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Global and non Global Solutions for Some
Fractional Heat Equations With Pure
Power Nonlinearity

Tarek Saanouni

Abstract. _e initial value problem for a semi-linear fractional heat equation is investigated. In
the focusing case, global well-posedness and exponential decay are obtained. In the focusing sign,
global and non global existence of solutions are discussed via the potential well method.

1 Introduction

Consider the Cauchy problem for a fractional nonlinear heat equation

(1.1) {
u̇ + (−∆)αu + cu = є∣u∣p−1u;

u∣t=0 = u0 ,

which is a model of the so-called anomalous diòusion, a much-studied topic in phy-
sics, probability and ûnance. See [1, 13, 17, 20] and the references therein.

Henceforth, N ≥ 2, α ∈ (0, 1), є = ±1, the constant c ∈ {0, 1}, and u is a real valued
function of the variable (t, x) ∈ R+ × RN . _e fractional Laplacian operator stands
for (−∆)αu ∶= F−1(∣ξ∣2αFu).

_e energy space C([0, T],Hα(RN)) is naturally adapted to study the fractional
heat problem (1.1) using, with minimal regularity, the following energy identity:

∂tEc(t) ∶= ∂tEc(u(t))

∶= ∂t[ ∫
RN

(
1
2
∣(−∆)

α
2 u(t)∣2 +

c
2
∣u(t)∣2 −

є
1 + p

∣u(t)∣1+p
)dx]

= −∫
RN

∣u̇(t, x)∣2 dx .

If є = −1, the energy is positive and (1.1) is said to be defocusing. For є = 1, the energy
no longer allows a control of theHα norm of an eventual solution. In such a case, (1.1)
is focusing.

In the classical case α = 1, the equation (1.1) has been extensively studied in the
scale of Lebesgue spaces Lq(RN). _e critical index qc ∶=

N(p−1)
2 gives the following

three diòerent regimes.
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Case 1. Subcritical case, q > qc ≥ 1: Weissler [18] proved local well-posedness in
C([0, T); Lq(RN)) ∩ L∞loc(]0, T]; L∞(RN)). _en Brezis–Cazenave [4] showed un-
conditional uniqueness.

Case 2. Critical case, q = qc : _ere are two cases.
2.1 qc > p + 1: local well-posedness holds [4, 18];

2.2 q = qc = p + 1: Weissler [19] proved a conditional well-posedness.

Case 3. Supercritical case, q < qc : _ere is no solution in any reasonable weak sense
[4, 18, 19]. Moreover, uniqueness is lost [8] for the initial data u0 = 0 and 1 + 1

N < p <
N+2
N−2 .

See [9] for exponential type nonlinearity in two space dimensions.
_is paper seems to be one of fewworks treating well-posedness issues of the semi-

linear fractional heat equation in the energy space [21]. _e purpose of this paper is
two-fold. First, global well posedness and exponential decay are established in the
defocusing case. Second, in the focusing sign, the existence of global and non global
solutions is discussed via a potential-well method. Compared with the classical case,
we need to operate with variousmodiûcations due to the non-locality of the fractional
Laplacian.

_e rest of the paper is organized as follows. _e second section is devoted to
giving the main results and some tools needed in the sequel. Section three deals with
local well posedness of (1.1). Section four contains a proof of the global existence of
solutions and scattering in the critical case with small data. _e û�h section deals with
the associated stationary problem. Section six is about global existence of solutions
with data in some stable sets in the spirit of Payne and Sattinger [15]. In the last section,
the existence of inûnitely many non global solutions near the ground state is proved.

We mention that C will be used to denote a constant that may vary from line to
line; A ≲ B means that A ≤ CB for some absolute constant C. For simplicity, let
∫ ( ⋅ ) dx ∶= ∫RN ( ⋅ ) dx, let Lp ∶= Lp(RN) be the Lebesgue space endowed with the
norm ∥ ⋅ ∥p ∶= ∥ ⋅ ∥Lp and let ∥ ⋅ ∥ ∶= ∥ ⋅ ∥2. _e classical fractional Sobolev space is
Hα ,p ∶= (I − ∆)−

α
2 Lp , and Hα ∶= Hα ,2 is the energy space. Using the Plancherel

_eorem, the following norms are equivalent

∥u∥Hα ∶= (∫
RN

(1 + ∣ξ∣2)α ∣û(ξ)∣2 dξ)
1
2
≃ (∥u∥2

+ ∥(−∆)
α
2 u∥2

)

1
2
.

We denote the real numbers p∗ ∶= 1 + 4α
N , p

∗ ∶= pc − 1 ∶= N+2α
N−2α , and we assume

henceforth that

c = 1 − δp∗
p =

⎧⎪⎪
⎨
⎪⎪⎩

0 if p = p∗ ,
1 if p /= p∗ .

Finally, if T > 0 and X is an abstract functional space, we let

CT(X) ∶= C([0, T], X), Lp
T(X) ∶= Lp

([0, T], X),

and let Xrd be the set of radial elements in X. Moreover, for an eventual solution to
(1.1), we denote by T∗ > 0 its lifespan.
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2 Background and Main Results

In this section we give the main results and some technical tools needed in the sequel.
Let us introduce some quantities to be used in this note. If a, b, and λ are three real
numbers and ϕ ∈ Hα , we deûne the scaling ϕλ

a ,b ∶= λaϕ( ⋅

λb ), the so-called constraint
K ca ,b(ϕ) ∶= La ,bEc(ϕ) ∶= ∂λ(Ec(ϕλ

a ,b))∣λ=1, and the operator Hc
a ,b ∶= E

c− 1
2a+NbK

c
a ,b .

For ease of notation, we set E ∶= E1, Ka ,b ∶= K 1
a ,b , and Ha ,b ∶= H1

a ,b .

2.1 Main Results

Results proved in this paper are listed in what follows. First, we deal with global well-
posedness of the heat problem (1.1) in the energy space.

_eorem 2.1 Let N ≥ 2, α ∈ (0, 1), 1 < p ≤ p∗, and u0 ∈ Hα . _en there exists a
unique maximal solution to (1.1), u ∈ C([0, T∗),Hα). Moreover,

(i) u ∈ L1+p
loc ([0, T

∗), L
2N(1+p)

2(N−2α)+N(p−1) );
(ii) E(t) = E(0) − ∫

t
0 ∫RN ∣u̇(s, x)∣2 dsdx, for any t ∈ [0, T∗);

(iii) if c = 1 and є = −1, then T∗ = ∞ and there exists γ > 0 such that ∥u(t)∥Hα =

O(e−γt),when t →∞.

Remarks 2.2 ● Local well-posedness for c = 1 was proved in a diòerent way [21].
● With a classical time translation argument, any local solution to (1.1) in the energy

space is equal to themaximal one (see [3] for uniqueness of free classical solutions).

In the critical case, for small data there exists a global solution to (1.1) which is
asymptotic, as t → +∞ , to a solution of the linear equation v̇ + (−∆)αv = 0. In other
words, the eòect of the nonlinearity is negligible for large times.

_eorem 2.3 Let N ≥ 2, α ∈ (0, 1), and c = 0(p = p∗). _en there exists є0 > 0
such that if u0 ∈ Ḣα satisûes ∥u0∥Ḣα ≤ є0, the problem (1.1) possesses a unique global
solution u ∈ C(R+ , Ḣα). Moreover, there exists u+ ∈ Ḣα such that

lim
t→∞

∥u(t) − e−t(−∆)αu+∥Ḣα = 0.

Second, we are interested in the focusing case. Using the potential well method
due to Payne–Sattinger [15], we discuss global and non global existence of solutions
to (1.1) when the data belongs to some stable sets. Here we are reduced to using the
fact that the fractional elliptic problem (−∆)αϕ + cϕ − ∣ϕ∣p−1ϕ = 0, 0 /= ϕ ∈ Hα

rd
has a ground state in the sense that it has a nontrivial radial solution that minimizes
the problem mc

a ,b ∶= inf0/=ϕ∈Hα{Ec(ϕ) ∣ K ca ,b(ϕ) = 0}. For ease of notation, we set
ma ,b ∶= m1

a ,b . _e existence of the ground state in the subcritical case was partially
known [16]. We extend this result as follows.

Proposition 2.4 Take N ≥ 2, α ∈ (0, 1), p∗ < p ≤ p∗, and a pair of real numbers
(a, b) ∈ R∗

+ ×R+ ∪ {(1,− 2
N )}. _en

(i) mc ∶= mc
a ,b is nonzero and independent of (a, b);
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(ii) there is a ground state solution to (1.1) in the sense that

(2.1) (−∆)αϕ + cϕ − ∣ϕ∣p−1ϕ = 0, 0 /= ϕ ∈ Hα
rd , and mc

= Ec(ϕ).

Remark 2.5 _e previous result was proved in [16] for p∗ < p < p∗ and a, b ≥ 0.

Deûne the following spaces:

Ac ,+a ,b ∶= {ϕ ∈ Hα
∣ Ec(ϕ) < mc

a ,b and K ca ,b(ϕ) ≥ 0};

Ac ,−a ,b ∶= {ϕ ∈ Hα
∣ E(ϕ) < mc

a ,b and K ca ,b(ϕ) < 0};

A+a ,b ∶= A
1,+
a ,b , A−a ,b ∶= A

1,−
a ,b .

Let us discuss the existence of global andnon global solutions to the heat problem (1.1).

_eorem 2.6 Take N ≥ 2, α ∈ (0, 1), є = 1, (a, b) ∈ R∗
+ ×R+ ∪ {(1,− 2

N )}, p∗ < p ≤
p∗, and let u ∈ C([0, T∗),Hα) be the maximal solution to (1.1).
(i) If c = 1 and u0 ∈ A+a ,b , then T∗ = ∞ and u(t) ∈ A+a ,b for any time t ≥ 0. Moreover

for small ∥u0∥, there exists γ > 0 such that ∥u(t)∥Ḣα = O(e−γt),when t →∞.
(ii) If u0 ∈ Ac ,−a ,b , then u blows-up in ûnite time.

_e ûnal result concerns instability by blow-up for stationary solutions to the heat
problem (1.1). Indeed, near ground state, there exist inûnitely many data giving non
global solutions to (1.1).

_eorem 2.7 Take N ≥ 2, α ∈ (0, 1), є = 1, and p∗ < p < p∗ . Let ϕ be a ground state
solution to (2.1). _en for any ε > 0, there exists u0∈ Hα such that ∥u0 − ϕ∥Hα < ε and
the maximal solution to (1.1) with data u0 is not global (T∗ < ∞).

2.2 Tools

Let us collect some classical estimates needed later in this manuscript. We start with
some technical results about the fractional heat equation. Some useful properties of
the free fractional heat kernel are gathered in what follows.

Proposition 2.8 Denoting the free operator associated with the fractional heat equa-
tion Tα(t)ϕ ∶= e−t(−∆)αϕ ∶= F−1(e−t∣y∣2α) ∗ ϕ ∶= Kα(t) ∗ ϕ, yields
(i) Tα(t)u0 is the solution to the linear problem associated with (1.1);
(ii) Tα(t)u0 − є ∫

t
0 Tα(t − s)∣u∣p−1u ds is the solution to the problem (1.1);

(iii) TαTβ = Tα+β , T∗
α = Tα .

Let us recall the so-called Strichartz estimate [22].

Deûnition 2.9 A pair of real numbers (q, r) is said to be admissible if

q, r ≥ 2 and
2α
q

= N(
1
2
−

1
r
) .
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Proposition 2.10 Let N ≥ 2, α ∈ (0, 1), u0 ∈ L2, and let (q, r), (q̃, r̃) be two admis-
sible pairs. _en there exists C ∶= Cq , q̃ such that

∥u∥Lq
t (Lr) ≤ C(∥u0∥ + ∥u̇ + (−∆)αu∥L q̃′

t (L r̃′)
) .

Proof Write

(Kα(t))(x) = F−1
(e−t∣ ⋅ ∣2α

)(x)

=
1

t N
2α
F−1

(e−∣ ⋅ ∣
2α
)(

x
t 1

2α
)

=
1

t N
2α

K(
x
t 1

2α
) ,

where K ∈ (L1 ∩ L∞)(RN); see [6]. _us,

∥Tα(t)ϕ∥ ≲ ∥ϕ∥, ∥Tα(t)T∗
α (s)ϕ∥∞ ≲

1
∣t − s∣ N

2α
∥ϕ∥1 .

_e proof is ûnished via [10, _eorem 1.2].

_e existence of a ground state in the subcritical case is known [16].

Proposition 2.11 Take a pair of real numbers (a, b) ∈ R∗
+ × R+ and p∗ < p < p∗ .

_en
(i) m ∶= ma ,b is nonzero and independent of (a, b);
(ii) there is a ground state solution to (1.1) in the sense that

(−∆)αϕ + ϕ − ∣ϕ∣p−1ϕ = 0, 0 /= ϕ ∈ Hα
rd , and m = E(ϕ).

Now we list some general estimates about fractional derivative calculus. _e next
fractional chain rule (see [5, Proposition 3.1]) will be useful.

Lemma 2.12 Let G ∈ C1(C), α ∈ (0, 1], and let 1 < p, p1 , p2 < ∞ satisfy 1
p =

1
p1
+ 1

p2
<

∞. _en ∥(−∆)
α
2 G(u)∥p ≲ ∥G′(u)∥p1∥(−∆)

α
2 u∥p2 .

_e following fractional Gagliardo–Nirenberg inequality [7, Corollary 1.5] holds.

Lemma 2.13 Let 1 < p, p1 , p2 < ∞, s, s1 ∈ R, and µ ∈ [0, 1]. _en the fractional
inequality ∥u∥Ḣs ,p ≲ ∥u∥1−µ

Lp0 ∥u∥
µ
Ḣs1 ,p1

holds whenever

N
p
− s = (1 − µ)

N
p0

+ µ(
N
p1
− s1) and s ≤ µs1 .

Corollary 2.14 Let 2 ≤ p ≤ 2N
N−2α and µ = N

α (
1
2 −

1
p ). _en ∥u∥p ≲ ∥u∥1−µ∥u∥µ

Ḣα .

_e following Sobolev injections [2, 12] give a meaning to the energy and several
computations done in this note.

Lemma 2.15 Let N ≥ 2, α ∈ (0, 1), and p ∈ (1,∞). _en
(i) W s ,p(RN) ↪ Lq(RN) whenever 1 < p < q < ∞, s > 0, and 1

p ≤
1
q +

α
N ;
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(ii) Hα(RN) ↪ Lq(RN) for any q ∈ [2, 2N
N−2α ];

(iii) Hα
rd(R

N) ↪↪ Lq(RN) for any q ∈ (2, 2N
N−2α ).

In the critical case, we recall some properties of the best constant [14].

Proposition 2.16 Take α ∈ (0, 1), N ≥ 2. _en

C∗N ,α ∶= inf
0/=u∈Ḣα

∥u∥pc
pc

∥(−∆) α
2 u∥2

=
1

22απα
Γ( N

2 − α)
Γ( N

2 + α)
Γ(N)

2α
N

Γ( N
2 )

2α
N
.

Moreover, u is such a minimizer if and only if there exist c ∈ R, µ > 0, and x0 ∈ RN

such that u(x) = c(µ2 + ∣x − x0∣2)−
N−2α

2 .

Let us give an abstract result.

Lemma 2.17 Let T > 0 and X ∈ C([0, T],R+) such that X ≤ a + bXθ on [0, T],
where a, b > 0, θ > 1, a < (1 − 1

θ )(θb)
−1
θ , and X(0) ≤ (θb)

−1
θ−1 . _en X ≤ θ

θ−1 a on
[0, T].

Proof _e function f (x) ∶= bxθ −x+a is decreasing on [0, (bθ)
1

1−θ ] and increasing
on [(bθ)

1
1−θ ,∞). _e assumptions imply that f ((bθ)

1
1−θ ) < 0 and f ( θ

θ−1 a) ≤ 0. As
f (X(t)) ≥ 0, f (0) > 0, and X(0) ≤ (bθ)

1
1−θ , we conclude the proof by a continuity

argument.

We close this subsection with a classical result about ordinary diòerential equa-
tions.

Proposition 2.18 Let ε > 0. _ere is no real functionG ∈ C2(R+) satisfyingG(0) > 0,
G′(0) > 0, and GG′′ − (1 + ε)(G′)2 ≥ 0 on R+.

Proof Assume by way of contradiction, the existence of such a function. _en

(G−(1+ε)G′
)
′
≥ 0 and

G′

G1+ε ≥
G′(0)

G1+ε(0)
> 0.

Integrating the previous inequality on (0, T) yields

0 <
1

Gε(T)
≤

1
Gε(0)

− ε
G′(0)

G1+ε(0)
T ,

which implies that T < 1
ε

G(0)
G′(0) . _is contradiction achieves the proof.

3 Local Well Posedness

In this section, we prove _eorem 2.1 about the existence of a solution to (1.1) in the
energy space.
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3.1 Local Existence and Uniqueness

Let the admissible pair (q, r) be deûned as follows

r ∶= 1 + p, q ∶=
4α(1 + p)
N(p − 1)

, and θ ∶=
q(p − 1)
q − 2

.

We use a standard ûxed point argument and discuss two cases.
Subcritical case: 1 < p < p∗(c = 1). For T , ρ > 0, denote the space

ET ,ρ ∶= {u ∈ CT(Hα
) ∩ Lq

T(W
α ,r

) ∣ ∥u∥L∞T (Hα)∩Lq
T(W

α ,r) ≤ ρ}

endowedwith the complete distance d(u, v) ∶= ∥u−v∥L∞T (L2)∩Lq
T(L

r). Deûne the func-

tion ϕ(u)(t) ∶= Tα(t)u0 + ∫
t
0 Tα(t − s)[є∣u∣p−1u − cu] ds. We prove the existence

of some small T , ρ > 0 such that ϕ is a contraction of ET ,ρ . Take u, v ∈ ET ,ρ and
w ∶= u − v. Using Strichartz and Hölder inequalities via the equality 1

q′ =
1
q +

p−1
θ , we

obtain

(3.1) d(ϕ(u), ϕ(v)) ≲ ∥∣u∣p−1u − ∣v∣p−1v∥Lq′
T (Lr′) + ∥u − v∥L1

T(L
2)

≲ ∥w(∣u∣p−1
+ ∣v∣p−1

)∥Lq′
T (Lr′) + T∥u − v∥L∞T (L2)

≲ ∥w∥Lq
T(L

r)(∥u∥
p−1
Lθ

T(L
r)
+ ∥v∥p−1

Lθ
T(L

r)
) + Td(u, v)

≲ T
1
θ ∥w∥Lq

T(L
r)(∥u∥

p−1
L∞T (Hα)

+ ∥v∥p−1
L∞T (Hα)

) + Td(u, v)

≲ ( ρp−1T
1
θ + T)d(u, v).

On the other hand, thanks to Lemma 2.12,

∥ϕ(u)∥L∞T (Hα)∩Lq
T(W

α ,r) ≲ ∥u0∥Hα + ∥∣u∣p−1u∥Lq′
T (Hα ,r′) + ∥u∥L1

T(H
α)

≲ ∥u0∥Hα + ∥(1 + (−∆)
α
2 )(∣u∣p−1u)∥Lq′

T (Lr′) + T∥u∥L∞T (Hα)

≲ ∥u0∥Hα + ∥u∥p−1
Lθ

T(L
r)
(∥u∥Lq

T(L
r) + ∥(−∆)

α
2 u∥Lq

T(L
r)) + Tρ

≲ ∥u0∥Hα + T
1
θ ∥u∥p−1

L∞T (Hα)
∥u∥Lq

T(H
α ,r) + Tρ

≲ ∥u0∥Hα + T
1
θ ρp

+ Tρ.

_is implies that for ρ ∶= 2C∥u0∥Hα (C given by the Strichartz estimate) and small
T > 0, ϕ is a contraction of ET ,ρ . With a Picard ûxed-point theorem, ϕ has a ûxed
point which is a local solution to (1.1). Moreover, uniqueness of such a solution is a
direct consequence of (3.1) with a standard translation argument.

Critical case: p = p∗(c = 0). _eproof follows like the subcritical case, where, rather
than ET ,ρ , we take the complete space FT ,ρ ∶= {u ∈ Lq

T(W
α ,r) ∣ ∥u∥Lq

T(W
α ,r) ≤ ρ} en-

dowed with the complete distance d(u, v) = ∥u − v∥Lq
T(L

r), via the fact that

lim
TÐ→0

∥Tα(t)u0∥Lq
T(L

r) = 0

and the following lemma.
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Lemma 3.1 Let u0 ∈ Hα and suppose u ∈ Lq
T(W

α ,r) is a solution of (1.1). _en there
exists 0 < T ′ ≤ T such that u ∈ CT′(Hα).

Proof Using the previous computation via Duhamel’s formula (Proposition 2.8 (ii)),
yields ∥u∥L∞T (Hα) ≲ ∥u0∥Hα + ∥u∥p−1

L∞T (Hα)
∥u∥Lq

T(H
α ,r). _e proof is complete thanks to

Lemma 2.17.

3.2 Global Existence in the Subcritical Defocusing Case

_e global existence is a consequence of the energy decay and previous calculations.
Let u ∈ C([0, T∗),Hα) be the unique maximal solution of (1.1). We prove that u is
global. By contradiction, suppose that T∗ < ∞. Consider for 0 < s < T∗ the problem

(Ps){
v̇ + (−∆)αv + v + ∣v∣p−1v = 0,
v(s, ⋅ ) = u(s, ⋅ ).

Using the same arguments of local existence, we can ûnd a real τ > 0 and a solution
v to (Ps) on C([s, s + τ],Hα). _anks to the energy decay, we see that τ does not
depend on s. _us, if we let s be close to T∗ such that T∗ < s + τ, this fact contradicts
the maximality of T∗ .

3.3 Exponential Decay

_is subsection is devoted to proving that the global solution u ∈ C(R+ ,Hα) to (1.1)
for c = −є = 1 and 1 < p < p∗ satisûes an exponential decay in the energy space.
Denoting the quantity K(u(t)) ∶= ∥u(t)∥2

Hα + ∫RN ∣u(t)∣1+p dx, yields

E(u(t)) ≤ K(u(t)) ≤ (p + 1)E(u(t)).

On the other hand, for T > 0,

∫

T

t
K(u(s)) ds =

1
2
(∥u(t)∥2

− ∥u(T)∥
2
) ≤

1
2
∥u(t)∥2

≤ E(u(t)).

So ∫
T
t E(u(s)) ds ≲ ∫

T
t K(u(s)) ds ≲ E(u(t)). _us, for some positive real number

T0 > 0,

y(t) ∶= ∫
∞

t
E(u(s)) ds ≲ E(u(t)) ≤ −T0 y′(t).

_is implies that, for t ≥ T0, y(t) ≤ y(T0)e
1− t

T0 ≤ T0E(u(T0))e
1− t

T0 . Taking account
the monotonicity of the energy for large T > 0,

∫

T

t
E(u(s)) ds ≥ ∫

t+T0

t
E(u(s)) ds ≥ T0E(u(t + T0)).

_en E(u(t + T0)) ≤ E(u(T0))e
1− t

T0 . Finally,

∥u(t + T0)∥
2
Hα ≲ E(u(t + T0)) ≤ E(u(T0))e

1− t
T0 .

_e proof is ûnished.

https://doi.org/10.4153/CJM-2016-012-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-012-9


862 T. Saanouni

4 Global Existence and Scattering in the Critical Case

In this section we establish global existence of a solution to (1.1) in the critical case
p = p∗ for small data, as claimed in_eorem 2.3. Several norms have to be considered
in the analysis of the critical case. Letting I ⊂ R be a time slab, we deûne

W(I) ∶= L
2(N+2α)
N−2α (I, L

2N(N+2α)
N2+4α2 ),

M(I) ∶= L
2(N+2α)
N−2α (I, Ẇα , 2N(N+2α)

N2+4α2 ) ∩ C(I, Ḣα
),

S(I) ∶= L
2(N+2α)
N−2α (I, L

2(N+2α)
N−2α ).

Remark 4.1 _e continuous Sobolev embedding M(I) ↪ S(I) is a direct conse-
quence of Lemma 2.15.

Let us give an auxiliary result.

Proposition 4.2 Take p = p∗ and u0 ∈ Ḣα . _ere exists δ ∶= δ(A ∶= ∥u0∥Ḣα) > 0 such
that for any interval I = [0, T), if ∥e−t(−∆)αu0∥S(I) < δ, there exits a unique solution
u ∈ C(I, Ḣα) of (1.1), which satisûes u ∈ M(I). Moreover, ∥u∥S(I) ≤ 2δ.

Proof _e proposition follows with a contraction mapping argument. We let the
function ϕ(u)(t) ∶= Tα(t)u0 − ∫

t
0 Tα(t − s)∣u∣

4α
N−2α u ds. Deûne the set

Xa ∶= {u ∈ M(I) ∣ ∥u∥M(I) ≤ a} ,

where a > 0 is suõciently small to ûx later. Using the Strichartz estimate, we get

∥ϕ(u) − ϕ(v)∥W(I) ≲ ∥∣u∣
4α

N−2α u − ∣v∣
4α

N−2α v∥
L2

T(L
2N

N+2α )
∶= (I).

_anks to the Hölder inequality and the Sobolev embedding, this yields

(I) ≲ ∥∣u − v∣(∣u∣
4α

N−2α + ∣v∣
4α

N−2α )∥
L2

T(L
2N

N+2α )

≲ ∥u − v∥
L

2(N+2α)
N−2α

T (L
2N(N+2α)
N2+4α2 )

(∥u∥
4α

N−2α

L
2(N+2α)
N−2α

T (L
2(N+2α)
N−2α )

+ ∥v∥
4α

N−2α

L
2(N+2α)
N−2α

T (L
2(N+2α)
N−2α )

)

≲ ∥u − v∥W(I)(∥u∥
4α

N−2α
S(I) + ∥v∥

4α
N−2α
S(I) )

≲ a
4α

N−2α ∥u − v∥W(I) .

_en ∥ϕ(u) − ϕ(v)∥W(I) ≲ a
4α

N−2α ∥u − v∥W(I). Using the fractional chain rule via the
Strichartz estimate and the Hölder inequality, yields

∥ϕ(u)∥M(I) ≲ ∥u0∥Ḣα + ∥(−∆)
α
2 (∣u∣

4α
N−2α u)∥

L2
T(L

2N
N+2α )

≲ ∥u0∥Ḣα + ∥(−∆)
α
2 u∥

L
2(N+2α)
N−2α

T (L
2N(N+2α)
N2+4α2 )

∥u∥
4α

N−2α

L
2(N+2α)
N−2α

T (L
2(N+2α)
N−2α )

≲ ∥u0∥Ḣα + ∥u∥M(I)∥u∥
4α

N−2α
S(I)

≲ A+ a1+ 4α
N−2α .
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With a classical Picard argument, for small 0 < a ≪ A, there exists u ∈ Xa , a solution
to (1.1). Moreover, arguing as previously,

∥ϕ(u)∥S(I) ≤ ∥e−t(−∆)αu0∥S(I) + C∥(−∆)
α
2 (∣u∣

4α
N−2α u)∥

L2
T(L

2N
N+2α )

≤ δ + C∥(−∆)
α
2 u∥

L
2(N+2α)
N−2α

T (L
2N(N+2α)
N2+4α2 )

∥u∥
4α

N−2α

L
2(N+2α)
N−2α

T (L
2(N+2α)
N−2α )

≤ δ + C∥u∥M(I)∥u∥
4α

N−2α
S(I)

≤ δ + Ca1+ 4α
N−2α .

_en for small a > 0, ∥u∥S(I) ≤ 2δ.

Proof of_eorem 2.3 We start by proving global well posedness. Using the previ-
ous proposition via the fact that

∥e−t(−∆)αu0∥S(I) ≲ ∥e−t(−∆)αu0∥M(I) ≲ ∥u0∥Ḣα ,

it suõces to prove that ∥u(t)∥Ḣα remains small on the whole interval of existence of
u. Write, using the decay of the energy,

∥u(t)∥2
Ḣα = 2E(u(t)) +

1
pc
∫
RN

∣u(t, x)∣pc dx

≤ 2E(u0) +
1
pc
∫
RN

∣u(t, x)∣pc dx

≲ (∥u0∥
2
Ḣα + ∥u0∥

pc
Ḣα) + ∥u(t)∥pc

Ḣα .

So by Lemma 2.17, if ∥u0∥Ḣα is suõciently small, then u stays small in the Ḣα norm,
and global existence is established.

We ûnish this section by proving scattering. Using Proposition 4.2, it follows that
u ∈ M(R+). Taking account of previous computations and denoting

v(t) ∶= Tα(−t)u(t),

we get for t, t′ →∞,

∥v(t) − v(t′)∥Ḣα ≲ ∥∫

t′

t
Tα(−s)(∣u∣

4α
N−2α u) ds∥Ḣα

≲ (∥u∥S(t ,t′) + ∥u∥M(t ,t′))∥u∥
4α

N−2α
S(t ,t′) → 0.

Finally, taking u+ ∶= limt→∞ v(t) in Ḣα , we have

∥u − Tα(t)u+∥Ḣα = ∥Tα(t)(Tα(−t)u − u+)∥Ḣα

≲ ∥Tα(−t)u − u+∥Ḣα → 0, as t →∞.

Scattering is proved.
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5 Existence of a Ground State

In this section we prove the existence of a ground state solution to (2.1) in the critical
case and subcritical case for (α, β) = (1,− 1

N ). Precisely, we establish Proposition 2.4.
For (a, b) ∈ R∗

+ ×R+ ∪ {(1,− 2
N )} and ϕ ∈ Hα , recall the quantities

Ka ,b(ϕ) =
1
2
(2a + Nb)∥ϕ∥2

+
1
2
(2a + (N − 2α)b)∥(−∆)

α
2 ϕ∥2

− ( a +
Nb
1 + p

)∥ϕ∥1+p
1+p ,

Ha ,b(ϕ) =
αb

2a + Nb
∥(−∆)

α
2 ϕ∥2

+
a(p − 1)

(1 + p)(2a + Nb)
∥ϕ∥1+p

1+p , 2a + Nb /= 0.

First case: c = 0, p∗ < p < p∗ and (α, β) = (1,− 2
N ). In this case we will use

T(ϕ) ∶= (E −
N
4α

K1,− 2
N
)(ϕ) =

1
2
∥ϕ∥2

+
N(p − p∗)
4α(1 + p)

∥ϕ∥1+p
1+p

rather thenHa ,b which is no longer deûned. Let uλ denote the scaling uλ ∶= λ
N
2 u(λ ⋅ ).

Lemma 5.1 Let u∈ Hα such that K1,− 2
N
(u) ≤ 0. _en there exists λ0 ≤ 1 such that

(i) K1,− 2
N
(uλ0) = 0,

(ii) λ0 = 1 if and only if K1,− 2
N
(u) = 0,

(iii) ∂
∂λ E(uλ) > 0 for λ ∈ (0, λ0) and ∂

∂λ E(uλ) < 0 for λ ∈ (λ0 ,∞),
(iv) λ → E(uλ) is concave on (λ0 ,∞),
(v) ∂

∂λ E(uλ) =
N
2λK1,− 2

N
(uλ).

Proof With direct computations, we have

K1,− 2
N
(uλ) =

2αλ2α

N
∥(−∆u)

α
2 ∥

2
− (1 −

2
1 + p

)λ
N
2 (p−1)

∫
RN

∣u∣1+p dx ,

∂λE(uλ) =
N
2λ

K1,− 2
N
(uλ),

which proves (v). Now

K1,− 2
N
(uλ) =

2αλ2α

N
[∥(−∆)

α
2 u∥2

−
N
α
(
1
2
−

1
1 + p

)λ
N
2 (p−1)−2α

∫
RN

∣u∣1+p dx] .

A monotonicity argument via the inequality p∗ < p closes the proof of (1), (ii), and
(iii). For (iv), it is suõcient to compute using (iii).

Lemma 5.2 For u∈ Hα , the real function λ ↦ T(λu) is increasing on R+.

Proof Given u∈ Hα , we compute

T(λu) =
λ2

2
(∥u∥2

+ λp−1 N(p − p∗)
4α(1 + p) ∫RN

∣u∣1+p dx) ,

∂λT(λu) = λ(∥u∥2
+ λp−2 N(p − p∗)

4α ∫
RN

∣u∣1+p dx) .

_e proof is complete because p > p∗.
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We express the minimizing number m1,− 2
N
with a negative constraint.

Proposition 5.3 We have m1,− 2
N
= inf

0/=u∈Hα
{T(u), K1,− 2

N
(u) ≤ 0}.

Proof Letting m1 be the right-hand side, it is suõcient to prove that m1,− 2
N
≤ m1.

Take u∈ Hα such that K1,− 2
N
(u) < 0. _en by Lemma 5.1 and the fact that λ ↦ T(λu)

is increasing, there exists λ ∈ (0, 1) such that K1,− 2
N
(λu) = 0 and m1,− 2

N
≤ T(λu) ≤

T(u). _is ûnishes the proof.

Now we prove Proposition 2.4. Let (ϕn) a minimizing sequence, namely

(5.1) 0 /= ϕn∈ Hα , K1,− 2
N
(ϕn) = 0, and lim

n
E(ϕn) = m1,− 2

N
.

With a rearrangement argument [11], we can assume that ϕn is radial decreasing and
satisûes

0 /= ϕn∈ Hα , K1,− 2
N
(ϕn) ≤ 0, and lim

n
E(ϕn) ≤ m1,− 2

N
.

We can suppose that ϕn is radial decreasing and satisûes (5.1). Indeed, by Lemmas
5.1–5.2, there exists λ ∈ (0, 1) such that K1,− 2

N
(λϕn) = 0 and T(λϕn) ≤ m1,− 2

N
. _en

2α
N

∥(−∆)
α
2 ϕn∥

2
= (1 −

2
1 + p

)∫
RN

∣ϕn ∣
1+p dx ,

∥ϕn∥
2
Hα −

2
1 + p ∫RN

∣ϕn ∣
1+p dx → 2m1,− 2

N
.

So for any real number a /= 0,

[(1 −
2aα
N

)∥(−∆)
α
2 ϕn∥

2
+ ∥ϕn∥

2
+ ( a − 2

1 + a
1 + p

) ∫
RN

∣ϕn ∣
1+p

] dx → 2m1,− 2
N
.

Letting a ∈ ( 1
p−1 ,

N
4α ), gives that (ϕn) is bounded in Hα . Taking account of the com-

pact injections in Lemma 2.15, we take ϕn ⇀ ϕ in Hα and ϕn → ϕ in L1+p . Assume,
by contradiction, that ϕ = 0. _e equality K1,− 2

N
(ϕn) = 0, via the Hölder inequality

and the fact that p∗ < p < p∗ , implies that for large n,
2α
N

∥ϕn∥
2
Ḣα = ( 1 −

2
1 + p

)∥ϕn∥
1+p
1+p ≲ ∥ϕn∥

1+p
Ḣα = o(∥ϕn∥

2
Ḣα).

_is contradiction implies that ϕ /= 0. _anks to the lower semicontinuity of ∥ ⋅ ∥Hα ,
we have K1,− 2

N
(ϕ) ≤ 0 and E(ϕ) ≤ m1,− 2

N
. Using Lemmas 5.2–5.1, we can assume that

K1,− 2
N
(ϕ) = 0 and T(ϕ) ≤ m1,− 2

N
. So ϕ is a minimizer satisfying

0 /= ϕ ∈ Hα
rd , K1,− 2

N
(ϕ) = 0, and T(ϕ) = m1,− 2

N
.

_is implies that 0 < ∥ϕ∥2 ≤ T(ϕ) = m1,− 2
N
. Now there is a Lagrange multiplier η ∈ R

such that E′(ϕ) = ηK′

1,− 2
N
(ϕ). _us

0 = K1,− 2
N
(ϕ) = L1,− 2

N
E(ϕ) = ⟨E′(ϕ),L1,− 2

N
(ϕ)⟩

= η⟨K′

1,− 2
N
(ϕ),L1,− 2

N
(ϕ)⟩

= ηL1,− 2
N
K1,− 2

N
(ϕ) = ηL2

1,− 2
N
E(ϕ).
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With a direct computation, we have L1,− 2
N
(∥ϕ∥2) = (L1,− 2

N
− 4α

N )(∥(−∆)
α
2 ϕ∥2) = 0

and L1,− 2
N
(∣ϕ∣1+p) = (p − 1)∣ϕ∣1+p . So

−L1,− 2
N
(L1,− 2

N
−

4α
N

)E(ϕ) =
p − 1
p + 1

(p − p∗)∫
RN

∣ϕ∣1+p dx > 0.

_en −L2
1,− 2

N
E(ϕ) > 0, so η = 0, and E′(ϕ) = 0. Finally, ϕ is a ground-state solution

to (2.1).

Second case: p = p∗. Deûne the massless action

K0
a ,b(ϕ) ∶= La ,bE0

(ϕ)

=
1
2
(2a + (N − 2α)b)∥(−∆)

α
2 ϕ∥2

− (a +
Nb
pc

)∥ϕ∥pc
pc

= (a +
Nb
pc

)(∥(−∆)
α
2 ϕ∥2

− ∥ϕ∥pc
pc)

and the operator

H0
a ,b(ϕ) ∶= (E0

−
1

apc + Nb
K0
a ,b)(ϕ) =

α
N

∥(−∆)
α
2 ϕ∥2 .

Let the real number d0a ,b ∶= inf0/=ϕ∈Hα{H0
a ,b(ϕ) ∣ K0

a ,b(ϕ) < 0}.

Claim 1 m0
a ,b = d

0
a ,b .

Since K0
a ,b = 0 implies that E0 = H0

a ,b , it follows that m0
a ,b ≥ d

0
a ,b . Conversely, take

0 /= ϕ ∈ Hα such that K0
a ,b(ϕ) < 0. _us, when 0 < λ → 0, we get

K0
a ,b(λϕ) =

1
2
(2a + (N − 2α)b)λ2

∥(−∆)
α
2 ϕ∥2

− ( a +
Nb
pc

) λpc∥ϕ∥pc
pc

≃
1
2
(2a + (N − 2α)b)λ2

∥(−∆)
α
2 ϕ∥2

> 0.

So there exists λ ∈ (0, 1) satisfying K0
a ,b(λϕ) = 0 and

m0
a ,b ≤ H0

a ,b(λϕ) = λ2H0
a ,b(ϕ) ≤ H0

a ,b(ϕ).

_us, m0
a ,b ≤ d

0
a ,b . So m0

a ,b = d
0
a ,b , proving the claim.

Because of the deûnitions of K0
a ,b and H0

a ,b , it is clear that m0
a ,b is independent of

(a, b) and

m ∶= m0
a ,b = inf

0/=ϕ∈Hα
{
α
N

∥(−∆)
α
2 ϕ∥2

∣ ∥(−∆)
α
2 ϕ∥2

< ∥ϕ∥pc
pc} .
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Taking the scaling λϕ,

m = inf
0/=ϕ∈Hα

{
α
N

λ2
∥(−∆)

α
2 ϕ∥2 s. t λ2−pc∥(−∆)

α
2 ϕ∥2

< ∥ϕ∥pc
pc}

= inf
0/=ϕ∈Hα

{
α
N

∥(−∆)
α
2 ϕ∥2

(
∥ϕ∥pc

pc

∥(−∆) α
2 ϕ∥2

)

2
2−pc

}

=
α
N

inf
0/=ϕ∈Hα

{(
∥(−∆)

α
2 ϕ∥

∥ϕ∥pc
)

N
α
}

=
α
N

(C∗)−
N
α .

Here C∗ denotes the best constant of the Sobolev injection ∥ϕ∥pc ≤ C
∗∥(−∆)

α
2 ϕ∥,

which is known [14] to be attained by the explicit Q ∈ Ḣα ,

Q(x) ∶=
a

(1 + ∣x∣2) N
2 −α

,

which solves the massless equation (−∆)αQ = Q pc−1.

6 Invariant Sets and Applications

_is section is devoted to establishing _eorem 2.6. _e proof is based on two auxil-
iary results.

Lemma 6.1 _e sets Ac ,+a ,b and A
c ,−
a ,b are independent of the pair (a, b).

Proof Take (a, b) and (a′ , b′) in R∗
+ × R+ ∪ {(1,− 2

N )}. By Propositions 2.4, 2.8,
2.10, and 2.11, the reunion Ac ,+a ,b ∪ A

c ,−
a ,b is independent of (a, b). So it is suõcient to

prove that Ac ,+a ,b is independent of (a, b). If E0(v) < m and K0
a ,b(v) = 0, then v = 0.

So Ac ,+a ,b is open. _e rescaling vλ ∶= λav( ⋅λb ) implies that a neighborhood of zero is
in Ac ,+a ,b . Moreover, this rescaling with λ → 0 gives that Ac ,+a ,b is contracted to zero, and
so it is connected. Now write

Ac ,+a ,b = A
c ,+
a ,b ∩ (Ac ,+a′ ,b′ ∪ A

c ,−
a′ ,b′) = (Ac ,+a ,b ∩ A

c ,+
a′ ,b′) ∪ (Ac ,+a ,b ∩ A

c ,−
a′ ,b′).

Since by the deûnition, Ac ,−a ,b is open and 0 ∈ Ac ,+a ,b ∩ A
c ,+
a′ ,b′ , using a connectivity argu-

ment, we have Ac ,+a ,b = A
c ,+
a′ ,b′ . _e proof is complete.

Lemma 6.2 _e sets Ac ,+a ,b and A
c ,−
a ,b are invariant under the �ow of (1.1).

Proof Take (a, b) ∈ R∗
+ × R+ ∪ {(1,− 2

N )}. Let u0 ∈ Ac ,+a ,b and u ∈ CT∗(Hα) be
the maximal solution to (1.1). _e proof follows with contradiction. Assume that for
some time t0 ∈ (0, T∗), u(t0) ∉ Ac ,+a ,b , and u(t) ∈ Ac ,+a ,b for all t ∈ (0, t0). Since the
energy is decreasing and E(u(t0)) < m, then, with a continuity argument, there exists
a positive time t1 ∈ (0, t0) such that Ka ,b(u(t1)) = 0. _is contradicts the deûnition
of m and ûnishes the proof in this case. _e proof for Ac ,+a ,b is similar.
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Proof of_eorem 2.6 (i) Using the twoprevious lemmas via a translation argument,
we can assume that u(t) ∈ A+1,1 for any t ∈ [0, T∗). Taking account of the deûnition
of m, we get

m > E(u(t))

> E(u(t)) −
1

2 + N
K1,1(u(t))

=
α

2 + N
∥(−∆)

α
2 u(t)∥2

+
p − 1

(1 + p)(2 + N)
∥u(t)∥1+p

1+p .

_is implies, via decay of the equality, ∂t(∥u(t)∥2) = 2K1,0(u(t)) < 0. It follows that
sup[0,T∗] ∥u(t)∥Hα < ∞. _en u is global.

Now we prove an exponential decay. For small ∥u0∥, since supt ∥u(t)∥Ḣα ≲ 1, we
get using Corollary 2.14,

K1,0(u(t)) = ∥u(t)∥2
Hα − ∫

RN
∣u(t)∣1+p dx

≥ ∥u(t)∥2
+ ∥u(t)∥2

Ḣα − C∥u(t)∥p+1− N(p−1)
2α ∥u(t)∥

N(p−1)
2α

Ḣα

≥ ∥u(t)∥2
+ ∥u(t)∥2

Ḣα( 1 − C∥u0∥
p+1− N(p−1)

2α ∥u(t)∥
N(p−1)

2α
Ḣα )

≥ C∥u(t)∥2
Hα

≥ CE(u(t)).

On the other hand,

E(u(t)) =
1
2
∥u(t)∥2

Hα −
1

1 + p ∫RN
∣u(t)∣1+p dx

=
1
2
∥u(t)∥2

Hα −
1

1 + p
(∥u(t)∥2

Hα − K1,0(u(t)))

= (
1
2
−

1
1 + p

)∥u(t)∥2
Hα +

1
1 + p

K1,0(u(t))

≥ Cmax{K1,0(u(t)), ∥u(t)∥2
Hα}.

Moreover, for T > 0,

∫

T

t
K1,0(u(s)) ds =

1
2
(∥u(t)∥2

− ∥u(T)∥
2
)

≤
1
2
∥u(t)∥2

≤ CE(u(t)).

So ∫
T
t E(u(s)) ds ≲ ∫

T
t K1,0(u(s)) ds ≲ E(u(t)). _us, for some positive real num-

ber T0 > 0, y(t) ∶= ∫
∞

t E(u(s)) ds ≲ E(u(t)) ≤ −T0 y′(t). _is implies that for
t ≥ T0, y(t) ≤ y(T0)e

1− t
T0 ≤ T0E(u(T0))e

1− t
T0 . Taking account of the monotonicity

of the energy, for large T > 0,

∫

T

t
E(u(s)) ds ≥ ∫

t+T0

t
E(u(s)) ds ≥ T0E(u(t + T0)).
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_en E(u(t + T0)) ≤ E(u(T0))e
1− t

T0 . Finally,

∥u(t + T0)∥
2
Hα ≲ E(u(t + T0)) ≤ E(u(T0))e

1− t
T0 .

_e proof is complete.

Proof of_eorem 2.6 (ii) Using the two previous lemmas via a translation argu-
ment, we can assume that u(t) ∈ Ac ,−1,λ for any t ∈ [0, T∗) and any λ > 0. Take the
real function L(t) ∶= 1

2∫
t
0 ∥u(s)∥

2 ds, t ∈ [0, T∗). Using equation (1.1), a direct
computation gives

L′′(t) = ∫
RN

u̇u dx = −∥u(t)∥2
Ḣα − c∥u(t)∥2

+ ∫
RN

∣u∣1+p dx .

We discuss two cases.
First case: Ec(u0) > 0. For any λ > 0,

H1,λ(u) =
1

2 + Nλ
[αλ∥(−∆)

α
2 u∥2

+
p − 1
p + 1 ∫RN

∣u∣p+1 dx] > m.

_us, for any ε > 0,

L′′ = ε∥(−∆)
α
2 u∥2

− (1 + ε)∥(−∆)
α
2 u∥2

− c∥u(t)∥2
+ ∫

RN
∣u∣p+1 dx

>
ε
α
[(

2
λ
+ N)m −

1
λ

p − 1
p + 1 ∫RN

∣u∣p+1 dx]

− 2(1 + ε)[Ec(u0) +
1

2(1 + p) ∫
∣u∣p+1 dx]

+ 2(1 + ε)∫
t

0
∥u̇(s)∥2 ds + ∫

RN
∣u∣p+1 dx

> [
ε
α
(

2
λ
+ N)m − 2(1 + ε)Ec(u0)] + ( 1 −

1 + ε
1 + p

−
ε(p − 1)
αλ(p + 1)

) ∫
RN

∣u∣p+1 dx

+ 2(1 + ε)∫
t

0
∥u̇(s)∥2 ds

∶= (I) +
(II)
p + 1 ∫RN

∣u∣p+1 dx + 2(1 + ε)∫
t

0
∥u̇(s)∥2 ds.

Taking λ ∶= aε and γ ∶= m − Ec(u0), we get

(I) = 2γ(1+ ε)+m[
2
αa

− 2+ ε(−2+
N
α
)] = ε(2γ − 2m+

Nm
α

) + 2m(
1
αa

− 1) + 2γ.

On the other hand,

(II) = p + 1 − (1 + ε) −
p − 1
αa

= (p − 1)(1 −
1
αa

) + 1 − ε.

_e choice 1
α

p−1
p−ε < a < 1

α , via ε > 0 near to zero implies that the terms (I) and (II)

are non negative. _us, L′′ > 2(1 + ε) ∫
t
0 ∥u̇(s)∥2 ds. _anks to the Cauchy–Schwarz

inequality, it follows that

LL′′ > (1 + ε)∥u̇∥2
L2

t (L2)∥u∥
2
L2

t (L2) > (1 + ε)∥uu̇∥2
L1

t(L1) > (1 + ε)L′2 .
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In fact, if L(t) = 0 for some positive time, we get u0 = E(u0) = 0, which is a contra-
diction. _us (L−ε)

′′
= −εL−ε−2[L

′′
L − (1 + ε)(L

′
)2] > 0. Taking account of Proposi-

tion 2.18, for some ûnite time T > 0, lim supt→T ∫
T
0 ∥u(s)∥2 ds = ∞. _us, T∗ < ∞,

and u is not global. _is ends the proof.
Second case: Ec(u0) ≤ 0. Compute

L′′ = −∥u∥2
Ḣα − c∥u∥2

+ ∫
RN

∣u∣p+1 dx

≥ (2 + ε)( ∫
RN

∣u∣p+1

p + 1
dx −

1
2
∥u∥2

Ḣα −
c
2
∥u∥2

)

≥ −(2 + ε)Ec(u).

So, thanks to the identity Ėc(u) = −∥u̇∥2, we get

(6.1) L′′ ≥ (2 + ε)(∥u̇∥2
L2

t (L2) − E
c
(u0)).

Now the proof goes by contradiction, assuming that T∗ = ∞.

Claim 2 _ere exists t1 > 0 such that ∫
t1
0 ∥u̇(s)∥2 ds > 0. Indeed, otherwise

u(t) = u0 almost everywhere and solves the elliptic stationary equation (−∆)αu+cu =

∣u∣p−1u. _erefore, ∥u∥2
Ḣα + c∥u∥2 = ∫RN ∣u∣p+1dx and

∥u0∥
2
Ḣα + c∥u0∥

2
−

2
p + 1 ∫RN

∣u0∣
p+1 dx = (1 −

2
p + 1

)∫
RN

∣u0∣
p+1 dx

= 2E(u0)

≤ 0.

_en u0 = 0, which contradicts the fact that K0,1(u0) < 0.

Claim 3 For any 0 < α < 1, there exists tα > 0 such that (L′ − L′(0))2 ≥ αL′2, on
(tα ,∞). _e claim immediately follows from the ûrst one and (6.1), observing that

lim
t→∞

L(t) = lim
t→∞

L′(t) = +∞.

Claim 4 One can choose α = α(ε) such that LL′′ ≥ (1+α)L′2, on (tα ,∞). Indeed,
we have

LL′′ ≥
2 + ε
2

∥u∥2
L2

t (L2)∥u̇∥
2
L2

t (L2)

≥
2 + ε
2

∥uu̇∥2
L1

t(L1)

≥
2 + ε
2

(L′ − L′(0))2

≥
(2 + ε)α

2
L′2 ,

where we used (6.1) in the ûrst estimate, Cauchy–Schwarz inequality in the second,
and Claim 2 in the last one. Now choosing α such that 1 < (2+ε)α

2 ∶= 1 + ε, we get
LL′′ > (1 + ε)L′2, for large time.
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_anks to Proposition 2.18, this ordinary diòerential inequality blows up in ûnite
time and contradicts our assumption that the solution is global. _is ends the proof.

7 Strong Instability

_is section is devoted to prove _eorem 2.7 about strong instability of stationary
solutions to (1.1). Henceforth c = є = 1. Denote the scaling uλ ∶= λ

N
2 u(λ.). Let us

write an auxiliary result.

Lemma 7.1 Let ϕ to be a ground-state solution of (2.1), λ > 1 a real number close
to one, and uλ ∈ C([0, T∗),Hα) the solution to (1.1) with data ϕλ . _en for any t ∈
(0, T∗),

E(uλ(t)) < E(ϕ) and K1,− 2
N
(uλ(t)) < 0.

Proof By Lemma 5.1, we have E(ϕλ) < E(ϕ) and K1,− 2
N
(ϕλ) < 0. Moreover, thanks

to the decay of energy, it follows that for any t > 0, E(uλ(t)) ≤ E(ϕλ(t)) < E(ϕ).
_en K1,− 2

N
(uλ(t)) /= 0 because ϕ is a ground state. Finally K1,− 2

N
(uλ(t)) < 0 with a

continuity argument.

Now we are ready to prove the instability result. Take uλ ∈ CT∗(Hα), the maximal
solution to (1.1) with data ϕλ , where λ > 1 is close to one and ϕ is a ground-state
solution to (2.1). With the previous lemma, we get uλ(t) ∈ A−1,− 2

N
, for any t ∈ (0, T∗).

_en using _eorem 2.7, it follows that lim supt→T∗ ∥uλ(t)∥Hα = ∞. _e proof is
ûnished via the fact that limλ→1 ∥ϕλ − ϕ∥Hα = 0.
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