Proceedings of the Edinburgh Mathematical Society (1994) 37, 193-199 ©

MULTIPLIERS OF INVARIANT SUBSPACES IN THE BIDISC

by TAKAHIKO NAKAZI*
(Received 23rd January 1992)

For any nonzero invariant subspace M in H*(T?), set M*=[| %o "M] n{|J=ow"M]. Then M~ is also an
invariant subspace of H*(T?) that contains M. If M is of finite codimension in H*(T?) then M*= H*(T?) and
if M=gH*T?) for some inner function ¢ then M*=M. In this paper invariant subspaces with M*=M are
studied. If M =q,H*(T?)~q,H*(T?) and q,,q, are inner functions then M*=M. However in general this
invariant subspace may not be of the form: gH*(T?) for some inner function q. Put #(M)={peL”:pM<=
HY(T?)}; then #(M) is described and .#(M)=.#(M~) is shown. This is the set of all multipliers of M in the
title. A necessary and sufficient condition for .#(M)=H®(T?) is given. It is noted that the kernel of a Hankel
operator is an invariant subspace M with M*= M. The argument applies to the polydisc case.

1980 Mathematics subject classification (1985 Revision): Primary 46J15, 47A15, 47B20; Secondary 32A35.

1. Introduction

Let T? be the torus that is the Cartesian product of 2 unit circles in C. The usual
Lebesgue spaces, with respect to the Haar measure m of T2, are denoted by L? = L?(T?),
and the Hardy spaces H?=HP(T?) are spaces of all feLP(T?) whose Fourier
coefficients

f(j,/’)=TIz [z, w)ZWdm(z,w)

are 0 as soon as at least one component of (j,/) is negative, where 1<p< 0. Let U2 be
the unit bidisc that is the Cartesian product of 2 open unit discs in €. Any function f in
HP has an analytic extension to U? which is also denoted by f.

A closed subspace M of H? is said to be invariant if

zMcM and wMcM.
Put

M,=|: U Z"M:I and M2=[ U W"M] where [U z”'M]
M=0 M=0 M=0
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is the closed linear span of

U M
=0

in L2, Set
M*=M, M,

Then M is also an invariant subspace of H2. Put

H1=[U ?HZ] and H2=[ W"H2:|.
n=0 =0

Then H>=H, nH, and hence (H?)*= H?. Therefore it is desirable to know invariant
subspaces M which have the following property: M*=H? or M*=M. An invariant
subspace M of H? has full range if M, =H, and M,=H,. Such an invariant subspace
has been studied by Agrawal, Clark and Douglas [2]. It is clear that M has full range if
and only if M*=H?2. An invariant subspace M with M*=M has not been studied. In
this paper we study invariant subspaces with M*=M. For an invariant subspace M of
H? set

M(M)={pecL:¢M < H?}.

It is essentially known [2] that if M*=M then #(M)=H®. In this paper we give a
necessary and sufficient condition for .#(M)=H®.

Let K3 denote the orthogonal complement of H>={f:feH*} in L% The invariant
subspace gH? for an inner function g is called a Beurling subspace.

The author would like to thank Professor K. Takahashi for his helpful discussions.

2. Intersection of Beurling subspaces

A Beurling subspace M satisfies M*=M trivially. In this section we show that the
intersections of Beurling subspaces have this property.

Proposition 1. If M is a nonzero invariant subspace of H? then there exist two
unimodular functions Q, in H, and Q, in H, such that M,=QH, and M,=Q,H,, and
hence

M*=Q,H,n Q,H,.

Proof. By [7, pp. 164-165), [Jg-0Z"M])=xQ,H,+(1—xs) L> where y; is a
characteristic function of some measurable set E in T?, y;eH, and |[Q,|=1 ae. Since
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Mc H? and H, has no reducing invariant subspaces under the multiplication of w, this
implies that M, =Q,H, and Q,eH, because M, cH,. The same argument shows that
M2 = Q2H2 and Q2 GH2.

Theorem 2. Let ¢ be a finite positive integer. If M=\, q;H? and {q;};=, are inner
Junctions then M*= M. Moreover

M*=Q,H, nQ,H,

where {Q,}?-, are unimodular functions in {H;}?., and

¢
M,=QH;= ﬂ qui (i=1,2).
=1

J

Proof. Let N=M", thatis, N is the orthogonal complement of M ={f:feM}. Then
N=[Y'_,q;K%] because (H*)'=K3. Put N,=[Y%-,q;wH,] and N,=[)%.,q;zH,];
then {N;}2%, are invariant subspaces and N=[N, +N,] because K3=wH, +zH,. It is
clear that zN, =N, and wN,=N,. If wN, =N, then N, >gw'H, for any positive n and
so N,=L2% This contradicts that M>([]j=,q;) H?> Thus wN,#N, and similarly
zN,#N,. By [7] there exist unimodular functions Q, and Q, such that N, =Q;wH,
and N,=0Q,zH,. Since N=[N,+N,],

M=0Q,H, nQ,H,.

Since Q;H; is the orthogonal complement of N; and N;=(M,)! for i=1,2,
i
M;=QH;= ﬂ gH; (i=12).
j=1

In the case of one variable an intersection of two Beurling subspaces is also a
Beurling subspace. This is not true in the case of two variables by [11, Theorem 2 and
its proof]. In fact X, and X, in [11, Theorem 2] are intersections of two Beurling
subspaces and X;<H? for j=1,2. If X,=q,H? and X,=¢q,H? for some inner functions
41> q; then §,X,=43,X,=H?. This contradicts [11, Theorem 2]. Hence our Theorem 2
is not trivial. If an invariant subspace M is determined by vanishing conditions at
finitely many points of U then M*= M because M is a finite co-dimensional subspace of
H?. We are interested in an invariant subspace determined by vanishing conditions at
infinitely many points of U. Let s be an analytic function on U such that s(U)c U. Put

M,={feH?* f(z,5(z)) =0 for all ze U}

then M, is an invariant subspace of H2.

Proposition 3. Let s be an analytic function on U and s(U)c U. Then
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M:=QH,nH,

where Q=w—s/1—5w. (1) If |s|=1 a.e. on T then Mi=H?. (2) If |s|=r<1 ae. on T for
some constant r then

M*=M,=QH, nH,=QH? A H?
1

where Q'=w—s/sr~ ' —rw.

Proof. If feM, then, for ae. ze T,

is w-analytic and hence f belongs to QH,. Therefore M, , cQH,. Since (1 —riw) ' eH,
for any constant r with 0<r<1 and w—seM,, (w—s)(1 —rsw)~! belongs to M, ,. Since

w—s w—s|S 1—r |_’0 (as r—>1)
1—rsw 1—§w|_ 1—r§w|

because m {(z,w)e T*:5(z)w=1}=0, Q belongs to M,, and hence M, ,=QH,. Since
(w—rs)~'eH, for any r with O<r<1 and w—seM,, (w—s)(w—rs) 'eM, ,. As r—1
the constant 1 belongs to M, , and hence M, ,=H,. This implies M}=0H, nH,. (1) is
clear because sH; =H,. (2) Since

w—s _sr”(w—ys)

1—-5w  srotl—rw’

M,=QH, nH,.

Put N=Q'H>*~H2. If Q' f =g for some f and g in H? then
w=5)f(z,w)=(sr ' —rw)g(z,w) (z,w)eU2

Thus g belongs to M, and hence M,o N. It is clear that N,cQ’'H, and N,cH,. The Q'
belongs to N, because (sr ' —rw)"'eH, and w—se N. The constant 1 belongs to N,
because (w—s) " 'eH, and w—se N. Thus N=Q'H, nH,. Since N*=N by the proof of
Theorem 2, M>=M,=Q'H, nH,=Q'H* n H>.

3. Multipliers of an invariant subspace

An invariant subspace M of H? is said to be podal if every invariant subspace N of
H? which is unitarily equivalent to M is a subspace of M (cf. [3]). Agrawal, Clark and
Douglas [2] showed that if an invariant subspace of H? has full range then it is podal.
The following is a generalization of that. For if N is full range then N*=H?.
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Proposition 4. Let M and N be invariant subspaces of H> with McN*. If M is
unitarily equivalent to N, then Mc N.

Proof. By [2, Lemma 1] M =¢gN for some unimodular function g. Then M*=gN~*
and M*c N*. By [2, Proposition 3] the g is an inner function.

Proposition 5. Let M and N be invariant subspaces of H* with M*=N*. Then M is
unitarily equivalent to N if and only if M=N.

Proof. If M is unitarily equivalent to N then M =¢gN for some unimodular function
q. Then M*=gN* and hence M*=gM*. Thus g is an inner function. By the same
argument N*=gN* and hence § is also an inner function. Thus g is constant and
M=N.

If M and N are invariant subspaces of finite codimension in H?, then we can show

*=N* and hence by Proposition 5 M=N. This is Corollary 3 in [2] (see [5,
Corollary 6]). Douglas and Yan [3] asked the following question. Can one characterize
podal invariant subspaces?

Proposition 6. Let M be a nonzero invariant subspace of H®. M is podal if and only if
any unimodular functions in # (M) belong to H*.

Proof. If ¢ is a unimodular function in .#(M) then $M < H? and ¢M is unitarily
equivalent to M. If M is podal then §M =M and hence ¢ H® by [2, Proposition 3].
Suppose any unimodular functions in #(M) belong to H®. If M is unitarily equivalent
to N which is an invariant subspace in H? then N =¢M for some unimodular function
¢. Since ¢ € # (M), by the hypothesis ¢ belongs to H* and so M is podal.

By the proposition above, if #(M)=H® then M is podal. We will characterize an
invariant subspace M with .#(M)=H®. In general .#(M) is an invariant subspace of
L® which contains H®. The strusture of .#(M) is simpler than that of M.

Theorem 7. If M is a nonzero invariant subspace of H* then
MAM)=0H,nQ,H, " L™

where M*=QH, nQ,H, and Q; is a unimodular function in H; for i=1,2. Hence
H(M)=H® if and only if

QIHI mn Qsz N LQ=HUJ'
Proof. If ¢ € #(M) then ¢M < H>. Hence for i=1,2

¢M;cH; and M;=QH;
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where Q; is a unimodular function in H, Thus ¢eQ;H,nQ,H,NL® and hence
M(M)cQ,H, n Q,H, n L®. Conversely let ¢ be in §,H, n Q,H, n L®. Then

¢=Q1¢1=Q2¢2
where ¢; is in H; for i=1,2. If f e M then f e M* and hence
f=001=0./,

where f; is in H; for i=1,2. Therefore ¢f=¢,f,=¢,f,. This implies that ¢ feH, N
H, =H? and hence ¢ € #(M). Thus

0,H,n0,H, nL°c H(M).

This establishes the theorem.
For ¢ € L™, the Hankel operator determined by ¢ is

H,=(1-P)M,|H?

where P is the orthogonal projection from L? to H2.

Proposition 8. The kernel of a Hankel operator is an invariant subspace M with
M*=M.

Proof. Suppose H, is the Hankel operator defined by ¢ € L* and let M be its kernel.
It is clear that M is an invariant subspace. Since M is the kernel of H,, M < H?. By
Theorem 7, M#(M)=.#(M*) and ¢M*cH?. This implies M=M* because M=
{feH* ¢feH?}.
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