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SHARP GRADIENT ESTIMATES FOR
EIGENFUNCTIONS ON RIEMANNIAN MANIFOLDS

ALBERT BORBELY

Sharp gradient estimates are derived for positive eigenfunctions on complete Rie-
mannian manifolds with Ricci curvature bounded below.

0. INTRODUCTION

The aim of this note is to derive, in a simple and rather elementary way, sharp
gradient estimates for positive eigenfunctions on complete Riemannian manifolds with
Ricci curvature bounded from below by a constant. One can view these inequalities as
the infinitesimal form of the Harnack inequality for positive eigenfunctions on complete
Riemannian manifolds.

Estimates of this type were obtained in [2]. In case of harmonic functions the
estimate is sharp [2, Theorem 3"], but for eigenfunctions in general [2, Theorem 3']
the constant involved in the estimate was not explicitely computed.

For an eigenfunction / with a negative eigenvalue, a sharp lower bound on the
sup |V/| / / is obtained as well.

The main result is the following.

THEOREM. Let M = Mn be an n-dimensional complete Riemannian manifold
with Ricci curvature bounded below by — (n — \)K2, (K ^ 0) and let f be a positive
eigenfunction, that is, A/ = A/ for some A. Then A ^ — (1/4)(n — l)2K2 and

/ | (n - 1)K + JUn - \)K)2 + 4A
SUp L i < 1

If, at some point q, | V / | / / = sup |V / | / / and | V / | / / =

or | V / | / / = (1/2) {{n-l)K - y/((n - \)K)2 + 4A) with

A < 0, then, at this point Ric((V/)/ |V/|, (V/) / |V/|) = - (n - l)K2 and V/ is an
eigenvector and Vf1- is an eigenspace of Hess / .

To see that the estimates above are sharp, one takes the constant curvature
model MK, a simply connected space of constant sectional curvature — K2. Set
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254 A. Borbely [2]

/ = exp (~ab), where b denotes a Busemann function on MR- . Then, a simple com-
putation shows that / is an eigenfunction with eigenvalue X = a2 — a(n — l)K and
equality is achieved in the above inequalities.

The situation is quite different if the Ricci curvature is non-negative. Prom the
proof of the Theorem one obtains easily the following.

COROLLARY . Let M = Mn be an n-dimensional complete Riemannian manifold
with Ricci curvature bounded below by C > 0. Then there is no positive function f
defined on M with A / = Xf for any A ̂  0. If X = 0, then the only solution of
A / = Xf is the constant function.

The case of harmonic functions (A = 0) was already covered in [2] but we added
it for the sake of completeness.

1. PRELIMINARIES

For the convenience of the reader, in this section, we collect some basic formulas
which will be used later on.

Let M = Mn be an ra-dimensional complete Riemannian manifold. Then, for any
/ e C°°(M) the Bochner-Lichnerowicz formula [1, Propisition 4.15] states that

^ = |Hess/|2 + (V/, V(A/)> + Ric (V/, V/).

For a linear map A : TPM —t TPM we define |.A|2 by

(1-1) \A\2

for any orthonormal system Ei,...,En.

The following elementary estimate will play an important role.

PROPOSITION 1 . 1 . Let U e TPM be any unit vector and set tr A = X. Then
we have

\A\2 > (AU,U)2 + -L-((AU,U) - A)2.

Equality occurs if and only if U is an eigenvector and U1- is an eigenspace.

PROOF: Let U = E\, E2,. • •, En be an orthonormal system. Then, we have
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By the Cauchy-Schwarz inequality we see that

{(AEuEt) - A)2 ^ (n -
t=2

Adding (n - \){AEi, E\)2 to both sides we get that

(n - 1){AEU Exf + ((AElt Ex) - A)2 < (n - i)2 «S (n -

From this the proposition follows easily.
The case of equality is simple as well. From the last inequality we conclude that

Ei,..., En must all be eigenvectors and the equality case of Cauchy- Schwarz implies
that E2, • • •, En must have the same eigenvalues. This concludes the proof. D

We also need a formula for |Hesslog/|2. From (1.1) we have

|Hesslog/|2 =

t ,7 = l

Hence we have

(1.2) |Hesslog/|2 =
|Hess/|2 V/ 4 Hess/ /V/ V / \

We now establish the crucial inequality about eigenfunctions.

PROPOSITION 1.2 . Let Mn be an n-dimensional complete Riemannian man-
ifold and let f be a positive eigenfunction with A / = A/. Then

n - i . v / 2 ^ / / v / v ( i | v / | 2 ) \ _ \ 2
+ . / v / v y

2(n - V/

If at some point p € M" equaiity occzirs then at that point V / is an eigenvector and
V / x is an eigenspace of Hess / .

PROOF: First we apply the Bochner-Lichnerowicz formula to log/.
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Taking into account (1.2) and the following simple identities

we get

A / = A/,

Yl
f

f

[Hess ff

P + v/ 4 Hess//V/ V/

/ V
7/V/\

|Hess/|2

/ 2 + 3 Yl
f

4 _ Hess//V/ V/•^llfYl Yl\
f \f'f)

A simple computation shows that

and

Hess// V/ V / \ /_V/_ V(||V/|2)

v r y \ iv / r
V /:ss/ /V/ V/\ _

T~\T' f ) ~
Applying now Proposition 1.1 to (Hess/)// we have

v/ v(| -2(

n-lV\|V/|'
2

\ / T

+ 2 / \|V/I'

It is easy to see that on the right hand side the first term in parenthesis is always
non-negative, therefore we have

2
v/

+ 2
V / V /

This implies the proposition. The case of equality follows easily from the equality case
of Proposition 1.1. Q
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2. PROOF OF THE THEOREM.

Let M = Mn be an n-dimensional complete Riemannian manifold with Ricci
curvature bounded below by — (n — \)K2 and let / be a positive eigenfunction, that
is, A / = Xf for some A. By [2, Theorem 3'] we know that |V/ | / / is bounded. Set

a = sup

For any 0 < e < 1 there is a point q £ M such that

For some 6 > 0 (which will be choosen later) let h : R+ —> R+ be a smooth,
decreasing function such that h(t) = 1 for 0 < t < 1, lim h(t) — 1 - e and \h'\ ,\h"\ <

t—KX3

S. Clearly such a function must exist.
Let g : M —> K+ be defined by g(jp) — h(dq(p)), where dq is the distance function

from q. From [2, Lemma 1] we know that Adg < C for dg > 1, where C is some
constant depending only on the dimension and the lower bound on the Ricci curvature.
Taking into account that Ag = h'Adq + h" |Vdg| , for a small enough 5 we get that

IVol Ag
(2.1) < e, — > -e.

9 9
Consider now the function 5 | V / / / | . This must assume its maximum at some

point q'. Hence, at the point q', we have

f £ 2 \

(2.2)

From the first equality we get

(2.3) \

Applying this, the first inequality in (2.2) yields

A(\U

and

Yl
f

f

Combining (2.1) and Proposition 1.2 we get that

n — 1 . •>

2(n -
V / Yl

f
v/
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at the point q'. From (2.3) we also have

V ( i iv/l
/ /

V /

Substituting this into the above inequality and using the fact that the Ricci curva-
ture is bounded below by —(n — 1)K2, we have (at the point q')

(2-4)
V /

where ex = (V/, Vg)/(\Vf\g) and e2 = ^/((n - l)/2)(2e2 + e) + 2(n - l)£a2. It is
clear from (2.1) that both e\ and e2 approach 0 when e does.

Taking square roots, we have

2

f
IV/I
/

This implies that at the point

in - \)K + e2 - y/((n - \)K + e2)
2 + 4A

2 ( 1 -

and, by the last inequality of (2.2),

( n - n - \)K + e2f + 4A

Now, the inequalities in the theorem follow by letting e go to 0. Let us remark that
the same argument also shows that A ^ -( l /4)(n - l)2K2.

If, at some point q 6 M, |V/ | / / = sup |V/ | /f = a, then at this point we have

=O and A ( | ^

Prom the first equality we get

v/iv/l

Combining these with Proposition 1.2, we have (at the point q)
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Now,, if a = (1/2) ((n - \)K + yj{(n - 1)K)2 + 4A) or a = (1/2) ((n - \)K -

J((n - \)K) + 4A) with A < 0, then a simple computation shows that the inequality

above can hold only if, at the point q, Ric ((V/)/ |V/ | . (V/) / |V/ | ) = - (n - l)K2. In
this case, the inequality becomes an equality and the Theorem follows from the equality
case of Proposition 1.2.

PROOF OF THE COROLLARY: Up to (2.4) the argument is the same as in the proof
of the Theorem. But if the Ricci curvature is bounded below by C > 0, then the
inequality (2.4) will be the following. At the point q' we have

(2.4') ( ( ! - ' f
Yl

f 4 Yl
f

In case A ^ 0, for a small enough e it is clearly impossible. If A = 0, then, by letting e
go to 0, we conclude that sup | V / | /f — 0. This completes the proof of the Corollary. D
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