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Abstract
In this paper, we introduce a compact 6 × 8 channel multiple-inputmultiple-output frequency-
modulated continuous-wave radar system capable of determining the three-dimensional posi-
tions of targets despite utilizing a linear virtual array. The compact system, containing two
cascaded radar transceiver ICs, has 48 virtual channels. We conduct a direction of arrival esti-
mation with these virtual channels to determine the azimuth angle. To overcome the spatial
limitation of the linear array, we use frequency-steered transmit antennas, which vary their
main lobe direction during the frequency chirp, allowing the elevation angle to be deter-
mined by using a sliding window fast Fourier transform algorithm. In this study, we present
the system’s concept along with the associated signal processing. By taking measurements in
different scenarios, each with differently placed corner reflectors, we investigate the capabil-
ity of the system to separate adjacent targets concerning range, azimuth, and elevation. These
measurements are additionally employed to point out the design trade-offs inherent to the
system.

Introduction

In comparison to conventional phased array radar systems, multiple-input multiple-output
(MIMO) radar systems provide the advantage of target localization with comparable angular
resolution while using fewer antenna elements. This leads to lower hardware complexity due to
a reduction in the number of channels, but at the same time provides for increased computa-
tional effort in signal processing. The ability to separate targets in three dimensions depends
on range resolution and angular resolution in both azimuth and elevation. While range reso-
lution mainly depends on the radar bandwidth, the angular resolution is primarily determined
by the number and the arrangement of the transmit (TX) and receive (RX) antenna elements.
Several MIMO frequency-modulated continuous-wave (FMCW) radar systems with different
antenna arrays for the the purpose of three-dimensional target localization have been developed
and studied over the years. A compact 16GHzMIMO FMCW radar system with 16 TX and 16
RX antennas, forming a rectangular virtual array with 256 equally spaced elements, has been
presented in [1, 2]. The system achieved an angular resolution of 4.7∘ in azimuth and 3.6∘ in
elevation, respectively. This MIMO concept was extended to a modular 24 × 24 channel system
with a resolution of 2.9∘ [3]. Another 24 × 24MIMOFMCWradar system operating at 120GHz
was developed in [4]. By using a sparse antenna array with a semi-circular arrangement for the
TX and RX antennas, an angular resolution of about 1∘ for both azimuth and elevation was
achieved.

For a MIMO radar system with a given number of TX and RX channels, the highest angular
resolution is achieved when the virtual array is linear, with all antenna elements distributed
along a common axis. A 77GHz MIMO FMCW radar with this type of antenna arrangement
was shown in [5]. By use of six TX and eight RX antennas, a linear virtual array of 48 equally
spaced elements was formed, and an angular resolution of 3∘ was achieved. However, there is a
limitation due to the linear antenna arrangement. Depending on the system’s orientation, either
the azimuth or the elevation angle of a target can be determined, but not both at the same time.
Therefore, only the two-dimensional position of a target (R, 𝜙) can be estimated.This limitation
was removed by a concept presented in [6], where a 77GHzMIMO FMCW radar with a linear
array was equipped with frequency-steered TX antennas. Even though the system had a linear
virtual array, this approach enabled a three-dimensional target localization (R, 𝜙, 𝜃).The system
benefits from a high resolution in azimuth and an additional resolution in elevation at the cost
of range resolution.

The frequency-controlled antennasweuse in our systemare of the slottedwaveguide antenna
type. The concept of a small slot array, first described in [7], was adapted to substrate inte-
grated waveguide (SIW) technology in [8, 9], enabling its use in millimeter wave applications.
A particular form of this antenna was later introduced in [10], in which a meander shape
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Figure 1. MIMO FMCW radar system with master and slave transceiver ICs. The
eight RX antennas are arranged in 𝜆c/2 spacing, and the six frequency-steered TX
antennas in 8𝜆c/2 spacing. The multilayer board with a core stackup of
1 × RO4350B+ 4 × FR4 is of size 100 × 60mm2.

increased the electrical length between two adjacent slots.Thereby,
frequency-dependent phase differences arise between the slots,
enabling a frequency-dependent control of the main lobe. Due to
its high bandwidth, this antenna is ideally suited for millimeter
wave FMCW radar systems that generate linear frequency chirps.
For example, a system for tracking very fast objects [11–13] and an
imaging radar [14] have been developed based on this antenna.

The capabilities of aMIMOradarwith frequency-steered anten-
nas based on the concept in [6] have already been demonstrated
by measurements using a vector network analyzer and mechani-
cally moved antennas in [15]. In this contribution, we present a
corresponding standalone system that is characterized bymeasure-
ments. The focus is on estimating range and angular resolution
in both azimuth and elevation and on the three-dimensional tar-
get localization. An earlier version of this paper was presented
at the 19th European Radar Conference and was published in its
proceedings [16].

System design

Radar hardware

Our developed radar system, shown in Fig. 1, comprises two
AWR1243P automotive radar ICs from Texas Instruments that
generate FMCW chirps in a frequency range of 77–81GHz. To
ensure coherent signal generation, these ICs are arranged in a cas-
caded mode. One IC functions as the master, supplying a 20GHz
reference signal.This reference signal is split by aWilkinsondivider
located at the board’s center and then fed back to each device, where
it is used as the reference for chirp generation. The same feedback
mechanism is employed for a digital trigger signal to enable syn-
chronous sampling. Each of the RX channels on the ICs is equipped
with an integrated analog-to-digital converter (ADC), capable of
generating complex 12-bit samples with a maximum sampling rate
of 18.75Msps. However, a 10Msps sampling rate is used for the
measurements in “Measurement” section. The ADC data is trans-
mitted through a low voltage differential signaling interface on
the backside of the board to a MicroZed platform from Xilinx,
where the data is stored and processed. Each AWR1243P device
contributes three TX and four RX channels, resulting in a total
of six TX and eight RX channels. The system operates in a time-
division multiplexing mode, with the six TX channels sequentially
transmitting chirps.

Figure 2. Sketch of the TX and RX antenna patterns when considering the system
in a side view. The RX antennas have a wide beam that remains rather constant
throughout the frequency chirp. The main lobe of the TX antennas is continuously
tilted downward during the chirp. A target is detected during a certain part of the
frequency ramp. The information about the target angle is contained in the
amplitude of the intermediate frequency signal.

Antenna distribution and characteristics

The spatial distribution of the antennas interconnected to the TX
and RX channels through grounded coplanar waveguides is shown
in Fig. 1. Both the TX and RX arrays are arranged in a linear fash-
ion, with a TX spacing of dTX = 8 dRX and an RX spacing of dRX =
𝜆c

2
, where 𝜆c is the free space wavelength at the center frequency

fc = 79GHz. This configuration results in a linear virtual array
consisting of 48 channels, as was also realized in [5].

As outlined in “Introduction” section, our system’s concept is
based on a frequency-dependent combined antenna pattern of the
virtual channels. For a given virtual channel consisting of a TX–RX
pair, the corresponding combined antenna pattern can be obtained
by multiplying the individual TX and RX patterns, schematically
illustrated in Fig. 2. While the RX antennas exhibit a wide beam,
the TX antennas are engineered to focuswithin the elevation plane.
Themain lobe of the TX antennas is steerable and adjusted accord-
ing to the chirp’s frequency. When operating at 77GHz, the beam
aligns perpendicularly to the board’s surface, continuously tilting
downwards as the frequency increases during the chirp.

The TX antennas were designed according to the principle
described in [10]. In this process, slots are inserted into a mean-
dered SIWat defined intervals, as shown in Fig. 3. EachTX antenna
comprises a linear array composed of six series-fed slots that col-
lectively generate a fan beam in the far-field region, focused in the
elevation plane. The extension in azimuth of this fan beam is par-
ticularly advantageous for the MIMO system’s field of view. The
transmit signal is fed into the antenna’s input port, traversing the
meander-shaped SIW structure. At the output, the signal is trans-
ferred to a microstrip line through a tapered transition and finally
terminated by a chip resistor. At each slot, a portion of the signal’s
power is radiated into free space.The relative phase differenceΔ𝜑s
depends on the lengthLs of the SIWsections between adjacent slots
and the guided wavelength or frequency. In our design, we choose
Ls to equal twice the guided wavelength at 77GHz, corresponding
to a phase shift of 2 ⋅ 360 = 720 degrees. Since all slots radiate in
phase (Δ𝜑s = 0), the main lobe is aligned perpendicular to the
board’s surface at 77GHz. Deviations from 77GHz cause progres-
sive phase distributions along the slots (Δ𝜑s ≠ 0), leading to a
downward tilt of the main lobe. The total scanning angle depends
on the bandwidth, the length Ls, and the phase constant of the SIW.

For the RX channels, double patch antennas (see Fig. 1) with
a slightly focused beam in the elevation plane are used. Since
the patches are fed serially, their main lobe direction also varies
with frequency. This effect, however, is small due to the short
electrical length between the patches. The patch antennas fea-
ture a substantially wider elevation beam compared to the slot
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Figure 3. Schematic of the frequency-steered TX antenna. The wave propagates
through the meandered SIW structure, with a portion of its power radiated into free
space at each slot. The slots form a linear antenna array. Due to the large electrical
length of the SIW, there are frequency-dependent phase settings at the slot
positions which determine the direction of the main lobe.

antenna array. As a result, the combined pattern, notably the
dependence of the main lobe direction on frequency, is primarily
determined by the TX antennas.

Measurement

This section presents the measurements conducted for the system’s
characterization. Specifically, we aim to determine the separabil-
ity of targets across all dimensions: ΔR, Δ𝜙 and Δ𝜃. Throughout
these measurements, one or two test targets, namely corner reflec-
tors, were strategically positioned at various locations within the
far-field region of the sensor. The measurement setups, including
the target arrangements formeasurements labeled a-d, are depicted
in Fig. 4. All measurements were performed within an anechoic
chamber, ensuring controlled testing conditions.The corner reflec-
tors were manually positioned and aligned using tape measures
and floor markings. Hence, the target positions may exhibit slight
deviations from their defined values.Theobjective ofmeasurement

“Combined TX–RX antenna pattern” (a) is to derive a combined
antenna pattern for each of the TX–RX pairs, depending on eleva-
tion angle and frequency.The derived pattern serves as a reference
for determining the elevation angle in the subsequent measure-
ments. In measurement “Target separability: azimuth plane” (b),
two targets are positioned side by side at the same height, and their
separability in the azimuth plane is examined. This is followed by
measurement “Target separability: elevation plane” (c), where one
target is positioned below the other, and the height of the lower
target is varied. Finally, measurement “Three-dimensional target
position” (d) serves to demonstrate the complete functionality of
the system. In this case, two targets are positioned side by side, but
at different heights, enabling us to exemplify the determination of
their three-dimensional positions.

Combined TX–RX antenna pattern

The system’s capability to detect targets in the elevation plane
depends on the combined antenna patterns of the virtual antenna
elements, each corresponding to a specific combination of TX and
RX channels. To ascertain these patterns, the system is affixed to a
tripod and positioned on a turntable, which is actuated by a stepper
motor, allowing for the adjustment of the angle between the system
and the target. A single corner reflector serves as a point-like tar-
get and is situated at a distance of 3m in a direct line of sight. Both
the system and the target are positioned at an approximate height
of 1.5m above the ground. For this particular measurement, the
system is aligned, as depicted in Fig. 4a, with the virtual array axis
pointing upwards.Therefore, contrary to the system’s intended use
case, the beam steering by frequency occurs in the azimuth plane
andnot in the elevation plane. Since it is actually the elevation angle
that is altered by the stepper motor, it is also denoted as 𝜃 in this
measurement. The angle 𝜃 is varied from −90∘ to 90∘ in 2∘ incre-
ments. At each angular increment, a measurement is conducted
using a frequency chirp spanning 77–81GHz.

In the following, we derive the frequency-dependent patterns
from the measurement data by performing the signal processing
sequence, illustrated in Fig. 5, separately for each virtual channel.

Step I
The IF signal consists ofN = 1024 samples (n = 0, … , 1023). Since
the frequency of the transmitted chirp linearly depends on the sam-
pling time, the instantaneous chirp frequency fRF,n can be assigned
to each sample, with n denoting the corresponding sample index.
An axis for fRF,n is added in Fig. 5, with values ranging from fmin =
77.2GHz for the first sample to fmax = 80.8GHz for the last sam-
ple. A 200MHz offset from the start and end of the frequency ramp
was chosen to mitigate transient effects, albeit at the expense of a
reduced effective bandwidth of Beff = 3.6GHz.

The IF signal is analyzed using a sliding window FFT algorithm.
A window of defined width w is slid over the signal sample by
sample (Δn = 1). At the initial window position the left win-
dow limit coincides with the first sample (n = 0), and at the final
window position, the right window limit coincides with the last
sample (n = 1023). At each step, the samples within the window
are extracted for separate processing in step II. For this and all
subsequent signal processing steps where the sliding window algo-
rithm is applied, the window width is consistently set to w = 128.
This results in N − w + 1 = 897 window positions, dividing the
complete IF signal into 897 separate sub-signals. Each sub-signal
represents a specific frequency regionof the chirp and is assigned to
the center frequency of the corresponding window, denoted as fw,n.
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Figure 4. Positioning of the corner reflectors for measurements a–d. The direction
of the virtual array axis VX is indicated with a bold arrow in each case.

For example, at the first position the window’s center is located at
sample n = w/2 = 64, with the corresponding window frequency
being fstart = fw,0 = fRF,64 = 77.5GHz.

Figure 5. Signal processing sequence for generation of a single combined TX–RX
antenna pattern. I: A window with a defined width w and center frequency fw,n is
moved over the intermediate frequency (IF) signal sample by sample. II: At each
position of fw,n, a range fast Fourier transform (FFT) is performed and the
magnitude PRT of the target peak is determined. III: PRT is plotted against fw,n.
IV: Steps I–III are repeated for all angular increments of the stepper motor.

Step II
For each of the 897 sub-signals obtained from step I, a range FFT is
performed. According to the expectation, a single target becomes
visible. The sliding window with w = 128 covers one-eighth of
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Figure 6. Measured combined antenna pattern in elevation plane for summed
virtual channels corresponding to TX3 for azimuth angle 𝜙 = 0∘ (Fig. 4a). The main
lobe direction changes with frequency, covering an angular range of approximately
20∘.

Figure 7. Main lobe direction of the combined pattern dependent on frequency,
derived from Fig. 6. This figure serves as a frequency-dependent angular reference
for determining 𝜃.

the total frequency chirp, resulting in each sub-signal having an
effective bandwidth of Beff,sub = 1

8
Beff = 450MHz. Due to the

reduced bandwidth, the peak appears wider in range compared to
the case where the FFT would have been performed on the entire
IF signal. However, this is not an issue in this single-target environ-
ment. The chosen window width is a reasonable value in order to
achieve sufficient frequency resolution while avoiding an excessive
number of window steps, resulting in unnecessary computational
overhead. For each computed range profile, the target’s peak power
PRT is determined in a defined region ΔRT around the known
target position RT.

Steps III and IV
The previously determined values for PRT are plotted against their
associated window frequencies fw,n. The steps I to III are repeated
for all angular increments of 𝜃.The result of this processing is a data
set containing the frequency-dependent amplitude response of a
single virtual channel depending on 𝜃. Finally, the signal processing
sequence is performed for all virtual channels.

Based on the gained data set, the combined pattern is visual-
ized as a color plot, where PRT is normalized to its maximum value
and plotted against frequency and 𝜃, with the frequency directly
corresponding to fw,n. The summed-up pattern of the eight vir-
tual channels belonging to TX3, which is located near the board’s
center, is shown in Fig. 6.

As can be seen, the main lobe of the combined pattern is tilted
by about 20∘ in the considered frequency range.The extracted half-
power beamwidth ranges between 5∘ and 10∘. In order to extract
the frequency-dependentmain lobe direction fromFig. 6, themax-
imum along the 𝜃-axis is determined in 500MHz steps on the
frequency axis and plotted accordingly in Fig. 7. This figure serves
as a reference for translating the frequency into a corresponding
elevation angle.

The curve exhibits different slopes in the frequency regions of
77.5–78.5, 78.5–79.5, and 79.5–80.5GHz, indicating distinct tilt
rates 𝜕𝜃

𝜕f
of the main lobe. The TX antenna itself is expected to

demonstrate a linear relationship between the main lobe direc-
tion and frequency, as shown in [12]. However, Fig. 7 shows the
combinedmain lobe direction, representing the composite effect of
both the TX and RX antennas. As previously stated, the main lobe
direction of the slightly focusedRXantenna also exhibits frequency
dependence, albeit to a considerably lesser extent compared to the
TX antenna. As a result, the combined behavior exhibits variations
regarding the tilt rate, depending on the instantaneous alignment
of the TX and RX main lobe.

Target separability: azimuth plane

To determine angular and range resolution in the azimuth plane,
the system is aligned, as shown in Fig. 4b, with the virtual array
axis parallel to the ground. Two targets are placed adjacent to each
other at a distance of 3.7m, with a horizontal separation of 45 cm
between them.

Each measurement involves raw data composed of 1024 com-
plex samples for each virtual channel of the system, resulting in
a two-dimensional matrix sized 48 × 1024, with virtual channels
and IF samples as its dimensions. First, the inequalities of the vir-
tual channels with respect to phase and amplitude are eliminated
through a calibration following the procedure outlined in [17]. A
correction matrix for phase and amplitude is derived from a mea-
surement taken with a single corner reflector positioned in the
far field region at 𝜙 = 0∘, 𝜃 = 0∘. Subsequently, each measure-
ment data matrix is multiplied element-wise by this correction
matrix.

From the calibrated raw data, a range-azimuth plot is gener-
ated using the signal processing steps depicted in the left column
of Fig. 8. After applying Hann windows to both dimensions of the
datamatrix, an FFT is first performed along the virtual channel axis
and then along the sample axis. The measurement result is visual-
ized in Fig. 9, where the two targets, T1 and T2, are discernible,
and their positions can be determined using a peak detection algo-
rithm. For a more detailed analysis, a sectional view for R = 3.7m
is presented in Fig. 10. At this distance, the section plane passes
exactly through the maximum of target T2. However, due to posi-
tioning inaccuracies, the maximum of T1 is slightly offset in range
and not exactly situated on the section plane, resulting in the peak
of T1 being approximately 6 dB lower than that of T2. Additionally,
the targets are not symmetrically located around 0∘. There is an
offset of roughly 1.2∘ from the center, which can also be attributed
to positioning inaccuracies.
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Figure 8. Signal processing steps for the generation of the range-azimuth and
range-elevation color plots. The left column contains a direction of arrival
algorithm, the right column a sliding window FFT algorithm.

Nevertheless, the two targets are clearly distinguishable from
each other.The 3-dB width, which is a measure for the angular res-
olution, is Δ𝜙3dB = 3.5∘ for both target peaks.This implies that the
azimuth resolution closely aligns with the results presented in [5]
and could potentially be further improved by eliminating theHann
window, albeit at the expense of increased side lobes. In terms of
range resolution, Fig. 9 reveals a value ofΔR = 9.0 cm for both tar-
gets. The range resolution of the system is slightly lower than that
of a conventional FMCW radar system with a range resolution of
ΔRc = whann ⋅ c0

2B
= 7.5 cm. Unlike in a conventional FMCW radar

system, the total effective bandwidth is distributed over an angular
range of 𝜃. The target is present within the main lobe of a TX–RX
pair only during a specific frequency range of the chirp.The band-
width contained within this frequency range, which is crucial for
range resolution, depends on two factors: the tilt rate 𝜕𝜃

𝜕f
and the

angular extent of the combined main lobe. Since the main lobe is
steered over a rather narrow angular range of approximately 20∘,
exhibiting a wide half-power beamwidth of up to 10∘, the loss in
resolution is only 1.5 cm or 20%when referenced toΔRc = 7.5 cm.

Target separability: elevation plane

Thismeasurement aims to investigate target separability in the ele-
vation plane. The system is set up with the same orientation as for
the azimuthmeasurement. However, the two targets are not placed
next to each other, but one below the other, as illustrated in Fig. 4c.
Measurements are conducted for the corner distances dc ranging
from 20 to 80 cm.The targets are located at a distance of 3.7m, with
the upper target located approximately 6 cm below the center of

Figure 9. Measurement of two corner reflectors symmetrically placed around 𝜙 =
0∘ in front of the system and located at the same height above the ground (Fig. 4b).
The range-azimuth plot was generated by applying the signal processing steps in
Fig. 8 (left column) and normalization to the maximum peak power. The targets,
which are 45 cm apart, are identifiable by two distinct peaks.

Azimuth angle

R
el

. 
p
o
w

er
 (

d
B

)

-90° -60° -30° 0° 30° 60° 90°

0

-10

-20

-30

-40

T2
T1

Figure 10. Cross-sectional view derived from Fig. 9 at R = 3.7m. The two targets
are visible as two distinct peaks with a 3-dB width of 3.5∘. Due to alignment
inaccuracy, the peaks are shifted 1.2∘ off center.

the virtual array. During the measurement, the upper target is not
moved and remains stationary. For comparison, measurements are
then repeatedwith only one target, positioned at the same locations
previously occupied by the lower target.

To generate the range-elevation plots from the measurement
data, a sliding window FFT according to step I in Fig. 5 is applied
to the IF signals of the virtual channels. As in measurement
“Combined TX–RX antenna pattern”, a window width of w = 128
samples was chosen, corresponding to a bandwidth of 450MHz.
At each window step fw,n, the IF signal within the window, repre-
senting a specific frequency region of the chirp, is multiplied by a
Hann window and subjected to an FFT. In this measurement, the
choice of the window width is a trade-off between range and eleva-
tion resolution. Awindowwidth of 128 samples or 450MHz places
both quantities into a reasonable proportion. However, the range
resolution for a given elevation angle is physically limited by the
half-power beamwidth of the combined antenna pattern.

The resulting range-frequency plots for the performed mea-
surements, depicting relative power as a function of frequency
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Figure 11. Measurement of a single target (left column) and two targets (right
column) in the elevation plane (Fig. 4c). The range-frequency plots, normalized to
the maximum, were generated using a sliding window FFT algorithm. As the
distance dc increases, the peak of the moved target shifts to higher frequencies (𝜃).
The targets appear broadened in frequency, which is due to a rather small scanning
angle in combination with a large half-power beamwidth of the combined antenna.
In the plot in the bottom right corner, where two separate peaks become visible,
the target positions are marked with red crosses.

Figure 12. Cross-sectional view at R = 3.7m, derived from Fig. 11 (right column).
For distances dc between 20 and 80 cm, the peaks of the targets merge into each
other. Only at a distance of dc = 80 cm the targets can be clearly separated from
each other.

and range, are shown in Fig. 11. In the left column, the results
of the single target environment are presented, while in the right
column, the results of the double target environment are depicted.
The frequency can be translated into a corresponding elevation
angle using Fig. 7. The targets appear wide in elevation, primarily
due to the wide main lobe of the combined pattern and the low tilt
angle. However, for each height in the single target measurement,
a distinct maximum can be identified. For a more detailed anal-
ysis of the double target measurement, the slices at R = 3.7m are
considered in Fig. 12. As can be seen, the two targets are only dis-
tinguishable at dc = 80 cm. The peak of the lower target is located
at fT2 = 78.8GHz, corresponding to an elevation angle of about
𝜃T2 = -10∘.The lower target has a 3-dB width ofΔf3dB = 620MHz,
which can be converted to an elevation angle width of Δ𝜃3dB =
7.8∘. It is noted that this result is dependent on the signal processing
method previously described.

Three-dimensional target position

In this measurement, the two targets T1 and T2 are positioned
adjacent to each other as in measurement “Target separability:
azimuth plane”.However, in this configuration, the targets also vary
in height, as illustrated in Fig. 4d. Here, target T1 is located 30 cm
below the center of the virtual array, while target T2 is situated
60 cm below T1.

To determine the three-dimensional coordinates (R, 𝜃, 𝜙) of
the targets, all the signal processing steps outlined in Fig. 8 are
applied. It is required to start with the left column to determine the
azimuth angles 𝜙T1 and 𝜙T2 first. After calibration and applying a
Hann window to the IF data, a two-dimensional FFT is performed
along the virtual channels and the IF samples. The resulting plot
is shown in figure Fig. 13a. As expected, two distinct target peaks
are discernible near 𝜙 = 0∘. The center point between the targets
deviates from 0∘ due to an alignment error of the measurement
setup. The peak positions can be determined using a peak detec-
tion algorithm, leading to 𝜙T1 = −0.3∘ and 𝜙T2 = −7.1∘, and the
corresponding range values RT1 = 3.7m and RT2 = 3.8m. When
compared to the range-azimuth plot of measurement “Target sep-
arability: azimuth plane” (see Fig. 9), it is evident that the range
value associated with T2 is approximately 10 cm greater than that
of T1.This is plausible since T2 is located 60 cm below T1, and thus
further away from the system.

For the complete three-dimensional position, the elevation
angle 𝜃 remains to be determined. This is accomplished by apply-
ing the signal processing steps outlined in the right column of
Fig. 8. After windowing and zero padding, a one-dimensional FFT
is exclusively performed along the virtual channels. The outcome
is an array in which the IF signals are arranged in ascending order
versus the azimuth angle 𝜙, as shown in Fig. 13b. Due to the zero
padding, there are more IF signals than physical virtual channels
after the FFT. These additional IF signals are artificially generated
and do not increase the number of physical virtual channels. In
Fig. 13b, the two targets appear as two separate lines located at
the corresponding azimuth angles. Furthermore, both lines exhibit
different amplitude signatures, which inherently encapsulate infor-
mation about the elevation angle. From the data array in Fig. 13b,
the IF signals at the previously determined target angles 𝜙T1 and
𝜙T2 are extracted, and the sliding window FFT is applied two both
IF signals.The resulting range-frequency plots are shown in Fig. 14.
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Figure 13. Measurement of two corner reflectors placed 45 cm apart from each
other near 𝜙 = 0∘ and additionally positioned at different heights above the ground
(Figure 4d). (a) The range-azimuth plot was obtained by applying the signal
processing steps in Figure 8 (left column) and normalization to the maximum peak
power. (b) The first two processing steps in the right column of Figure 8 were
executed. In this process, an FFT was exclusively applied along the virtual channels,
sorting the IF signals according to the azimuth angle. The sorted IF signals are then
plotted against the chirp frequency and presented in a normalized plot. The targets
appear as two separate lines with different amplitude profiles, which inherently
contain information about the elevation angle.

Figure 14. Range-frequency plots generated by applying a sliding window FFT to
the two IF signals extracted from Fig. 13b at corresponding azimuth angles 𝜙T1 and
𝜙T2. The target peaks are located at different frequencies, yielding the
corresponding elevation angles 𝜃T1 and 𝜃T2 by translating with Fig. 7.

As expected, the target T2 is situated below T1.The corresponding
target frequencies fT1 = 78.4GHz and fT2 = 79.2GHz are converted

into the respective elevation angles 𝜃T1 = -6∘ and 𝜃T2 = -15 ∘ using
Fig. 7.

Conclusion

In this contribution, we presented a MIMO FMCW radar sys-
tem featuring a linear virtual array configuration, equipped with
frequency-steered antennas for the transmit channels and dual
patch antennas for the receive channels.This TX–RXantenna com-
bination effectively eliminated the spatial constraints associated
with a linear array, enabling three-dimensional target localization.
Our evaluation of the system’s performance involved a comprehen-
sive series ofmeasurements, focusing on target separability and the
determination of three-dimensional target positions. Measured by
the 3-dB width of the target peaks, the system has a high azimuth
resolution of Δ𝜙3dB = 3.5∘, a range resolution of ΔR = 9 cm and
an elevation resolution of Δ𝜃3dB = 7.8∘, taking into considera-
tion the broadening effect introduced by a Hann window. When
designing the system for real-world applications, these resolutions
can be tailored by appropriately configuring the number of TX or
RX channels, as well as adjusting the total scanning angle and the
beamwidth of the frequency-steered transmit antennas.

To further enhance the system, frequency-steered antennas
could be employed for both TX and RX. This approach would
increase the directivity of the combined pattern and result in a sig-
nificantly sharper frequency-dependentmain lobe, thereby leading
to improved elevation resolution. However, it is not feasible to
directly replace the RX antennas with the TX antennas used for
this system since they cannot be arranged in a 𝜆c/2 spacing due
to their substantial dimensions. This would only be possible if a
substrate with significantly higher permittivity were used, poten-
tially eliminating the meander shape and connecting the slots
with straight-line SIW sections. Nevertheless, this approach comes
with considerably higher technical demands on the manufactur-
ing process, particularly regarding via technology, as well as higher
losses.
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