reproduce (3.6) and (3.12).
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The same technique may be applied to the integral in which cosh νt is replaced by
sinh νt. Here, (4.6) is pertinent. It shows that the analogue of Cn is zero. Moreover, the
analogue of Dn does not tend to zero as b → 0; instead, the limit is νBn(ν). Since bn(ν, w)
is replaced by dn(ν, w) where

dn(ν, w) = 1
2{eνwam(ν, w) − e−νwam(ν, w)},

the result is ∫ ∞

w

e−Z cosh t sinh νt dt ∼ e−Z cosh w

Z

∑
n=0

n!dn(ν, w)
Zn

(5.12)

for w in the neighbourhood of the origin. As w → 0, n!dn(ν, w) → νBn(ν) (cf. (5.10))
and the right-hand side of (5.12) goes to h(ν, Z), consistent with (4.7).

When w is near 2nπi, change the variable of integration so that
∫ ∞+2nπi

w

e−Z cosh t cosh νt dt =
∫ ∞

w−2nπi
e−Z cosh t(cosh νt cos 2nνπ + i sinh νt sin 2nνπ) dt.

Since w − 2nπi is in the neighbourhood of the origin, (5.11) and (5.12), with appropriate
changes, can be used to supply a transition formula for the integral on the left-hand side.
The upper limit of integration can be switched to ∞ through (2.7) and an expression for
Kν(Z, w) obtained when w is near 2nπi. It can be verified to give agreement with (4.9)
and (3.6) as w moves away from 2nπi.

6. An error bound

Most asymptotic series fail to converge and computation is limited to a finite number of
terms. Therefore, it is useful to have some idea of the error arising when an asymptotic
expansion is truncated. Information for the modified Bessel functions is already available,
so only g(z, ν, w) needs attention below. Since g(z, ν, w) is constructed from f(ν, z), it
will suffice to discuss f(ν, z).

The expansion of f(ν, z) depends upon the representation of e−νt/ sinh t (see Case 1).
Let

e−νt

sinh t
= e−νw

{ n−1∑
s=0

as(ν, w)us + unφn(u)
}

(6.1)

with φn(0) = an(ν, w). If

f(ν, z) = e−z cosh w−νw

{ n−1∑
s=0

s!
as(ν, w)

zs+1 + εn(z)
}

, (6.2)

then
εn(Z) =

∫ ∞

0
e−Zuunφn(u) du.

As u → 0, φn(u) is bounded. Also, it is clear that φn(u) is bounded exponentially.
Hence there is a µn(ν, w) such that

|φn(u)| � |an(ν, w)|eµn(ν,w)u
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for u � 0. Consequently, if phZ = θ,

|εn(Z)| � n!|an(ν, w)|/{|Z| cos θ − µn(ν, w)}n+1

so long as |Z| cos θ > µn(ν, w).
More generally, Cases 2 and 3 can be called on and a similar argument applied. Then

|εn(z)| � n!|an(ν, w)|/{|z| cos(ph z + δ) − µn(ν, w)}n+1 (6.3)

for |z| cos(ph z + δ) > µn(ν, w), δ being such that |ph z + δ| < π/2. Typical values for δ

are 0, ±π/2.
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