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MULTIPLIERS OF INVARIANT SUBSPACES IN THE BIDISC

by TAKAHIKO NAKAZI*

(Received 23rd January 1992)

For any nonzero invariant subspace M in H2(T2), set Mx = [(J™=oi"M] n[jJ™=ow"Af]. Then M" is also an
invariant subspace of H\T2) that contains M. If M is of finite codimension in H2{T2) then MX = H2(T2) and
if M = qH2(T2) for some inner function q then M* = M. In this paper invariant subspaces with MX = M are
studied. If M = qlH

2(T2)r^q2H
2(T2) and qi,q2 are inner functions then M' = M. However in general this

invariant subspace may not be of the form: qH\T2) for some inner function q. Put Jf(M) = {<t>eLa:<t>M^
H2(T2)}; then M(M) is described and J((M) = Jt(Mx) is shown. This is the set of all multipliers of M in the
title. A necessary and sufficient condition for Jl(M) = H'B(T2) is given. It is noted that the kernel of a Hankel
operator is an invariant subspace M with MX = M. The argument applies to the polydisc case.

1980 Mathematics subject classification (1985 Revision): Primary 46J15, 47A15, 47B20; Secondary 32A35.

1. Introduction

Let T2 be the torus that is the Cartesian product of 2 unit circles in C. The usual
Lebesgue spaces, with respect to the Haar measure m of T2, are denoted by LP = LP(T2),
and the Hardy spaces HP=H"{T2) are spaces of all feL"(T2) whose Fourier
coefficients

j

are 0 as soon as at least one component of (j,S) is negative, where l^p^co. Let U2 be
the unit bidisc that is the Cartesian product of 2 open unit discs in C. Any function / in
Hp has an analytic extension to U2 which is also denoted by /.

A closed subspace M of H2 is said to be invariant if

zM cz M and wM <= M.

Put

and M2 = \ (J WM\ where | Q Z"M]
\_M = O J \_M = O J
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is the closed linear span of

n = 0

in L2. Set

Mx = MlnM2.

Then M is also an invariant subspace of H2. Put

Q ] and
n=0 J

Then //2 = H 1 n H 2 and hence (H2)X = H2. Therefore it is desirable to know invariant
subspaces M which have the following property: MX = H2 or MX = M. An invariant
subspace M of H2 has full range if M 1 = H1 and M2 = H2. Such an invariant subspace
has been studied by Agrawal, Clark and Douglas [2]. It is clear that M has full range if
and only if MX = H2. An invariant subspace M with MX=M has not been studied. In
this paper we study invariant subspaces with Mx = M. For an invariant subspace M of
H2set

It is essentially known [2] that if MX = M then Jf(M) = Hx. In this paper we give a
necessary and sufficient condition for Ji{M) = HK.

Let K\ denote the orthogonal complement of H2 = {f:feH2} in L2. The invariant
subspace qH2 for an inner function q is called a Beurling subspace.

The author would like to thank Professor K. Takahashi for his helpful discussions.

2. Intersection of Beurling subspaces

A Beurling subspace M satisfies MX = M trivially. In this section we show that the
intersections of Beurling subspaces have this property.

Proposition 1. If M is a nonzero invariant subspace of H2 then there exist two
unimodular functions Qx in Hj and Q2 in H2 such that Ml=QiHl and M2 = Q2H2, and
hence

Proof. By [7, pp. 164-165], L{J^=O^M^ = XEQ1H1+^-XE) L2 where XE ™ a
characteristic function of some measurable set E in T2, X E £ H I and |(?i| = l a.e. Since
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M e / / 2 and Ht has no reducing invariant subspaces under the multiplication of w, this
implies that M1 = QlH1 and Q I G H J because M , c H , . The same argument shows that

and Q2eH2.

Theorem 2. Let ( be a finite positive integer. If M = f)<j=1qjH
2 and {<?>};= 1 are inner

functions then Mx = M. Moreover

where {6,}2=i are unimodular functions in {H,}2
=1 and

i= f) qjHi (»•=!.2).

Proof. Let N = M1, that is, N is the orthogonal complement of M = {/ : /eM}. Then
tf = LS=i9,Kg] b e c a u s e W2y = K2. Put N^CLUIIJWHJ and N2 = [£<=i «^H2];
then {#,-}?= i are invariant subspaces and N = [Nl+N2'] because Ko = wH,+zH2. It is
clear that zN1 = Nl and wN2 = N2. If wAf1 = N1 then JV^^w"!!! for any positive n and
so N1 = L2. This contradicts that Mn(f]J = 1 ^) //2. Thus wN^ATj and similarly
zN2^N2. By [7] there exist unimodular functions Qx and Q2 such that
and N2 = Q2zH2. Since N = [N

Since Q,//, is the orthogonal complement of N( and N1 = (A?i)
± for i = 1,2,

In the case of one variable an intersection of two Beurling subspaces is also a
Beurling subspace. This is not true in the case of two variables by [11, Theorem 2 and
its proof]. In fact Xt and X2 in [11, Theorem 2] are intersections of two Beurling
subspaces and X^H2 for j= 1,2. If Xl = qlH

2 and X2 = q2H
2 for some inner functions

qt, q2 then qlXl = q2X2 = H2. This contradicts [11, Theorem 2]. Hence our Theorem 2
is not trivial. If an invariant subspace M is determined by vanishing conditions at
finitely many points of U then Mx — M because M is a finite co-dimensional subspace of
H2. We are interested in an invariant subspace determined by vanishing conditions at
infinitely many points of U. Let s be an analytic function on U such that s((/)<= U. Put

M5 = {/e//2:/(z,s(z))=0 for all zeU}

then Ms is an invariant subspace of H2.

Proposition 3. Let s be an analytic function on U and s((/)c [/. Then
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where Q = w-s/l-sw. (1) / / |s| = 1 a.e. on T then M* = H2. (2) If\s\ = r<l a.e. on T for
some constant r then

where Q' = w — s/sr l — rw.

Proof. If / e Ms then, for a.e. z e T,

l — sw
w—s

is w-analytic and hence /belongs to QH±. Therefore Ms lczQH1. Since (1— rsw)~leHl

for any constant r with 0 < r < 1 and w—seMs, (w—s)(l—rsw)"1 belongs to Ms-1. Since

w — s w — s
1 — rsw l—sw

1- r
1 —rsw

(asr->l)

because m {{z,w)eT2:s(z)w= l} = 0, Q belongs to Msl and hence Msl=QHx. Since
(w—rs)-1eH2 for any r with 0 < r < l and w — seMs, (w—s)(w — rs)~leMs2. As r-»l
the constant 1 belongs to Ms 2 and hence Ms,2 = H2. This implies M ^ Q H j n H 2 . (1) is
clear because sHj =Hj . (2) Since

w-s _sr-\w-s) .. _. ,_,

Put

l—sw sr x — rw ' s

= Q'//2 n H2. If Q' / = g for some / and g in H2 then

(w-s)/(z, w)=(sr~ i-rw)g(z, w) (z, w) e C/2.

Thus ^ belongs to Ms and hence MS=>N. It is clear that JV^g 'H , and Af2<=H2. The Q'
belongs to Nt because (sr~l —rw)~l e H , and w—seN. The constant 1 belongs to N2

because (w—s)"1eH2 and w — seN. Thus N = Q'Hlr\H2. Since NX = N by the proof of
Theorem 2, M* = MS = Q'H,nH2 = Q'H2 nfl2 .

3. Multipliers of an invariant subspace

An invariant subspace M of H2 is said to be podal if every invariant subspace N of
H2 which is unitarily equivalent to M is a subspace of M (cf. [3]). Agrawal, Clark and
Douglas [2] showed that if an invariant subspace of H2 has full range then it is podal.
The following is a generalization of that. For if N is full range then NX = H2.
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Proposition 4. Let M and N be invariant subspaces of H2 with MaNx. If M is
unitarily equivalent to N, then

Proof. By [2, Lemma 1] M = qN for some unimodular function q. Then Mx=qNx

and MX<=NX. By [2, Proposition 3] the q is an inner function.

Proposition 5. Let M and N be invariant subspaces of H2 with Mx = Nx. Then M is
unitarily equivalent to N if and only if M = N.

Proof. If M is unitarily equivalent to N then M = qN for some unimodular function
q. Then Mx = qNx and hence Mx = qMx. Thus q is an inner function. By the same
argument Nx = qNx and hence q is also an inner function. Thus q is constant and
M = N.

If M and N are invariant subspaces of finite codimension in H2, then we can show
MX = NX and hence by Proposition 5 M = N. This is Corollary 3 in [2] (see [5,
Corollary 6]). Douglas and Yan [3] asked the following question. Can one characterize
podal invariant subspaces?

Proposition 6. Let M be a nonzero invariant subspace of H2. M is podal if and only if
any unimodular functions in Jl{M) belong to if00.

Proof. If <f> is a unimodular function in M{M) then <f>MczH2 and <j>M is unitarily
equivalent to M. If M is podal then QMczM and hence 0eH°° by [2, Proposition 3].
Suppose any unimodular functions in Jl{M) belong to H™. If M is unitarily equivalent
to N which is an invariant subspace in H2 then N = <pM for some unimodular function
0. Since <j>eJi(M), by the hypothesis <j> belongs to Hx and so M is podal.

By the proposition above, if J£{M) = H'° then M is podal. We will characterize an
invariant subspace M with Jl{M) = Uai. In general M(M) is an invariant subspace of
L00 which contains //°°. The strusture of M(M) is simpler than that of M.

Theorem 7. / / M is a nonzero invariant subspace of H2 then

where M I = Q i H 1 n g 2 H 2 and Qt is a unimodular function in Hf for i = 1,2. Hence
J<(M) = H'» if and only if

Proof. If tf> e Jt{M) then 4>M c H2. Hence for i = 1,2

^Hi and M,-= {?,«,•
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where Q, is a unimodular function in Hf. Thus <f>eQiHlnQ2H2<~^La' and hence
Q1Hi n Q2H2 n L°°. Conversely let (p be in Q^ n Q2H2 n L00. Then

</> = 61^1 = 62^2

where 04 is in H,- for i = 1,2. I f / e M then feMx and hence

/ = 61/1=62/2

where /} is in Hf for i = l , 2 . Therefore 4>f — (t>ifi — <t>2f2- This implies that
H2 = H2 and hence <^e^(Af). Thus

This establishes the theorem.
For (/> e L00, the Hankei operator determined by <f> is

where P is the orthogonal projection from L2 to H2.

Proposition 8. The kernel of a Hankei operator is an invariant subspace M with

Proof. Suppose H^ is the Hankei operator defined by </> e L°° and let M be its kernel.
It is clear that M is an invariant subspace. Since M is the kernel of H^, <j>M a H2. By
Theorem 7, M(M) = Jt{Mx) and (f>MxczH2. This implies M = MX because M =
{feH2:ct>feH2}.
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