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1. Introduction
Let s, sn(n = 0, 1, ...) be arbitrary complex numbers, and let

p(z) = po+plz+... +pjzj

be a polynomial, with complex coefficients, which satisfies the normalizing
condition

p(l) = 1.

Associated with such a polynomial is a Norlund method of summability Np:
the sequence {sn} is said to be ^-convergent to s, and we write sn-»s (Np), if

lim £ pvsn_v = s.
n~*co v = 0

Evidently the method is regular, i.e. sn-*s (Np) whenever sn->s.
Let?(z) = qo+qLz+...+qkz

k, q(l) = 1.
For convenience, we suppose throughout that pn = 0 for n >j and qn = 0

for n>k, so that

p(z)= f) Pnz\ q(z)= J qnz\
n = 0 n = 0

n j

EPvS«-v= E Pvsn-v for
v = 0 v = 0

and
n t

X ?vsn-v= E q,sn-vfor
v = 0 v = 0

The object of this note is to investigate some of the properties of Norlund
methods associated with polynomials. We shall also be concerned with the
Cesaro method (C, a), the Abel method A, and the " product" methods
(C, <x)Np and ANP; the latter two methods being defined as follows. The

n

sequence {sn} is (C, a)A^p-convergent to s if tn= J) Pvsn-v~*s (C, a); it is
v = 0

.̂/Vp-convergent to s if tn-*s (A).
A summability method A'is said to include a method Y if the y-convergence

of any sequence to s implies its Z-convergence to s. The methods are said
to be equivalent if each includes the other.

Throughout the note it should be borne in mind that the Norlund methods
Np and Nq, being associated with the polynomials p(z) and q(z), are not of the
most general type (see (2), § 4.1).
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8 D. BORWEIN

2. Simple Theorems Concerning Inclusion
We defer the statement of the main theorems till § 3 and proceed to prove

some simpler results.

Theorem 1. There is a sequence which is (C, a)-convergent for every a > 0
but not Np-convergent.

Proof. If | z | = 1, z ^ 1, p{\jz) ^ 0, then, for n>j,

v = 0
= z>(l/z)

which oscillates as n tends to infinity; and so the sequence {z"} is not Np-
convergent, but as is well known, it is (C, a)-convergent to 0 for every a > 0 .

Corollary. Np does not include (C, a) for any a > 0.

Theorem 2. The method Nf, associated with the polynomial f{z) — p{z)q{z),
includes both Np and Nq.

n

Proof. (Cf. the proof of Theorem 17 in (2)). Let tn= £ pvsn~v, and
v = 0

oo n

note that/(z) = £ fnz" where/„ = £ pvqn-v. Then
n = 0 v = 0

n n

2-i Jv^n-v 2-i (Zv'n —v
v = 0 v = 0

which tends to s whenever tn-*s, i.e. Nf includes Np. Similarly, Nf includes Nq.

Corollary. The methods Np and Nq are consistent, i.e. if sn—*s (Np) and
sn-*s' (Nq), then s = s'.

From Theorem 2 we can at once deduce a result of Silverman and Szasz
((4), Theorem 14), namely that, if p(z) = (l+z+...+zJ)/(l+j), q(z) =
( l+z+. . .+z f c ) / ( l + fc), then a sufficient condition for Nq to include iVp is that
1 +j should be a factor of 1 + k. Theorem I (below) shows that the condition
is also necessary. The next theorem is a generalisation of another of their
results ((4), Theorem 15).

Theorem 3. If h(z) is the highest common factor of p(z) and q{z), normalized
so as to make h{Y) = 1, then a necessary and sufficient condition for a sequence
to be both Np- and Nq-convergent is that it be Nh-convergent.

Proof. That the condition is sufficient follows from Theorem 2. To prove
that it is necessary, we observe that there are polynomials

a(z)= £ anz", fc(z) = £ bnz"
n= 0 n = 0

such that

q(z)= £ hnz"
n = 0
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n n

say. Hence if tn = £ pvsB_v-»s and «„ = £ 4vsn-v-*s. then
v = 0 v = 0

Z £ £ (
v = O v = O v = O

since h{\) = p{\) = g(l) = 1. The required result follows.

3. The Main Theorems
It is to be supposed throughout the rest of the note that

p(0) ft 0.

This restriction is not a serious one, since, if r is a positive integer and

/(z) = zrp(z) = ' £ / v z \ then Y /A+r-v = Z PA-v so that iVp and JV,
v = 0 o = 0 v = 0

are equivalent.
Theorem I. In order that Nq should include Np it is necessary and sufficient

that q(z)/p(z) should not have poles on or within the unit circle.

Theorem II. If q(z)/p(z) has poles of maximum order m on the unit circle
and does not have poles within the unit circle, then (C, m)Nq includes Np, but,
for any e>0, there is an Np-convergent sequence which is not (C, m — e)Nq-
convergent.

Theorem HI. If q(z)/p(z) has a pole within the unit circle, then there is an
Np-convergent sequence which is not ANq-convergent.

Noting that (C, 0) is identical with Nq when q{z) is 1 (i.e. q0 = 1, qn = 0
for n>0), and that A p̂ always includes (C, 0), we obtain the following corollaries
of the theorems.

I'. In order that Np should be equivalent to (C, 0) it is necessary and sufficient
that p(z) should not have zeros on or within the unit circle.

IT. If p{z) has zeros of maximum order m on the unit circle and does not
have zeros within the unit circle, then (C, m) includes Np, but, for any e>0,
there is an Np-convergent sequence which is not (C, m — e)-convergent.

III'. If p(z) has a zero within the unit circle, then there is an Np-convergent
sequence which is not A-convergent.

Result I' is essentially equivalent to a theorem due to Kubota (3).
Some of the principal results established by Boyd and myself in a recent

paper (1) can be deduced from II' by considering p(z) = 2"m(l+z)m and
p(z) = a + ) ? z + ( l - a - / ? ) z 2 with a, j? real.

4. Proof of Theorem III, and Lemmas

Proof of Theorem HI. We start with this theorem because its proof is
simpler than those of Theorems I and II.

Since l/p(z) is analytic in a neighbourhood U of the origin, there is a
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sequence {sn} such that, for z in U,

£ V
n = O

Let

Then, for z in U,

and

Hence t0 = 1, /„ = 0 for «>0, and so {jn} is iVp-convergent to 0. On the other
hand Ewnz" has radius of convergence less than unity, because, by hypothesis,
q(z)lp(z) has a pole within the unit circle. Consequently, {«„} is not ,4-convergent
and so {sn} is not -4iV,-convergent.

We now prove two lemmas.

Lemma 1. If q{z)\p(z) has poles Xu A2, ••-, X, (and no others) of orders
mu m2, ..., mh and if, for n = 0, 1, ...,

n n

U= E PvSn-v, « « = E «vS«-v>
v = 0 v = 0

n I mr n

«„= E C A - . + E E cr,p E
v = 0 r = l p = l v = 0

c'j are constants, depending only on p0, pu ..., pp q0, qu ..., qk, such
that cn = Ofor n>k—j and crmr #0 .

Proof. Let N be any positive integer, and let

fsBfor 0<Ln<LN,
\0for n>N,

_ fs
~ \0

' n = L PAi-v» «n= L «vSn-v>
v = 0 v = 0

so that t'n = tn, u'n = un for O^n^N, and t'n = u'n = O for n>j+k+N. Then
00 00 00 00

E t'nz
n = p{z) E SBZ", E «BZ"=<Z(Z) E «iz".

n = 0 n = 0 n = 0 B = 0

and so, since 0 is not a pole of q(z)jp(z),
00 /T/V\ °°

HZ ^ / t Z
„ = 0 " /?(z) n = 0

f co I mr / \ ~ p l «>

= 1 y cnz
n+ y y c r B [ i - - ) i y t'zn

(n = 0 r = l p = l V V l » = 0
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where cn = 0 for n>k—j and c r m r ^ 0 . Expanding (l-z/Ar)"p, with
| z |<min(| At |, | X2 \, ..., | A, |), and equating coefficients, we obtain the
required identity for O^n^N. Since N can be taken arbitrarily large it must
hold for all n.

Lemma 2. If\X\>\,pis any real number, and tn-y0, then

n-»oo v = 0 \ p— 1 /

Since y I I A"v is absolutely convergent, the result is evident.
»=o\ P - l /

5. Proof of Theorem I, and Lemmas

Proof of Theorem I (sufficiency). The hypothesis is that the function
q{_z)jp(z) does not have poles on or within the unit circle. If it does not have
any poles at all it must be a polynomial and so, by Theorem 2, Nq includes
Np. Otherwise, it follows from Lemmas 1 and 2 that sn-*0 (Nq) whenever
sn-*0 (Np), and hence that sn-*s (Nq) whenever sn-*s (Np).

The necessity part of Theorem I is a consequence of Theorems II and III.
It remains only to prove Theorem II and for this we require three additional
lemmas.

Lemma 3. If\X\ = 1, X ^ 1, a> - 1 , P> - 1 , then

Here and elsewhere it is to be assumed that powers of complex numbers
have their principal values.

A proof of the above lemma is given in (2), §6.9. Using a similar method
of proof we shall establish

Lemma 4. If | X \ = \ n | = 1, A # 1, n # 1, A ^ fi, a > - l , P>-1,
y> — 1, and

then

^ fn+p\ -nn
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Proof. Note that, within the unit circle,

£ WnZ
n = ( l -

n = 0

say, so that

iiwn =
Jc

2niwn = w(z)z " dz
Jc

where C is the circle | z | = p< 1. Let zt = 1, z2 = A, z3 = ^, and let n> \J5
where (5 = min (| zy — z2 |, | z2—z3 |, | z 3 -Z! |). Then, by Cauchy's theorem,

3 r
2niwn = £ '

r=1JCr

w(z)z-'-1dz, (1)

where Cr is the contour formed by the circle \ z—zr\ = l/« and the infinite
segment z = zrt, T ^ 1 +1/«, the latter being described twice.

Let u(z) = ( l -

so that

I u{z)z~n-1dz= I u{z)z-"-xdz
JCi JC

y^fn + y
\ y

Further, for z on Cu

fS

Consequently, the contribution of the circle to

{w(z)-u(z)}z-"-1dz

is 0{(l/«Tv(l/«)} = O(n>~1), and that of the rest of CX (see (2), 138) is

Hence

f -n-l _ f -«-l -0-

= 2ni(l-llX)-"-\l-l/n)-p-1["^r ) +O(ny'1). (2)
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Now

f \V(Z)Z--Idz= f W(AZ)(AZ)-'1-1^2

= X~" I {\-z)-'-\l-
Jc,

(3)

by (2), since | /i/A | = 1, /i/A / 1, 1M * 1.
Similarly,

I w(z)z~"-ldz = 2niii-n(l-n)~y-\l-nlXy"-1 (n + P\ +0{nfi~1).

The required conclusion follows from the numbered identities.

Lemma 5. If \ X \ = 1, X ^ 1, oc> — 1 and fn-»0, then

(4)

v o ( ^ v ' « - v ^ 0 (C, a

Proof. We have

which, by Lemma 3, is

and this is the required conclusion.

6. Proof of Theorem II

v = 0 v = 0

Our hypothesis is that the function q{z)jp(z) has poles of maximum order
m on the unit circle and that its other poles (if any) lie outside the unit circle.
Also/?(1) = 1 and so z = 1 is not a pole of q{z)jp{z). Hence, by Lemmas 1, 2
and 5, if sn-+0 (Np), i.e. if tn-+0, then wn->0 (C, m), i.e. jn->0 (C, m)Nq. Since
all the summability methods concerned are regular, it follows that sn->s
(C, m)Nq whenever sn-^s (Np), i.e. that (C, m)Nq includes Np.

We have thus established the first part of Theorem II. To prove the
remainder, suppose, as we may without loss in generality, that

Let the poles of q(z)jp{z) be Xu X2, ..., X, with orders mu m2, ..., m,. Suppose
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the numbering to be such that the first /' of these are the ones on the unit circle
and that

ml = m = max(m1, m2, ..., m,-).

Let {sn} be the sequence for which

, - * , - ( • ; ;

the existence (and uniqueness) of the sequence {sn} being ensured by the condi-
tion p0 = p(0)^0. Then, taking crp to be 0 if p>mr, we have, by Lemma 1,

where

i ' K » / v + p - A
2, Cv'n-v+ Zv 2. Cr,p L 1 J / r ' B - v " ' > ' »

» = 0 r = l ' + l p = l v = 0 \ p— 1 /
n

I.V = 0

( r --1
 g " /v + p -

Un = | r = l p = l '' v = 0 \ p — ]

U i f m = l;

( v v fv+m —1\ ,_v/w-v—11 ,v_n._ „

r Z 2 ^ v Z . ( ... , )Af
v( )lv! " i f / '> l ,

0 if/' = 1;

n

v = o \ m — 1 / V —e / \ m — £ /
Now / n ^0 , cv = 0 for v>k—j, and | A, |>1 i f / ^ r> / ' : hence, by Lemma 2,

Further, \Xr\ = 1, Ar # 1 for r = 1, 2, ...,/', so that, by Lemma 5,

and, by Lemma 4,

since m—e>max (m —1, — e) and m—e—1> — 1.
Consequently «n-w*4)->0(C, m-e); but, by Lemma 3 (or by Theorem 46

in (2), since u<4) ^ o(nm~e)). "i4) does not tend to a limit (C, w-e) . The
sequence {«„} is therefore not (C, m—e)-convergent; so that the sequence
{sn} is not (C, w—6)7V,-convergent though it is A^-convergent to 0.
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