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Abstract

General periodic and fixed point theorems are proved for a class of self maps of a quasi-metric
space which satisfy the contractive definition (A) below. Two examples are presented to show
that the class of mappings which satisfy (A) is indeed wider than a class of selfmaps which
satisfy Caristi’s contractive definition (C) below. Also a common fixed point theorem for a pair
of maps which satisfy a contractive condition (D) below is established.

1991 Mathematics subject classification (Amer. Math. Soc.): 54 H 25, 47 H 10.

1. Introduction

Let X be a non-void set and 7: X — X a selfmap. A point x € X is
called a periodic point for T iff there exists a positive integer k such that
T'x=x.If k=1 , then x is called a fixed point for T .

Caristi [4] proved the following very general contraction fixed point theo-
rem.

THEOREM 1 (Caristi [4]). Suppose T: X — X and ®: X — [0, oo), where
X is a complete metric space and ® is lower semicontinuous. If for each x
in X
(C) d(x, Tx) <d(x)—-®(Tx),
then T has a fixed point.
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Caristi’s proof, based on the work of Brondsted [3], is not elementary,
as well as the other new proofs of Theorem 1 ([10, 13]). Bhakta and Basu
[1] observed that the proof of Theorem 1 becomes much simpler by adding
the hypotheses of orbital continuity of a selffmap T (compare [5]). More-
over, they pointed out that the hypotheses of the lower semi-continuity of a
function @ in that case may be dropped.

Recently Bollenbacher and Hicks [2] obtained a version of Caristi’s Theo-
rem 1 by using the concept of T-orbitally lower semi-continuity of a real func-
tion G: X — [0, co) (defined by G(x) = d(x, Tx)), which was introduced
in [9] (compare [12]). Hicks [8] extended this version for a metric space to
one for a quasi-metric space, which need not satisfy d(y, x) =d(x, ).

The purpose of this note is to relax Caristi’s contractive definition (C),
slightly relax the concept of T-orbital lower semi-continuity introduced in
[9] and to obtain a periodic and a fixed point theorem which extend and
generalize main results of [2], [7] and [8]. We shall also prove a common
fixed point theorem having the fixed point theorems of [2, 7, 8] as corollaries.

2. Main results

Let (X, d) be a quasi-metric space and 7: X — X a mapping of X. A
set O(x, o0) = {x, Tx, T’x, ..., } is called the orbit of x.

DEFINITION 2.1. A real-valued function G: X — [0, co) is said to be
T-orbitally weak lower semi-continuous (w.ls.c.) relative to x iff {x,} isa
sequence in 0(x, oo) and
(hH lim x, = p implies G(p) < lim sup G(x,,).

n—oo n—-+o0

Clearly, every function G that is T-orbitally lower semi-continuous (1.s.c.)
relative to x € X (thatis, {x,} C O(x, o0) and limx, = p imply G(p) <
liminfG(x,) (see [9, 2])) is also T-orbitally w.Ls.c. relative to x, but the
implication is not reversible.

Note that the condition (1) was used in [6], but there it was supposed that
(1) was true for every sequence {x,} in X.

THEOREM 2. Suppose T: X - X,n: X - N and ®: X — [0, oo), where
X is a complete quasi-metric space. If for some x, € X there exists a subse-

quence S = {x,},-, in 0(x,, 00) such that T”("")xn €S and

(A) diy, T"y) < o) - (T""y)

holds for each y € S, then we have
(a) limx, = p exists,
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(b) T"p = p if and only if G(x) = d(x, T"Vx) is T-orbitally w.Ls.c.
relative to x,,

(©) d(x,, x,) < Dxy),

(d) If y - d(z,y) is T-orbitally w.Ls.c. relative to x, for z € S then
d(x,,p) <®(x,) and d(x,, p) < P(x,).

ProoF. Without loss of generality we may suppose that {x,} has the

property that x, = T”("")x,,; n=20,1,2,.... Then we have, for n =
0,1,2,...,

dx ,x

s Xp) =d(x,, T"x ) < @(x,) - B(x

net)-

For m>0,

0, =3 d(x,, %,,,) < SAD(x,) - B(x,,,)] = [D(xp) - B(x,)]
n=0 =0

+[P(x)) = P(x)] + - - + [P(x,,) — P(x,,,)]
= P(x,) - P(x <D(x,).

m+1)

The sequence {0,,},,_, of partial sums of the infinite series ) d(x,, x,.,,)
is a nondecreasing sequence bounded above by ®(x,) and therefore con-
verges. This implies that {x, }:io is a Cauchy sequence in X . Since (X, d)
is complete, we have (a).

Assume that G(p) <lim,_, supG(x,). Then by definition of G(x) and
x,,, wehave G(x,) =d(x,, x,,,). So G(x,) is a general term of a con-
vergent series > d(x,, x,,,), and hence G(x,) — 0, as n — oo. Therefore,
G(p) =d(p, T"(")p) = (. Hence p is a periodic point of 7. This shows
(b). Clearly (c) holds.

To prove (d), let n > 0. Then

d(xn > xn+k) < d(xn > xn+1) + d(xn+l > xn+2) +--+ d(xn+k—-l ’ xn+k)
n+k—1 n+k—1

= Z d(‘xm > xm+1) < Z [(D(xm) - q)(xmﬂ)]
m=n m=n
=®(x,) - P(x,,,) <P(x,).
Assume that y — d(x,, y) is T-orbitally w.Ls.c. relative to x, for each
n=0,1,2,.... Then

d(x,,p) < klim supd(x,, x,,,) < klim sup®P(x,) = P(x,).

n+k n

This shows (d).
REMARK 1. Example 1 shows that in (b) need not be n(p) =1, thatis, T
need not have a fixed point.
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THEOREM 3. Suppose T: X - X, n: X - N and ®: X — [0, c0), where
X is a complete quasi-metric space. If T satisfies all hypotheses of Theorem
2 and in addition for all y € CI[0(x,, o0)]

(1 y# Ty implies ®(T"y) < P(y)

Jor some positive integer m = m(y), then T has a fixed point.

Proor. From Theorem 2, there is p in X such that Tkp = p. Then
0(p, o) is a finite set of pointsin X . Let y € 0(p, oo) be such that

() ®(y) = min{®(z): z € 0(p, c0)}.

Assume that y # Ty. Then from (1) there is m € N such that &(T"y) <
®(y). But, since T"y € 0(p, 00) for all n € N, it follows from (2) that
®(y) < ®(T™y), a contradiction. Therefore, y = Ty, which completes the
proof.

CoroLLARY 1 (Hicks [8, Theorem 2]). Let X and Y be quasi-metric
spaces with X complete. Suppose T: X — X, f: X - Y and ®: fX —
[0, 00). If there exists x, € X and c¢ >0 such that

(B) max{d(y, Ty), c-d(fy, fTy)} < ®(fy) - ®(fTy)

Jor all 'y € 0(x,, 00), then

(@) imT"x,=p exists,

(") Tp =p ifand only if G(x) = d(x, Tx) is T-orbitally ls.c. relative
to x,,

() d(x,, T"xy) < P(fx,),

(d) If y — d(z, ) is continuous for z € 0(x,, o), then d(T"x,, p) <
O(fT"x,) and d(x,, p) < D(fx,).

Proor. It is clear that (B) implies that d(y, Ty) < ®(fy)-P(fTy). Put
®, =®f. Then ®,: X - [0, o0) and

diy,Ty) <®,(y) - ®,(Ty).

Therefore, if T satisfies (B), then T satisfies (A) and (1) with ¢ =@,
n(y)=1and m(y)=1 forall y €S =0(x,, 00).

REMARK 2. Example 2 shows that Theorem 3 is a proper generalization
of Hick’s theorem (8], which is an extension of corresponding theorems for
metric spaces given in [2, 7].

REMARK 3. The proof of Corollary 1 shows that the condition cd(fx , fTx)
< ®(fx)—®(fTx) in Theorems 2 and 3 in [7] and in Theorem 2 in [8] (that

https://doi.org/10.1017/51446788700036995 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700036995

84 Ljubomir Ciri¢ [5]
is, in our Corollary 1), which is included in (B}, can be dropped. Theorem 2

and its Corollary 1 in [8] are equivalent.
Now we shall prove a common fixed point theorem for two maps.

THEOREM 4. Suppose S, T: X — X and ®: X — [0, o0), where X isa
complete quasi-metric space. If there is x, € X such that

(D) d(y, Ty)+d(Ty, STy) < ®(y) - P(STy)

for all 'y € Ogp(x,, ) = {x,Tx,, STxy, T(ST)x,y, ..., (ST)"x,,
T(ST)"x,, ...}, then we have

@") lim,_,__(ST)"x,=1lim,___ T(ST)"x,=p exists.

'y Tp=p, if G,(x)=d(x, Tx) is (S, T)-orbitally w.Ls.c. relative to
X, (thatis, (1) is true if {x,} C Og(xy, o0)).

<"y Tp = p = Sp, if G\(x) = d(x, Tx) and G,(x) = d(x, Sx) are
(S, T)-orbitally w.Ls.c. relative to x, .

PrOOF. Put z,, = (ST)kxO, Zopyy =T2zy (k=0,1,2,...,) and con-
sider the sequence {z,}. . Just as in the proof of (a) of Theorem 2, by (D)
we obtain 3 ° d(z,, z,,,) < ®(x,). Hence lim,_ _ z, = p exists. Hence
lim,_,_ z,, =lim,__(ST)*x,=p and lim,___ z,, , =lim,__ T(ST)"x,
= p. This shows (a”). Since z,, — p and G,(z,,) = d(zy, z,,,) — 0 as
k — +oco, we have G,(p) =0. Hence Tp = p. This shows (b"). Statement
(c"") clearly holds.

3. Examples

1. Let X =[-2, —1]U[1, 2] with the usual metric. Define 7T: X — X
by Tx = —x and ®: X — [0, 00) by ®(x) = |x|, for example. Then
T satisfies (A) for all y € X with n(y) = 2 and G(x) = d(x, T2x) is
continuous on X .

2. Let X = {0}u{£l/n:n=1,2,...} with the usual metric. Define
T:X—-Xby T(l/n)=-1/(n+1), T(-1/n)=1/(n+1) and T(0)=0.
Define ®: X — [0, oo) by ®(x) =d(x, Tx). Then for x = +1/n we have

dix, Tx)=1/n+1/(n+1);  d(x,T’x)=1/n—1/(n+2).
Hence
dix, T’x)=1/n-1/(n+2) < /n+1/(n+1)=[1/(n+2) + 1/(n + 3)]
= ®O(x) ~ D(T°x).
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Therefore, T satisfies (A) on X with n(x) =2 forall x € X. Since X is
a complete metric space, there exists p (p = 0) such that (a) holds. Since
G(x)=d(x, T2x) = 2x2(1 + 2|x|)“1 is continuous and 7 satisfies (1) with
m(y) =2 for all y € X, Theorem 3 can be applied.

We point out that Caristi’s contractive condition (C), and hence (B), im-
plies that Y>> d(T"x, TT"x) must be a convergent series. Since in our
example, for any fixed x = +1/m,, we have

d(T"x, T"'x) = 1/ (n+ mg) + 1/(n+ 1+ my) > 2/(n+my+1),

we conclude that the series diverges and so there is no functions f: X — Y
and ®: fX — [0, co) such that (B) holds forany x =+1/n e X.
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