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Abstract

Tomato (Solanum lycopersicumL.) is extremely sensitive to inhibitors of acetohydroxyacid synthase
(AHAS; also known as acetolactate synthase [ALS]). Utilizing ethyl methanesulfonate mutagenesis
of seeds of the commercial tomato line ‘M82’, we developed a tomato mutant, HRT1, that showed
high resistance to imidazolinone herbicides (which act by inhibiting AHAS) in the greenhouse and
under field conditions. The activity of AHAS extracted fromHRT1was significantly less affected by
imidazolinone herbicides than that from the parental line M82. Following imazapic treatment, no
differences were found in the content of free branched-chain amino acids in HRT1 tissues as
compared to a dramatic decrease in M82 tissues. No differences were found in the susceptibility of
AHAS to sulfonylurea herbicides. A single point transition mutation of C to T in the AHAS1 gene
located on chromosome 3 was detected. This mutation resulted in substitution of alanine by valine
at amino acid position 194, corresponding to 205-Alal in Arabidopsis. Ligand–protein contact
analysis showed that replacement of alanine by the larger hydrophobic valine residue results in
increased repulsion, hindering herbicide binding. Segregation analysis indicated that the resistance
to imidazolinones in line HRT1 is due to a single recessive gene.

Introduction

In this paper, we present the results of our study of the resistance mechanism of the tomato
(Solanum lycopersicum L.) mutant line HRT1, previously obtained by ethyl methanesulfonate
(EMS) mutagenesis of seeds of the commercial tomato line ‘M82’. The mutant was found to be
highly resistant to the imidazolinone herbicides imazamox, imazapic, and imazapyr;
pyrithiobac-sodium (pyrimidinylthiobenzoic acid group); and propoxycarbazone sodium
(sulfonylaminocarbonyl triazolinone group) (Han et al., 2012). HRT1 did not differ from M82
in its response to the sulfonylurea herbicides trifloxysulfuron, sulfosulfuron, and chlorsulfuron
(Dor et al. 2016).

Wide use of acetohydroxyacid synthase (AHAS)-inhibiting herbicides has resulted in the
appearance of AHAS herbicide–resistant weed populations (Gaines et al. 2020; Owen et al.
2012). Nevertheless, AHAS-inhibiting herbicides remain important in the continuously
decreasing repertoire of herbicides, due to their broad spectrum of weed control, low toxicity to
mammals, high selectivity, and high activity. which allows for low application rates (Owen et al.
2012), and in particular, their effectiveness against broomrapes (Orobanche and Phelipanche
species) (Dor et al. 2016).

In addition, resistance to AHAS-inhibiting herbicides has been obtained by mutagenesis in
many crop lines, such as corn (Zea mays L.) (Newhouse et al. 1991), Arabidopsis thaliana L.
(Haughn and Somerville 1986), sugar beet (Beta vulgaris L.) (Hart et al. 1992; Wright and
Penner 1998), canola (Brassica napus L.) (Guo et al., 2022; Swanson et al. 1989), soybean
[Glycine max (L.) Merr.] (Sebastian et al. 1989; Ustun and Uzun 2023), tobacco (Nicotiana
tabacum L.) (Chaleff and Ray 1984), cotton (Gossypium hirsutum L.) (Chen et al. 2023;
Rajasekaran et al. 1996), rice (Oryza sativa L.) (Croughan 1998; Piao et al. 2018), wheat
(Triticum aestivum L.) (Chen et al. 2021; Pozniak and Hucl 2004), barley (Hordeum vulgare L.)
(Lee et al. 2011), and chickpea (Cicer arietinum L.) (Galili et al. 2021). Imidazolinone herbicides
act by inhibiting AHAS (Duggleby and Pang 2000; Iwakami et al. 2012; Owen et al. 2012; Schloss
1995), which is a key enzyme in the biosynthetic pathway of the branched-chain amino acids
leucine, isoleucine, and valine. The consequent deficiency in these amino acids results in plant
death (Han et al., 2012; Iwakami et al. 2012; McCourt et al. 2005). In most cases, resistance is
associated with mutations in the catalytic large-subunit AHAS gene family resulting in the
substitution of a single highly conserved amino acid residue in the channel leading to the
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herbicide-binding site of the AHAS protein (Duggleby et al. 2008;
Lonhienne et al. 2022b; Tranel and Wright 2002; Walsh et al.
2012). At least 18 amino acid residues have been identified in
bacteria, fungi, or plants in which mutation provides resistance to
AHAS-inhibiting herbicides. Among them, mutations to amino
acid residues Ala-122, Met-124, Pro-197, Arg-199, Thr-203, Ala-
205, Lys-256, Met-351, His-352, Asp-375, Met-570, Trp-574, Phe-
578, and Ser-653 (numbering according to A. thaliana) have been
reported to be involved in plants’ resistance to imidazolinones
(Duggleby et al. 2008; Galili et al. 2021). Mutations can lead to
AHAS inhibitor cross-tolerance, and some lead to broad cross-
resistance to all classes of AHAS inhibitors (Duggleby et al. 2008).

In this study, we identified a mutation in the AHAS gene in
HRT1 tomato plants and characterized the sensitivity of the
enzyme to the imidazolinone herbicides imazapic and imazapyr, as
well as the sulfonylurea herbicides rimsulfuron and sulfosulfuron.
The prevention of HRT1’s death due to branched-chain amino
acid starvation following imazapic treatment was also shown. To
ascertain the heredity of the resistance trait in the HRT1 line and to
determine whether these alleles are recessive or dominant,
segregation analysis was conducted. Ligand–protein contact
analysis further allowed us to explain the changes in binding
forces after modification of the protein–ligand binding region.

Materials and Methods

Plant Material

Tomato (Solanum lycopersicum L.) seeds of ‘M82’ were obtained
from Tarsis Agricultural Chemicals (Petah Tikva, Israel). HRT1, a
tomato mutant that is highly resistant to imidazolinone herbicides,
was obtained by EMS mutagenesis (Dor et al. 2016).

Determination of AHAS Activity

Response of the enzyme AHAS to the herbicides was determined
in vivo using crude enzyme extracts isolated and partially purified
from young M82 and HRT1 seedlings, as described in Dor et al.
(2017). Stock solutions of the tested herbicides were prepared in
tetrahydrofuran. Aliquots of these solutions were taken and dried
in test tubes. Tetrahydrofuran without herbicides was used in
control tubes. AHAS activity was expressed as percentage of the
control treatment containing no herbicides. The experiment was
conducted in four replicates. Final herbicide concentrations in the
reaction mixture were: imazapic (Cadre®, 240 g ai L−1, BASF,
Research Triangle Park, NC, www.basf.com) and imazapyr
(Arsenal®, 240 g ai L−1, BASF) at 1, 5, 10, 50, 100, and 200 μM;
sulfonylurea rimsulfuron (Titus®, 250 g kg−1, Corteva Agriscience
UK, Melbourn, Cambridgeshire, UK, www.corteva.co.uk) at 0.05,
0.1, 0.5, 1, 5, and 10 μM; and sulfosulfuron (Monitor®, 750 g ai L−1,
Monsanto, St Louis, MO, USA, www.monsanto.com) at 0.0001,
0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, and 50 μM.

Determination of Free Amino Acids

M82 and homozygote HRT1 plants were grown in 2-L pots in a
greenhouse. At the 4-true-leaf stage, five plants of each line were
sprayed with imazapic at a rate of 14.4 g ai ha−1. After 3 wk, leaf
samples of treated and non-treated plants were analyzed for free
amino acids content. Extraction, derivatization, and amino acid
analysis were conducted according to Dor et al. (2017). All tests
were performed in five replicates.

Sequencing of AHAS Genes

The tomato genome contains three large AHAS genes located on
chromosomes 3, 6, and 7 (Tomato Genome Consortium 2012).
To determine the DNA sequences of the three AHAS genes, total
genomic DNA was extracted from young leaves of M82 and
HRT1 plants at the 4-true-leaf stage, as previously described in
Fulton et al. (1995). All three AHAS genes of M82 and HRT1
plants were PCR amplified, and the amplified fragments were
sequenced at Hylabs Laboratory (Rehovot, Israel, https://www.
hylabs.co.il/). Formutation determination, the DNA sequences of
the amplified fragments of each AHAS gene were compared to
their corresponding wild-type (WT) sequences published by the
Tomato Genome Consortium utilizing DNAMAN 4.2 (Lynnon
Biosoft, San Ramon, CA, USA).

Segregation Analysis

To ascertain the heredity of the resistance trait in the HRT1 line
and to determine whether these alleles are recessive or dominant,
we grew 10 plants that were homozygous for the resistance
mutation and 10 homozygous M82 plants. F2 plants derived from
a cross between these two lines followed by self-pollination were
screened for resistance to imazapic in a greenhouse and under
field conditions as follows: 75 plants (5 groups of 15 plants) were
planted in 2-L pots in Newe Ya’ar soil (medium-heavy clay–loam
soil containing, on a dry weight basis, 55% clay, 23% silt, 20%
sand, 2% organic matter, pH 7.1), 1 plant per pot, in a greenhouse;
an additional 74 plants were planted in an open field at Newe
Ya’ar research center (32.70917°N, 35.17989°E). M82 and HRT1
plants (10 of each) were planted in the greenhouse and in the field
(for a total of 40 plants) as positive a negative control. At the 6-
true-leaf stage, five M82, five HRT1, and all F2 plants were
sprayed with imazapic at a rate of 24 g ai ha−1. The other five M82
and five HRT1 plants were sprayed with water (control). The
number of resistant and sensitive plants was evaluated visually 3
wk after treatment. Plant injury was assessed on a scale of 5
(healthy, no damage) to 1 (death). For the segregation pattern,
Pearson’s chi-square analysis with JMP5 software (SAS Institute,
Cary, NC, USA) was used to evaluate the suitability of the single-
gene model.

Ligand–Protein Contact Analysis

Ligand–protein contact analysis, which predicts the binding forces
obtained after chemical modification of the protein–ligand binding
region, was conducted using LPC software (Sobolev et al. 1999).
The model for protein-structure prediction was built as described
in Sobolev et al. (2005).

Statistical Analysis

Data on herbicide influence on AHAS activity were computed by
nonlinear regressions using Sigma-Plot v. 11.01 (SPSS, Chicago,
IL) as Y = y0 þ a

1þ x
x0ð Þb for imazapic and sulfosulfuron, and Y =

a
1þ x

x0ð Þb for imazapyr and rimsulfuron. The amino acid content

results were subjected to ANOVA using JMP Software v. 5.0 (SAS
Institute). The data were separated by standard error of the mean
(SEM) and compared by Student’s t-test (P < 0.05).
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Results and Discussion

Determination of the Mutation

Mechanisms accounting for herbicide resistance in plants include
increased metabolism, sequestration, reduced uptake and/or
translocation, and modification of the herbicide target site
(Lonhienne et al. 2022b; Sala et al. 2008). In most cases describing
the resistance mechanism to AHAS-inhibiting herbicides, resis-
tance is due to a point mutation(s) in the gene(s) encoding the
AHAS catalytic subunit, reducing the enzyme’s sensitivity to
herbicides (Han et al. 2012; Lonhienne et al. 2022a, 2022b).

Sequence analysis of the three AHAS genes revealed a single
point transition mutation of C to T in AHAS1 at position 581
(Figure 1A) located on chromosome 3 (Tomato Genome
Consortium 2012). This resulted in a substitution of alanine by
valine at position 194, corresponding to Ala-205 in Arabidopsis
(Figure 1B). This is a common mutation providing resistance to
imidazolinones (Jain and Tar’an 2014), as reported for chickpea
(Thompson and Tar’an 2014), sunflower (Helianthus annuus L.)
(White et al. 2003), and the weeds redroot pigweed (Amaranthus
retroflexus L.) and eastern black nightshade (Solanum ptycanthum
Dunal) (Ashigh and Tardif 2007; Beckie and Tardif 2012;
McNaughton et al. 2005). To the best of our knowledge, this is
the first report of an alanine to Val-194 (according to Arabidopsis
205) mutation in imidazolinone-resistant tomatoes. No additional
mutations were found in this gene, or in AHAS2 or AHAS3 located
on chromosomes 7 and 6, respectively (data not shown).

Response of AHAS to Herbicides

The activity ofAHAS extracted fromHRT1 andM82 tomato lines in
the presence of imidazolinone or sulfonylurea herbicides was
determined in vitro using crude enzyme extracts. AHAS enzyme
extracted from the parental tomato lineM82 was considerably more
sensitive to imazapic than that extracted from HRT1 (Figure 2A).
The activity of the M82 enzyme was already significantly decreased
at 1 μM imazapic, a concentration that did not affect the AHAS
extracted from HRT1; complete inhibition of the M82 enzyme was
obtained at 10 μM, whereas the HRT1 enzyme was still active at 100
μM; LD50 for M82 was 0.47 μM compared with 3.31 μM for HRT1.
M82 AHAS was also more sensitive to imazapyr than the HRT1
enzyme (Figure 2B); LD50 forM82 was 2.52 μMcompared with 6.65
μMforHRT1. On the other hand, AHAS enzymes of both lines were
extremely sensitive to the sulfonylurea herbicides rimsulfuron and

sulfosulfuron (Figure 2C and 2D). LD50 values were 0.02 and 0.04
μM for rimsulfuron and 0.0008 and 0.0018 μM for sulfosulfuron, for
M82 and HRT1, respectively. The HRT1 resistance to the
imidazolinone group herbicides was thought to be due to a change
in the herbicide’s target site on theAHAS protein. Interestingly, at all
rates of imidazolinones, AHAS of HRT1 retained its activity at 25%
to 45% of the control, indicating that only one of the three AHAS
enzymes had become resistant. Resistance caused by point
mutations in the AHAS gene may be specific to imidazolinone
herbicides, to sulfonylurea herbicides, or to a broad spectrum of
AHAS inhibitors (McCourt et al. 2006). For example, substitutions
of Pro-197 usually provide resistance to sulfonylurea but not
imidazolinones, whereas substitutions of Ala-122 result in imida-
zolinone but not sulfonylurea resistance. In many cases, alterations
of Ala-205 to Val-205 have been reported to provide resistance to
both groups of herbicides (Saari et al. 2018; Tranel and Wright
2002). Both the sulfonylureas and imidazolinones inhibit the
enzyme by bindingwithin and obstructing the channel leading to the
active site. However, only 10 amino acid residues are involved in the
binding of both sulfonylureas and imidazolinones. The other
residues interact only with sulfonylureas or only with imidazoli-
nones. Thus, the binding sites of the two classes of herbicides only
partially overlap (McCourt et al. 2006). Unfortunately, we did not
find any resistance of the HRT1 mutant to sulfonylurea, aside from
partial resistance to foramsulfuron (Equip®, 22.5 g ai L−1, Bayer AG,
Leverkusen, Germany, www.bayer.com/) (Dor et al. 2016).

Influence of Imazapic on Contents of Total and Branched-
Chain Amino Acids in Plant Tissues

Three weeks after being sprayed with imazapic, total amino acid
contentwas significantly reduced in leaves ofM82, from2,984 nMg−1

to 1,964 nM g−1, but not in leaves of HRT1 (Figure 3A). In a previous
study, imazapic significantly reduced total free amino acids in
Phelipanche aegyptiaca (Pers.) Pomel. plants attached to HRT1
plants, but not in the roots of the HRT1 plants (Dor et al. 2017). A
reduction in total free amino acids was also obtained in the leaves and
roots of imazethapyr-treated pea (Pisum sativum L.) (Zabalza et al.
2013), and in canola treated with ZJo273 (a novel AHAS inhibitor)
(Tian et al. 2014). Similar observations were made for the total
content of branched-chain amino acids (Figure 3B) and for isoleucine
(Figure 3C) and valine (Figure 3D) content: following imazapic
treatment, total branched-chain amino acids in leaves of M82 plants
were significantly reduced from 344 to 258 nMg−1; isoleucine content
was significantly reduced from 102 to 68 nM g−1, and valine content

Figure 1. Sequence analysis of AHAS1 located on chromosome 3. (A) AHAS1 nucleotide sequences (541–597) of wild-type (WT) and HRT1 tomato. The C to T transition at position
581 is highlighted in green. (B) WT and HRT1 tomato AHAS1 amino acids 181–199 (192–210 according to Arabidopsis thaliana [ARA]). The alanine to valine transition at position 194
(205 according to Arabidopsis).
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was significantly reduced from 106 to 78 nM g−1 (Figure 3B–D). A
small, nonsignificant reduction (from 136 to 111 nm g−1) was also
obtained for leucine content in the leaves of M82 plants after
imazapic treatment (data not shown). In HRT1 leaves, there were
no significant differences in the total content of branched-chain
amino acids (Figure 3B), or in the leucine (data not shown),
isoleucine, or valine content (Figure 3C and 3D). A nonsignifi-
cant loss in total content of amino acids (2,792 nM g−1 compared
with 3,698 nM g−1 in the control) (Figure 3A) was observed.
Branched-chain amino acids also were decreased in AHAS
inhibitor–treated pea (Ray 1984), maize (Anderson and Hibberd
1985), and other plants (Zhou et al. 2007). In addition, the levels
of free leucine, isoleucine, and valine were significantly decreased
in imazethapyr-treated chickpea lines sensitive to this herbicide,
but not in resistant lines (Prakash et al. 2017).

Segregation Analysis

Mutation inheritance is important for breeding programs in
which the resistance is to be introduced into elite cultivars.

Segregation analysis indicated that 16 (21%) out of 75 and 21
(28%) out of 74 F2 (M82 × HRT1) plants were resistant to
imazapic at a rate of 24 g ai ha−1 under greenhouse and field
conditions, respectively. The resistance segregated 1:3 in the
progeny (χ2 = 0.46, P = 0.5), indicating that resistance to
imidazolinones in line HRT1 is due to a single recessive gene.
Although AHAS resistance segregates as a single semi-dominant
allele in many plant species, such as chickpea (Thompson and
Tar’an 2014), canola (Swanson et al. 1988), soybean (Sebastian
et al. 1989), sunflower (Sala et al. 2008), wheat (Pozniak and Hucl
2004), sorghum [Sorghum bicolor (L.) Moench] (Tesso et al.
2011), and maize (Harms et al. 1990; Newhouse et al. 1991), in
other soybean mutants, it segregates, as in our case, as as a single
recessive gene (Sebastian and Chaleff 1987). Recessive inherit-
ance is advantageous when transferring the resistance trait to
target plants, because it is very easy to screen for this trait, and all
resistant plants are homozygous. In contrast, dominant
inheritance has the advantage of producing inbred seeds,
because the trait only needs to be passed on to one of the
hybrid parents.

Figure 2. Influence of imazapic (A), imazapyr (B), rimsulfuron (C), and sulfosulfuron (D) on AHAS activity of M82 and HRT1 tomato plants. Data were computed by nonlinear
regression using Sigma-Plot v. 11.01. (A) Y = y0 þ a

1þ x
x0Þbð ; for M82: yo= 2.3, a= 100, x0= 0.47, b= 1.24, R2= 0.98, P< 0.0001; for HRT1: yo = −2.05, a= 100, x0= 3.31, b= 0.74,

R2= 0.99, P < 0.0001. (B) Y = a
1þ x

x0ð Þb; for M82: a= 100, x0= 2.52, b = 0.97, R2= 0.99, P < 0.0001; for HRT1: a = 100, x0= 6.55, b= 0.48, R2= 0.96, P < 0.0001. (C) Y = a
1þ x

x0ð Þb ; for M82:
a = 100, x0= 0.02, b= 1.3, R2= 0.99, P< 0.0001; for HRT1: a = 100, x0= 0.04, b= 0.62, R2= 0.95, P< 0.0001. (D) Y = yo þ 100

1þ x
x0ð Þb ; for M82: yo= 1.72, a= 100, x0= 0.0008, b= 0.99,

R2= 0.98, P< 0.0001; for HRT1: yo= 0.1, a= 100, x0= 0.018, b= 1.14, R2= 0.99, P< 0.0001.
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Mutation Changes AHAS1 Structure

The ligand–protein contact server (LPC software; Sobolev et al.
2005) analyzes and visualizes atomic interactions within a protein
or protein complex, providing characteristics for every atom–atom
contact (atom properties, distance, and contact area). We used this
software to examine the microenvironment of the mutated
residues. The model of Arabidopsis AHAS1 in complex with the
imidazolinone imazaquin (IQ) revealed that IQ blocks the active
channel of the enzyme formed by the interface of two catalytic
monomers (Figure 4A). This corresponds well with work done by
McCourt et al. (2006), who presented the first 3D structure of
Arabidopsis thalianaAHAS in complex with the imidazolinone IQ.
Ligand–protein contact analysis showed that the closest distance
from Ala-205 to IQ is between the hydrophobic CB atom of Ala-
205 and the hydrophilic OC atom of IQ (Figure 4B). This distance
is large, and the repulsion is very small. Replacement of Ala-205 by
the larger hydrophobic residue Val-205 results in a closer distance
to the hydrophilic OC atom of IQ, thereby increasing repulsion
and making herbicide binding more difficult (Figure 4). This
orientation of Val-205 is due to repulsion from the hydrophilic
atom of Thr-203. In this orientation, the distance between the
hydrophobic C atom of Val-205 and the hydrophilic O atom of IQ
is 3.6 Å. This is in agreement with Jain and Tar’an (2014), who
proposed that the presence of Ala-205 in the active site allows for
imazamox binding, whereas the presence of valine at the same
position disrupts this binding. Moreover, in that study, partially
hydrophobic cluster analysis showed that the presence of the more
hydrophobic residue (valine) instead of alanine results in a
conformational change at the protein interface, modifying the
herbicide-binding site (Jain and Tar’an 2014). Thus, the enzyme

Figure 4. Protein–ligand complex of AHAS1 from Arabidopsis with imazaquin (IQ;
PDB entry1Z8N). (A) Two molecules of IQ (purple) block the active channels in the
AHAS protein dimer (yellow and green). (B) IQ molecule interaction with amino acid
residues of the enzyme. Purple, IQ; blue, valine in position 205; red – Thr-203. The
orientation of valine is due to repulsion from the hydrophilic O atom of Thr-203. In this
orientation, the distance between the hydrophobic C atom of the valine and
hydrophilic atom O of IQ is 3.6 Å.

Figure 3. Influence of imazapic treatment on the amino acid content in M82 and HRT1 tomato plant leaves. M82 and HRT1 plants were sprayed with imazapic at a rate of 14.4 g ai
ha−1. After 3 wk, leaf samples of treated and nontreated plants were taken for analysis of total amino acids (A), total branched-chain amino acids (B), isoleucine (C), and valine (D).
Vertical lines present standard error of themean (SEM); different letters indicate significant differences between control and imazapic-treated plants of the same line according to
Student’s t-test.
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becomes inaccessible to imidazolinone herbicides, and branched-
chain amino acid starvation is prevented (Figure 2 A and B).
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