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Abstract. Unstable pressure and u-equilibrium states are introduced and investigated for
a partially hyperbolic diffeomorphism f. We define the unstable pressure Pu(f , ϕ) of f
at a continuous function ϕ via the dynamics of f on local unstable leaves. A variational
principle for unstable pressure Pu(f , ϕ), which states that Pu(f , ϕ) is the supremum of
the sum of the unstable entropy and the integral of ϕ taken over all invariant measures, is
obtained. U-equilibrium states at which the supremum in the variational principle attains
and their relation to Gibbs u-states are studied. Differentiability properties of unstable
pressure, such as tangent functionals, Gateaux differentiability and Fréchet differentiability
and their relations to u-equilibrium states, are also considered.
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1. Introduction
Entropy and pressure are important invariants in the study of dynamical systems and
ergodic theory. Entropies, including topological entropy and measure-theoretic entropy,
are measurements of complexity of the orbit structure of the system from different points
of view. As a generalization of entropy, the concept of pressure was introduced by Ruelle
[18] and studied in the general case in Walters [20]. In fact, the theory of pressure and
its related topics, such as Gibbs measures and equilibrium states, are the main constituent
components of mathematical statistical mechanics.
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The main purpose of this paper is to introduce unstable topological pressure Pu(f , ϕ)
for a C1-partially hyperbolic diffeomorphism f : M → M and any continuous function
ϕ on M , obtain a variational principle for this pressure and investigate the corresponding
so-called u-equilibria and differentiability properties.

Let f be a C1+ε-diffeomorphism on a closed Riemannian manifold M , where
ε > 0. The well-known entropy formula in [11] shows that if μ is an SRB (after
Sinai–Ruelle–Bowen) measure, then the corresponding metric entropy hμ(f ) is the
integration of the summation of the positive Lyapunov exponents. It tells us that positive
exponents have a contribution to the metric entropy. In particular, when f is uniformly
hyperbolic, both of the metric entropy and the topological entropy are caused by the
dynamics on the unstable foliations. However, when f is (uniformly) partially hyperbolic,
things become delicate. The presence of the center direction makes the dynamics much
more complicated.

In recent years, the entropy theory for partially hyperbolic diffeomorphisms has been
increasingly investigated. We can see the progress in this research topic in [9, 10, 23, 24],
etc. In particular, for any C1-partially hyperbolic diffeomorphism f , Hu, Hua and
Wu [9] introduced the definitions of unstable metric entropy huμ(f ) for any invariant
measure μ and unstable topological entropy hutop(f ). Precisely, huμ(f ) is defined by using

Hμ(
∨n−1
i=0 f

−iα|η), where α is a finite measurable partition and η is a measurable partition
subordinate to unstable manifolds that can be obtained by refining a finite partition into
pieces of unstable leaves; hutop(f ) is defined by the topological entropy of f on local
unstable manifolds. Similar to that in the classical entropy theory, the corresponding
versions of the Shannon–McMillan–Breiman theorem and the local entropy formula for
huμ(f ), and the variational principle relating huμ(f ) and hutop(f ) are given. The main
feature of these unstable entropies is to rule out the complexity caused by the center
directions and focus on that caused by the unstable directions. In fact, huμ(f ) is equal
to hμ(f , ξ) := Hμ(ξ |f ξ) (where ξ is an increasing partition subordinate to the unstable
leaves), which was introduced by Ledrappier and Young [11]. Comparing the above two
types of definition for the unstable metric entropy, we can see that the former one is more
natural and easy to understand than the latter one.

Similar to the way by which the unstable entropy is defined in [9], the unstable
pressure Pu(f , ϕ) is defined via the information of the potential ϕ as iterating f on local
unstable leaves (see Definition 2.2). It is well known that the variational principle for the
classical pressure was first given by Ruelle [18] for the system with the expansiveness and
specification assumptions and then was obtained by Walters [21] for the general case. It
shows that

P(f , ϕ) = sup
{
hμ(f )+

∫
M

ϕ dμ : μ ∈ Mf (M)

}
,

where Mf (M) is the set of all f -invariant probability measures on M . We will combine
the elegant method in Walters [21] and the technique in Hu, Hua and Wu [9] to obtain the
variational principle for unstable pressure (Theorem A), i.e. the equality as the above in
which P(f , ϕ) and hμ(f ) are replaced by Pu(f , ϕ) and huμ(f ), respectively. In particular,
if ϕ ≡ 0, then we get the variational principle for unstable entropy [9, Theorem D].
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The measure at which the supremum attains in the variational principle for unstable
pressure Pu(f , ϕ) is called a u-equilibrium state for f at ϕ (see Definition 2.3). Some
fundamental properties for the set of u-equilibrium states are considered (Theorem B).
Among these properties, we show that there always exists a u-equilibrium state for
a C1-partially hyperbolic diffeomorphism, in contrast to the case for the classical
equilibrium state (cf. [4, 12], etc). This is essentially due to the upper semicontinuity of the
unstable entropy map μ �→ huμ(f ). For the particular potential ϕu = − log | det Df |Eu |,
we relate the u-equilibrium states at ϕu to the Gibbs u-states of f (Theorem C). In [21, 22],
some properties about the classical pressure and equilibrium states were investigated. We
can consider the corresponding properties for unstable pressure and u-equilibrium states.
We show that unstable pressure determines invariant measures (Theorem D) and there is a
close relation between u-equilibrium states and tangent functionals (Theorem E). To study
the uniqueness of the u-equilibrium state, we define two types, Gateaux type and Frechét
type, of differentiability of unstable pressure of f at ϕ and obtain several properties of
them (Theorems F and G).

The paper is organized as follows. In §2, we give the definitions of unstable pressure
and u-equilibrium state, and formulate the main results. We provide some properties of
unstable pressure in §3. Section 4 is for the proof of the variational principle of unstable
pressure. In §5 and §6, we consider the properties of u-equilibrium states and study how
the unstable pressure determines invariant measures. In §7, differentiability properties of
unstable pressure are investigated.

2. Definitions and statements of results
LetM be an n-dimensional smooth, connected and compact Riemannian manifold without
boundary and f : M → M a C1-diffeomorphism. f is said to be partially hyperbolic (cf.
for example [16]; see also [7]) if there exists a non-trivial Df -invariant splitting TM =
Es ⊕ Ec ⊕ Eu of the tangent bundle into stable, center and unstable distributions, such
that all unit vectors vσ ∈ Eσx , σ = c, s, u, with x ∈ M satisfy

‖Dxf vs‖ < ‖Dxf vc‖ < ‖Dxf vu‖
and

‖Dxf |Esx‖ < 1 and ‖Dxf−1|Eux ‖ < 1

for some suitable Riemannian metric on M . The stable distribution Es and unstable
distribution Eu are integrable to the stable and unstable foliationsWs andWu respectively
such that TWs = Es and TWu = Eu (cf. [8]).

In this paper we always assume that f is a C1-partially hyperbolic diffeomorphism of
M and μ is an f -invariant probability measure. The notion of unstable metric entropy of
μ with respect to f was introduced in [9], using a type of measurable partitions consisting
of local unstable leaves that can be obtained by refining a finite partition into pieces of
unstable leaves. We recall the construction of such measurable partitions and the definition
of unstable metric entropy as follows. To begin with, we recall some standard notation and
classical results on measurable partitions.
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Let (X, A, ν) be a standard probability space. For a partition α of X, let α(x) denote
the element of α containing x. If α and β are two partitions such that α(x) ⊂ β(x) for
all x ∈ X, we then write α ≥ β or β ≤ α. For a measurable transformation f : X → X

and a partition α of X, we denote f−1α = {f−1A : A ∈ α}. Clearly, f−1α is a partition if
α is. A partition ξ is increasing if f−1ξ ≥ ξ . α ∨ β := {A ∩ B : A ∈ α, B ∈ β} is called
the join of α and β. For a partition β, we denote βnm = ∨ni=mf−iβ. In particular, βn−1

0 =
∨n−1
i=0 f

−iβ.
For a partition η, let B(η) denote the smallest sub-σ -algebra of A that contains all

elements of η. A partition η of X is called measurable if there exists a countable set
{An}n∈N ⊂ B(η) such that for almost every (a.e.) pair C1, C2 ∈ η, we can find some An
which separates them in the sense that C1 ⊂ An, C2 ⊂ X − An. The canonical system
of conditional measures of ν relative to η is a family of probability measures {νηx :
x ∈ X} with νηx

(
η(x)

) = 1 such that for every measurable set B ⊂ X, x �→ ν
η
x (B) is

B(η)-measurable and

ν(B) =
∫
X

νηx (B) dν(x).

The classical result of Rohlin (cf. [17]) says that if η is a measurable partition, then there
exists a system of conditional measures relative to η. It is unique in the sense that two such
systems coincide in a set of full ν-measure. For measurable partitions α and η, let

Hν(α|η) := −
∫
X

log νηx (α(x)) dν(x)

denote the conditional entropy of α given η with respect to ν.
Now consider a C1-partially hyperbolic diffeomorphism f : M → M . Take ε0 > 0

small. Let P = Pε0 denote the set of finite Borel partitions of M whose elements have
diameters smaller than or equal to ε0, that is, diam α := sup{diam A : A ∈ α} ≤ ε0. For
each β ∈ P , we can define a finer partition η such that η(x) = β(x) ∩Wu

loc(x) for each
x ∈ M , where Wu

loc(x) denotes the local unstable manifold at x whose size is greater than
the diameter ε0 of β. Since Wu is a continuous foliation, η is a measurable partition with
respect to any Borel probability measure on M . Let Pu denote the set of partitions η
obtained in this way and subordinate to unstable manifolds. Here a partition η of M is
said to be subordinate to unstable manifolds of f with respect to a measure μ if for μ-a.e.
x, η(x) ⊂ Wu(x) and contains an open neighborhood of x in Wu(x). It is clear that if
α ∈ P is such that μ(∂α) = 0, where ∂α := ∪A∈α∂A, then the corresponding η given by
η(x) = α(x) ∩Wu

loc(x) is a partition subordinate to unstable manifolds of f .

Definition 2.1. The conditional entropy of f with respect to a measurable partition α
given η ∈ Pu is defined as

hμ(f , α|η) = lim sup
n→∞

1
n
Hμ(α

n−1
0 |η).

The conditional entropy of f given η ∈ Pu is defined as

hμ(f |η) = sup
α∈P

hμ(f , α|η)
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and the unstable metric entropy of f is defined as

huμ(f ) = sup
η∈Pu

hμ(f |η).

The following theorem is one of the main results in [9].

THEOREM. [9, Theorem A and Corollary A.2] For any α ∈ P and η ∈ Pu,

huμ(f ) = hμ(f |η) = hμ(f , α|η) = lim
n→∞

1
n
Hμ(α

n−1
0 |η).

Unstable metric entropy was independently studied by Yang [24], where it is defined as
the entropy introduced by Ledrappier and Young [11]. Suppose that f is C1+ε(ε > 0) and
μ is ergodic. Recall a hierarchy of metric entropies hμ(f , ξi) := Hμ(ξi |f ξi) introduced by
Ledrappier and Young in [11], where i = 1, . . . , ũ and ũ is the number of distinct positive
Lyapunov exponents. For each i, ξi is an increasing partition subordinate to the ith level of
the unstable leaves W(i) and is a generator. It is proved there that hμ(f , ξũ) = hμ(f ), the
metric entropy of μ. If there are u, 1 ≤ u ≤ ũ, distinct Lyapunov exponents on an unstable
subbundle, then the uth unstable foliation is exactly the unstable foliation of the partially
hyperbolic system f . It is shown in [9] that the unstable metric entropy huμ(f ) is identical
to hμ(f , ξu) given by Ledrappier–Young. We remark that our definition of unstable metric
entropy (and also Yang’s in [24]) only requires f to be C1, while the definition and results
by Ledrappier–Young require the C1+ε-regularity of f .

Another notion introduced in [9] is the unstable topological entropy hutop(f ). As a
generalization, we define the unstable topological pressure associated with a potential
ϕ ∈ C(M , R) as follows. Denote by du the metric induced by the Riemannian structure
on the unstable manifold and let dun (x, y) = max0≤j≤n−1 d

u(f j (x), f j (y)). LetWu(x, δ)
denote the open ball inside Wu(x) with center x and radius δ with respect to du. Let E
be a set of points in Wu(x, δ) with pairwise dun -distances at least ε. We call E an (n, ε)
u-separated subset of Wu(x, δ). Put

Pu(f , ϕ, ε, n, x, δ) := sup
{∑
y∈E

exp((Snϕ)(y)) :

E is an (n, ε) u-separated subset of Wu(x, δ)
}

,

where (Snϕ)(y) = ∑n−1
i=0 ϕ

i(y).

Definition 2.2. We define unstable topological pressure of f with respect to the potential
ϕ on M to be

Pu(f , ϕ) := lim
δ→0

sup
x∈M

Pu(f , ϕ, Wu(x, δ)),

where

Pu(f , ϕ, Wu(x, δ)) := lim
ε→0

lim sup
n→∞

1
n

log Pu(f , ϕ, ε, n, x, δ).
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In fact, Pu(f , ϕ, Wu(x, δ)) is exactly the upper capacity topological pressure of the set
Wu(x, δ) defined by Pesin (see [13]). Naturally, one can define the unstable pressure via
Caratheódory structure following [13]. For the unstable entropy case, this has been done
in [15, 19].

Two alternative ways to define unstable topological pressure are by using (n, ε)
u-spanning sets and by using open covers. We discuss it in detail in §2. Note that when
ϕ = 0, the unstable topological pressure becomes the unstable topological entropy.

Let Mf (M) and Me
f (M) denote the sets of all f -invariant and ergodic probability

measures on M , respectively. Our first main result is the variational principle relating
unstable topological pressure and unstable metric pressure, the sum of unstable metric
entropy and integral of the potential.

THEOREM A. Let f : M → M be a C1-partially hyperbolic diffeomorphism. Then, for
any ϕ ∈ C(M , R),

Pu(f , ϕ) = sup
{
huμ(f )+

∫
M

ϕ dμ : μ ∈ Mf (M)

}
.

Moreover,

Pu(f , ϕ) = sup
{
huμ(f )+

∫
M

ϕ dμ : μ ∈ Me
f (M)

}
.

As an immediate corollary, we recover the variational principle for unstable entropies
obtained in [9].

COROLLARY A.1. Let f : M → M be a C1-partially hyperbolic diffeomorphism. Then

hutop(f ) = sup{huμ(f ) : μ ∈ Mf (M)}.
Moreover,

hutop(f ) = sup{huν(f ) : ν ∈ Me
f (M)}.

Let P(f , ϕ) be the classical topological pressure of f associated to the potential ϕ
(cf. [21, Ch. 9]). By the definition of Pu(f , ϕ) and Theorem A, we have the following
facts.

COROLLARY A.2. We have Pu(f , ϕ) ≤ P(f , ϕ).
If f is C1+ε , the equality holds if there is no positive Lyapunov exponent in the center

direction at ν-a.e. with respect to any ergodic measure ν.

The variational principle (Theorem A) gives a natural way of selecting members of
Mf (M). The following concept of u-equilibrium state generalizes measure of maximal
unstable entropy.

Definition 2.3. Let ϕ ∈ C(M , R). A member μ of Mf (M) is called a u-equilibrium state
for ϕ if Pu(f , ϕ) = huμ(f )+ ∫

ϕ dμ.
Let Mu

ϕ(M , f ) denote the set of all u-equilibrium states for ϕ.
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A measure of maximal unstable entropy is a u-equilibrium state for the potential 0.
A significant result in [9] is that the unstable metric entropy function is upper semicon-
tinuous (cf. [9, Proposition 2.15], which is restated in Lemma 4.4 below). Therefore,
a u-equilibrium state should always exist for partially hyperbolic diffeomorphisms.
Furthermore, Mu

ϕ(M , f ) has the following non-trivial properties.

THEOREM B.
(1) Mu

ϕ(M , f ) is convex.
(2) Mu

ϕ(M , f ) is non-empty and compact.
(3) The extreme points of Mu

ϕ(M , f ) are precisely the ergodic members of Mu
ϕ(M , f ).

(4) If ϕ, ψ ∈ C(M , R) and there exists c ∈ R such that ϕ − ψ − c belongs to the closure
of the set {h ◦ f − h : h ∈ C(M , R)} in C(M , R), then Mu

ϕ(M , f ) = Mu
ψ(M , f ).

Gibbs u-states form a special class of invariant probability measures on M whose
conditional measures along unstable leaves are absolutely continuous with respect to the
Lebesgue measure on the leaves (cf. [1, 2], [14], see also [1, p. 221]). More precisely, we
have the definition below.

Recall that a partition η is subordinate to unstable manifolds of f with respect to a
measure μ if for μ-a.e. x, η(x) ⊂ Wu(x) and contains an open neighborhood of x in
Wu(x). Also recall that for a measurable partition η of M , the conditional measures of a
probability measure μ relative to a measurable partition η are denoted by {μηx}. Denote
by mux the Lebesgue measure on Wu(x) induced by the intrinsic Riemannian structure on
Wu(x).

Definition 2.4. Let f be a C1+ε-partially hyperbolic diffeomorphism. μ ∈ Mf (M) is
called a Gibbs u-state of f if for every measurable partition η subordinate to unstable
manifolds of f , μ -a.e. x ∈ M , μηx is absolutely continuous with respect to mux , that is,
μ
η
x � mux for μ -a.e. x.

For a C1 partially hyperbolic diffeomorphism f : M → M , denote ϕu(x) =
− log | det Df |Eu(x)|. Using some results in [24], we can relate the u-equilibrium states
associated to ϕu to the Gibbs u-states of f .

THEOREM C. Let f be C1+ε and μ ∈ Mf (M). Then μ is a Gibbs u-state of f if and only
if μ is a u-equilibrium state of ϕu.

COROLLARY C.1. If f is C1+ε , then Pu(f , ϕu) = 0.

COROLLARY C.2. There always exists a Gibbs u-state for any C1+ε-partially hyperbolic
diffeomorphism.

Corollary C.2 can be easily extended to the partially hyperbolic attractor case, which
recovers the existence result proved in [14].

It is well known that the (classical) topological pressure P(f , ·) determines the set
Mf (M) and the entropy hμ(f ) for all μ ∈ Mf (M), in the sense of [21]. We recall the
precise meaning as follows. A finite signed measure on M is a countably additive map
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μ : B(M) → R, where B(M) is the σ -algebra of Borel subsets ofM . Thenμ ∈ Mf (M) if
and only if

∫
M
ϕ dμ ≤ P(f , ϕ) for all ϕ ∈ C(M , R). Moreover, hν(f ) = inf{P(f , ϕ)−∫

M
ϕ dν : ϕ ∈ C(M , R)} holds if and only if the entropy map μ �→ hμ(f ) from Mf (M)

to R
+ ∪ {0} is upper semicontinuous at ν. Rather surprisingly, the analogue holds for

unstable pressure: the unstable topological pressure Pu(f , ·), which might be considered
as a partial pressure of the system, also determines the set Mf (M) and the entropy huμ(f )
for all μ ∈ Mf (M). Moreover, we have a cleaner result since the unstable entropy map
μ �→ huμ(f ) is always upper semicontinuous.

THEOREM D.
(1) Let μ : B(M) → R be a finite signed measure. Then μ ∈ Mf (M) if and only if∫

M
ϕ dμ ≤ Pu(f , ϕ), for all ϕ ∈ C(M , R).

(2) Let ν ∈ Mf (M). Then

huν(f ) = inf
{
Pu(f , ϕ)−

∫
M

ϕ dν : ϕ ∈ C(M , R)
}

.

As the existence of the u-equilibrium state has been guaranteed by the upper semicon-
tinuity of the unstable entropy map, it is natural to ask when the u-equilibrium state is
unique. This question is very subtle and already attracts a lot of interest in the case of the
classical pressure. In this paper, we study the differentiability properties of the unstable
pressure and their relations to the uniqueness of the u-equilibrium state. Such an approach
is developed in [22] for the classical pressure.

To start with, we define a notion of tangent functional to the convex function Pu(f , ·) :
C(M , R) → R, which is closely related to the u-equilibrium state. The (classical) tangent
functional can be found in [21, Definition 9.9].

Definition 2.5. Let ϕ ∈ C(M , R). A u-tangent functional to Pu(f , ·) at ϕ is a finite signed
measure μ : B(M) → R such that

Pu(f , ϕ + ψ)− Pu(f , ϕ) ≥
∫
M

ψ dμ for all ψ ∈ C(M , R).

Let tuϕ (M , f ) denote the set of all u-tangent functionals to Pu(f , ·) at ϕ.

For the classical tangent functionals and equilibrium states, one has Mϕ(M , f ) ⊂
tϕ(M , f ). The equality Mϕ(M , f ) = tϕ(M , f ) holds under the assumption that μ �→
hμ(f ) is upper semicontinuous at all the members of tϕ(M , f ) (cf. [21]). The assumption
always holds for the u-tangent functionals.

THEOREM E. Let ϕ ∈ C(M , R), then Mu
ϕ(M , f ) = tuϕ (M , f ).

By a classical theorem in functional analysis (cf. [6]), the convex function Pu(f , ·) on
C(M , R) has a unique tangent functional at a dense subset of C(M , R). Combining with
Theorem E, we have the following.

COROLLARY E.1. The set {ϕ ∈ C(M , R) : Mu
ϕ(M , f ) has a unique member} is dense in

C(M , R).
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To give sufficient conditions for a continuous function to have a unique u-equilibrium
state, we consider two types of differentiability of unstable pressure.

Definition 2.6. The unstable topological pressure Pu(f , ·) : C(M , R) → R is said to be
Gateaux differentiable at ϕ if

lim
t→0

1
t
(P u(f , ϕ + tψ)− Pu(f , ϕ))

exists for any ψ ∈ C(M , R).

THEOREM F. Pu(f , ·) is Gateaux differentiable at ϕ if and only if there is a unique
unstable tangent functional to Pu(f , ·) at ϕ.

Combining Theorems E and F, we have the following.

COROLLARY F.1. Pu(f , ·) is Gateaux differentiable at ϕ if and only if there is a unique
u-equilibrium state of ϕ.

Now we consider the Fréchet differentiability of unstable topological pressure.

Definition 2.7. Pu(f , ·) : C(M , R) → R is said to be Fréchet differentiable at ϕ if there
exists γ ∈ C(M , R)∗ such that

lim
ψ→0

|Pu(f , ϕ + ψ)− Pu(f , ϕ)− γ (ψ)|
‖ψ‖ = 0.

Let μn → μ denote the convergence in weak∗ topology and ‖μn − μ‖ → 0 the
convergence in norm topology on Mf (M). The norm topology here is induced by the
metric ‖μ1 − μ2‖ := sup{| ∫

ϕ dμ1 − ∫
ϕ dμ2| : ϕ ∈ C(M , R), ‖ϕ‖ ≤ 1}. We have the

following equivalent ways to describe Fréchet differentiability of Pu(f , ·).
THEOREM G. The following statements are equivalent to each other.
(1) Pu(f , ·) is Fréchet differentiable at ϕ.
(2) There exists a measure μϕ ∈ Mf (M) such that whenever (μn) ⊂ Mf (M) with

huμn(f )+ ∫
M
ϕ dμn → Pu(f , ϕ), we have ‖μn − μϕ‖ → 0 as n → ∞.

(3) tuϕ (M , f ) has a unique member μϕ and

Pu(f , ϕ) > sup
{
huμ(f )+

∫
M

ϕ dμ : μ is ergodic and μ �= μϕ

}
.

(4) Pu(f , ·) is affine in a neighborhood of ϕ.
(5) tuϕ (M , f ) has a unique member μϕ and sup{‖μ− μϕ‖ : μ ∈ tuϕ+ψ(M , f )} → 0 as

ψ → 0.
(6) tuϕ (M , f ) has a unique member μϕ and inf{‖μ− μϕ‖ : μ ∈ tuϕ+ψ(M , f )} → 0 as

ψ → 0.
(7) tuϕ (M , f ) has a unique member μϕ and there is a weak∗ neighborhood V of μϕ such

that

huμϕ (f ) > sup{huμ(f ) : μ ∈ V is ergodic and μ �= μϕ}.
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It follows that Fréchet differentiability of Pu(f , ·) implies the uniqueness of the
u-equilibrium state. It is also clear that Fréchet differentiability of Pu(f , ·) is stronger than
Gateaux differentiability of Pu(f , ·), either by the definitions or by Theorems F and G.

As a corollary of Theorem G(4), we have the following.

COROLLARY G.1. The set of ϕ ∈ C(M , R) such that Pu(f , ·) is Fréchet differentiable at
ϕ is open in C(M , R).

3. Unstable topological pressure
In this section, we redefine the unstable topological pressure via spanning sets and open
covers, and discuss its basic properties.

3.1. Definition using spanning sets. Recall that unstable topological pressure is defined
in Definition 2.2 using (n, ε) u-separated sets. We can also define unstable topological
pressure by using (n, ε) u-spanning sets as follows.

A set F ⊂ Wu(x) is called an (n, ε) u-spanning set of Wu(x, δ) if Wu(x, δ) ⊂⋃
y∈F Bun (y, ε), where Bun(y, ε) = {z ∈ Wu(x) : dun (y, z) ≤ ε} is the (n, ε) u-Bowen ball

around y. Put

Qu(f , ϕ, ε, n, x, δ) := inf
{∑
x∈F

exp((Snϕ)(x)) :

F is an (n, ε) u-spanning subset of Wu(x, δ)
}

.

Then, instead of Definition 2.2, we can also define

Pu(f , ϕ, Wu(x, δ)) := lim
ε→0

lim sup
n→∞

1
n

log Qu(f , ϕ, ε, n, x, δ).

It is standard to verify that these two definitions for Pu(f , ϕ, Wu(x, δ)) coincide.
The following lemma is useful.

LEMMA 3.1. Pu(f , ϕ) = supx∈M Pu(f , ϕ, Wu(x, δ)) for any δ > 0.

Proof. It is easy to see that Pu(f , ϕ) ≤ supx∈M Pu(f , ϕ, Wu(x, δ)) for any δ > 0 since
δ �→ supx∈M Pu(f , ϕ, Wu(x, δ)) is increasing.

Let us prove the other direction for some fixed δ > 0. For any ρ > 0, there exists y ∈ M
such that

sup
x∈M

Pu(f , ϕ, Wu(x, δ)) ≤ Pu(f , ϕ, Wu(y, δ))+ ρ

3
. (3.1)

Pick ε0 > 0 such that

Pu(f , ϕ, Wu(y, δ)) = lim
ε→0

lim sup
n→∞

1
n

log Qu(f , ϕ, ε, n, y, δ)

≤ lim sup
n→∞

1
n

log Qu(f , ϕ, ε0, n, y, δ)+ ρ

3
. (3.2)
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We can also choose δ1 > 0 small enough such that δ1 < δ and

Pu(f , ϕ) ≥ sup
x∈M

Pu(f , ϕ, Wu(x, δ1))− ρ

3
. (3.3)

Then there exist yi ∈ Wu(y, δ), 1 ≤ i ≤ N , where N only depends on δ, δ1 and the
Riemannian structure on Wu(y, δ), such that

Wu(y, δ) ⊂
N⋃
i=1

Wu(yi , δ1). (3.4)

Then we have

sup
x∈M

Pu(f , ϕ, Wu(x, δ))

≤ Pu(f , ϕ, Wu(y, δ))+ ρ

3
by (3.1)

≤ lim sup
n→∞

1
n

log Qu(f , ϕ, ε0, n, y, δ)+ 2ρ
3

by (3.2)

≤ lim sup
n→∞

1
n

log
( N∑
i=1

Qu(f , ϕ, ε0, n, yi , δ1)

)
+ 2ρ

3
by (3.4)

≤ lim sup
n→∞

1
n

log NQu(f , ϕ, ε0, n, yj , δ1)+ 2ρ
3

for some 1 ≤ j ≤ N

= lim sup
n→∞

1
n

log Qu(f , ϕ, ε0, n, yj , δ1)+ 2ρ
3

≤ lim
ε→0

lim sup
n→∞

1
n

log Qu(f , ϕ, ε, n, yj , δ1)+ 2ρ
3

= Pu(f , ϕ, Wu(yj , δ1))+ 2ρ
3

≤ sup
x∈M

Pu(f , ϕ, Wu(x, δ1))+ 2ρ
3

≤ Pu(f , ϕ)+ ρ by (3.3).

Since ρ > 0 is arbitrary, we have supx∈M Pu(f , ϕ, Wu(x, δ)) ≤ Pu(f , ϕ).

3.2. Definition using open covers. We proceed to define the unstable topological
pressure by using open covers. Let CM denote the set of Borel covers of M and CoM ⊂ CM
the set of open covers of M . Given U ∈ CM , denote Unm := ∨n

i=m f−iU . Put

pu(f , ϕ, U , n, x, δ) := inf
{∑
B∈V

sup
y∈B∩Wu(x,δ)

exp((Snϕ)(y)) : V ∈ CM , V � Un−1
0

}
.

If B ∩Wu(x, δ) = ∅, we set supy∈B∩Wu(x,δ) exp((Snϕ)(y)) = 0.

Definition 3.2. We define

P̃ u(f , ϕ) := lim
δ→0

sup
x∈M

P̃ u(f , ϕ, Wu(x, δ)),
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where

P̃ u(f , ϕ, Wu(x, δ)) := sup
U∈CoM

lim sup
n→∞

1
n

log pu(f , ϕ, U , n, x, δ).

Remark 3.3. It is not clear whether the sequence log pu(f , ϕ, ε, n, x, δ) is subadditive or
not, so we have used lim sup in the definition above. This is one of the main differences
from the case for classical topological pressure.

Observe that for δ > 0 small enough, there exists C > 1 such that for any x ∈ M ,

d(y, z) ≤ du(y, z) ≤ Cd(y, z) for any y, z ∈ Wu(x, δ) (3.5)

since M is compact and Wu is a continuous foliation. By some similar arguments to those
in the proofs of [21], we can verify that Definitions 2.2 and 3.2 for unstable topological
pressure coincide.

PROPOSITION 3.4. We have P̃ u(f , ϕ, Wu(x, δ)) = Pu(f , ϕ, Wu(x, δ)). As a conse-
quence,

P̃ u(f , ϕ) = Pu(f , ϕ).

3.3. Basic properties of unstable topological pressure. Here we list some properties
of unstable topological pressure. The proof is straightforward by definition and hence is
omitted.

PROPOSITION 3.5. If ϕ, ψ ∈ C(M , R) with norm ‖ · ‖ and c ∈ R, then the following
statements are true.
(1) Pu(f , 0) = hutop(f ).
(2) Pu(f , ϕ + c) = Pu(f , ϕ)+ c.
(3) ϕ ≤ ψ implies that Pu(f , ϕ) ≤ Pu(f , ψ). In particular, hutop(f )+ inf ϕ ≤

Pu(f , ϕ) ≤ hutop(f )+ sup ϕ.
(4) |Pu(f , ϕ)− Pu(f , ψ)| ≤ ‖ϕ − ψ‖.
(5) Pu(f , ·) is convex.
(6) Pu(f , ϕ + h ◦ f − h) = Pu(f , ϕ). Moreover, if ϕ − ψ belongs to the closure of the

set {h ◦ f − h : h ∈ C(M , R)} in C(M , R), then Pu(f , ψ) = Pu(f , ϕ).
(7) Pu(f , ϕ + ψ) ≤ Pu(f , ϕ)+ Pu(f , ψ).
(8) Pu(f , cϕ) ≤ cP u(f , ϕ) if c ≥ 1 and Pu(f , cϕ) ≥ cP u(f , ϕ) if c ≤ 1.
(9) |Pu(f , ϕ)| ≤ Pu(f , |ϕ|).

4. The variational principle
4.1. Some properties of unstable metric entropy. In this subsection, we collect some
important properties of unstable metric entropy proved in [9]. In particular, they will
be used in the proof of the variational principle (Theorem A) and in describing the set
Mu

ϕ(M , f ) in Theorem B.

LEMMA 4.1. [9, Corollary A.2] huμ(f ) = hμ(f , α|η) = limn→∞(1/n)Hμ(αn−1
0 |η) for

any α ∈ P and η ∈ Pu.
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LEMMA 4.2. [9, Corollary 3.2] For any η ∈ Pu subordinate to unstable manifolds and
any ε > 0,

hμ(f |η) = lim
n→∞ −1

n
log μηx(B

u
n (x, ε)), μ-a.e. x.

LEMMA 4.3. [9, Proposition 2.14] For any α ∈ P and η ∈ Pu, the map μ �→ Hμ(α|η)
from M(M) to R

+ ∪ {0} is concave.
Furthermore, the map μ �→ huμ(f ) from Mf (M) to R

+ ∪ {0} is affine.

Recall that for each partition α ∈ P , the partition ζ given by ζ(x) = α(x) ∩Wu
loc(x)

for any x ∈ M is denoted by αu. Conversely, for each partition η ∈ Pu, there is a partition
β ∈ P such that η(x) = β(x) ∩Wu

loc(x) for any x ∈ M . Denote such β by η �u.

LEMMA 4.4. [9, Proposition 2.15]
(a) Let ν ∈ M(M). For any α ∈ P and η ∈ Pu with μ(∂α) = 0 and μ(∂η �u) = 0, the

map μ �→ Hμ(α|η) from M(M) to R
+ ∪ {0} is upper semicontinuous at μ, i.e.

lim sup
ν→μ

Hν(α|η) ≤ Hμ(α|η).

(b) The unstable entropy map μ �→ huμ(f ) from Mf (M) to R
+ ∪ {0} is upper semicon-

tinuous at μ, i.e.

lim sup
ν→μ

huν(f ) ≤ huμ(f ).

The second part of the above lemma also follows from [24, Theorem D].

4.2. Proof of the variational principle. At first, we prove Proposition 4.6 stated below,
which is one inequality of the variational principle (Theorem A). The following lemma is
well known.

LEMMA 4.5. Suppose that 0 ≤ p1, . . . , pm ≤ 1, s = p1 + · · · + pm and a1, . . . , am ∈
R. Then

m∑
i=1

pi(ai − log pi) ≤ s

(
log

m∑
i=1

eai − log s
)

.

The above lemma is almost identical to [3], except that we have removed the condition
s ≤ 1.

Proof. If s = 0, then the inequality holds trivially. Suppose that s > 0. Let p′
i = pi/s.

Then
∑m
i=1 p

′
i = 1 and we can apply [21, Lemma 9.9] to get

m∑
i=1

pi

s

(
ai − log

pi

s

)
≤ log

( m∑
i=1

eai
)

.

Simplifying it, we have the inequality in the lemma.
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PROPOSITION 4.6. Let μ be any f -invariant probability measure. Then

huμ(f )+
∫
M

ϕ dμ ≤ Pu(f , ϕ).

Proof. Let μ = ∫
Me

f (M)
ν dτ(ν) be the unique ergodic decomposition where τ is a

probability measure on the Borel subsets of Mf (M) and τ(Me
f (M)) = 1. Since μ �→

huμ(f ) is affine and upper semicontinuous by Lemmas 4.3 and 4.4, so is huμ(f )+ ∫
M
ϕ dμ

and hence

huμ(f )+
∫
M

ϕ dμ =
∫
Me

f (M)

(
huν(f )+

∫
M

ϕ dν

)
dτ(ν) (4.6)

by a classical result in convex analysis (cf. [5, Fact A.2.10 on p. 356]). So, we only need to
prove the proposition for ergodic measures.

Suppose that μ is ergodic. Let ρ > 0 be arbitrary. Take η ∈ Pu subordinate to unstable
manifolds and then take ε > 0. By Lemma 4.2, we have

lim
n→∞ −1

n
log μηy(B

u
n (y, ε)) = huμ(f |η), μ-a.e. y.

Hence, for μ-a.e. y, there exists N(y) = N(y, ε) > 0 such that if n ≥ N(y), then

μηy(B
u
n (y, ε)) ≤ e−n(h

u
μ(f |η)−ρ)

and

1
n
(Snϕ)(y) ≥

∫
M

ϕ dμ− ρ. (4.7)

DenoteEn = En(ε) = {y ∈ M : N(y) = N(y, ε) ≤ n}. Thenμ
( ∪∞

n=1 En
) = 1. So, there

exists n > 0 large enough such that μ(En) > 1 − ρ. Hence, there exists x ∈ M such that
μ
η
x(En) = μ

η
x(En ∩ η(x)) > 1 − ρ. Fix such n and x. If y ∈ η(x), μηy = μ

η
x . We have

μηx(B
u
n (y, ε)) ≤ e−n(hμ(f |η)−ρ) for all y ∈ En ∩ η(x). (4.8)

Now we take δ > 0 such that Wu(x, δ) ⊃ η(x). Let F be an (n, ε/2) u-spanning set of
Wu(x, δ) ∩ En satisfying

Wu(x, δ) ∩ En ⊂
⋃
z∈F

Bun (z, ε/2)

andBun(z, ε/2) ∩ En �= ∅ for any z ∈ F . Let y(z) be an arbitrary point inBun(z, ε/2) ∩ En.
We have

1 − ρ < μηx(W
u(x, δ) ∩ En) ≤ μηx

( ⋃
z∈F

Bun (z, ε/2)
)

≤
∑
z∈F

μηx(B
u
n (z, ε/2)) ≤

∑
z∈F

μηx(B
u
n (y(z), ε)). (4.9)
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Using (4.7), (4.8) and then applying Lemma 4.5 with pi = μ
η
x(B

u
n (y(z), ε)), ai =

(Snϕ)(y(z)), we have

∑
z∈F

μηx(B
u
n (y(z), ε))

(
n

( ∫
M

ϕ dμ− ρ

)
+ n(huμ(f |η)− ρ)

)

≤
∑
z∈F

μηx(B
u
n (y(z), ε))((Snϕ)(y(z))− log μηx(B

u
n (y(z), ε)))

≤
( ∑
z∈F

μηx(B
u
n (y(z), ε))

)(
log

∑
z∈F

exp((Snϕ)(y(z)))− log
∑
z∈F

μηx(B
u
n (y(z), ε))

)
.

Then, combining (4.9), we get

n

( ∫
M

ϕ dμ− ρ

)
+ n(huμ(f |η)− ρ)

≤ log
∑
z∈F

exp((Snϕ)(y(z)))− log
∑
z∈F

μηx(B
u
n (y(z), ε))

≤ log
∑
z∈F

exp((Snϕ)(y(z)))− log(1 − ρ). (4.10)

Let τε := {|ϕ(x)− ϕ(y)| : d(x, y) ≤ ε}. Then, for any z ∈ F , exp((Snϕ)(y(z))) ≤
exp((Snϕ)(z)+ nτε). Dividing by n and taking the lim sup on both sides of (4.10), we
have ∫

M

ϕ dμ+ huμ(f |η)− 2ρ ≤ lim sup
n→∞

1
n

log
∑
z∈F

exp((Snϕ)(z))+ τε.

Moreover, we can choose a sequence of F such that

lim sup
n→∞

1
n

log
∑
z∈F

exp((Snϕ)(z)) ≤ Pu(f , ϕ).

Since ρ > 0 is arbitrary and τε → 0 as ε → 0, one has
∫
M
ϕ dμ+ huμ(f |η) ≤ Pu(f , ϕ).

Proof of Theorem A. We first prove that for any ρ > 0, there exists μ ∈ Mf (M) such that
huμ(f )+ ∫

M
ϕ dμ ≥ Pu(f , ϕ)− ρ. Combining with Proposition 4.6, we obtain the first

equality in Theorem A.
For some δ > 0 small enough, we can find a point x ∈ M such that

Pu(f , ϕ, Wu(x, δ)) ≥ Pu(f , ϕ)− ρ.

Take ε > 0 small enough. Let En be an (n, ε) u-separated set ofWu(x, δ) with cardinality
Nu(f , ε, n, x, δ) such that

log
∑
y∈En

exp((Snϕ)(y)) ≥ log Pu(f , ϕ, ε, n, x, δ)− 1.
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Define

νn :=
∑
y∈En exp((Snϕ)(y))δy∑
z∈En exp((Snϕ)(z))

and

μn := 1
n

n−1∑
i=0

f iνn.

Since the set M(M) of all probability measures on M is a compact space with weak∗
topology, there exists a subsequence {nk} of natural numbers such that limk→∞ μnk = μ.
Obviously μ ∈ Mf (M).

We can choose a partition η ∈ Pu such that Wu(x, δ) ⊂ η(x) (by shrinking δ if
necessary). That is, Wu(x, δ) is contained in a single element of η. Then choose α ∈ P
such that μ(∂α) = 0 and diam(α) < ε/C, where C > 1 is as in (3.5). Hence, we have

Hνn(α
n−1
0 |η)+

∫
M

(Snϕ) dνn =
∑
y∈En

νn({y})(− log νn({y})+ (Snϕ)(y))

= log
∑
y∈En

exp((Snϕ)(y)).

Fix a natural number q > 1. For any natural number n > q, j = 0, 1, . . . , q − 1, put
a(j) = [n− j/q], where [a] denotes the integer part of a > 0. Then

n−1∨
i=0

f−iα =
a(j)−1∨
r=0

f−(rq+j)αq−1
0 ∨

∨
t∈Sj

f−tα,

where Sj = {0, 1, . . . , j − 1} ∪ {j + qa(j), . . . , n− 1}.
For a partition α ∈ P , denote by αu the partition in Pu whose elements are given by

αu(x) = α(x) ∩Wu
loc(x). Note that

f rq
( r−1∨
i=0

f−iqαq−1
0 ∨ f j (η ∨

∨
t∈Sj

f−tα)
)

= f α ∨ · · · ∨ f rq+jα ∨ f rq+j η ≥ f αu.

We get that

Hν

( a(j)−1∨
r=0

f−rqαq−1
0 |f j (η ∨

∨
t∈Sj

f−t α)
)

≤ Hν(α
q−1
0 |f jη)+

a(j)−1∑
r=1

Hf rqν

(
α
q−1
0

∣∣∣f rq( r−1∨
i=0

f−iqαq−1
0 ∨ f j (η ∨

∨
t∈Sj

f−t α)
))

≤ Hν(α
q−1
0 |f jη)+

a(j)−1∑
r=1

Hf rqν(α
q−1
0 |f αu). (4.11)
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Also,

Hν

( a(j)−1∨
r=0

f−(rq+j)αq−1
0 |η ∨

∨
t∈Sj

f−tα
)

= Hf jν

( a(j)−1∨
r=0

f−rqαq−1
0 |f j (η ∨

∨
t∈Sj

f−t α)
)

. (4.12)

Replacing ν by νn and f jνn in (4.12) and (4.11), respectively, we get

log
∑
y∈En

exp((Snϕ)(y))

=
∑
y∈En

νn({y})
( − log νn({y})+ (Snϕ)(y)

)

= Hνn(α
n−1
0 |η)+

∫
M

(Snϕ) dνn

= Hνn

( a(j)−1∨
r=0

f−(rq+j)αq−1
0 ∨

∨
t∈Sj

f−t α|η
)

+
∫
M

(Snϕ) dνn

≤
∑
t∈Sj

Hνn(f
−tα|η)+Hνn

( a(j)−1∨
r=0

f−rq−jαq−1
0

∣∣∣η ∨
∨
t∈Sj

f−t α
)

+
∫
M

(Snϕ) dνn

≤
∑
t∈Sj

Hνn(f
−tα|η)+Hf jνn

( a(j)−1∨
r=0

f−rqαq−1
0

∣∣∣f j (η ∨
∨
t∈Sj

f−t α)
)

+
∫
M

(Snϕ) dνn

≤
∑
t∈Sj

Hνn(f
−t α|η)+Hf jνn

(
α
q−1
0 |f jη)+

a(j)−1∑
r=1

Hf rq+j νn(α
q−1
0 |f αu)+

∫
M

(Snϕ) dνn.

It is clear that cardSj ≤ 2q. Denote by d the number of elements of α. Summing the
inequalities over j from 0 to q − 1 and dividing by n, by Lemma 4.3 we get

q

n
log

∑
y∈En

exp((Snϕ)(y))

≤ 1
n

q−1∑
j=0

∑
t∈Sj

Hνn(f
−t α|η)+ 1

n

q−1∑
j=0

Hf jνn(α
q−1
0 |f jη)

+ 1
n

n−1∑
i=0

Hf iνn(α
q−1
0 |f αu)+ q

n

∫
M

(Snϕ) dνn

≤ 2q2

n
log d + 1

n

q−1∑
j=0

Hf jνn(α
q−1
0 |f jη)+Hμn(α

q−1
0 |f αu)+ q

∫
M

ϕ dμn. (4.13)
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Let {nk} be a sequence of natural numbers such that:
(1) μnk → μ as k → ∞;
(2) limk→∞(1/nk) log Pu(f , ϕ, ε, nk , x, δ) = lim supn→∞(1/n) log Pu(f , ϕ, ε, n, x, δ).

Since μ(∂α) = 0 and μ is invariant, μ(∂αq−1
0 ) = 0 for any q ∈ N. By Lemma 4.4,

lim sup
k→∞

Hμnk (α
q−1
0 |f αu) ≤ Hμ(α

q−1
0 |f αu).

Thus, replacing n by nk in (4.13) and letting k → ∞, we get

q lim sup
n→∞

1
n

log Pu(f , ϕ, ε, n, x, δ) ≤ Hμ(α
q−1
0 |f αu)+ q

∫
M

ϕ dμ.

Then, by Lemma 4.1,

Pu(f , ϕ, Wu(x, δ)) ≤ lim
q→∞

1
q
Hμ(α

q−1
0 |f αu)+

∫
M

ϕ dμ = huμ(f )+
∫
M

ϕ dμ.

Thus, huμ(f )+ ∫
M
ϕ dμ ≥ Pu(f , ϕ)− ρ. Since ρ is arbitrary, we get by combining with

Proposition 4.6,

Pu(f , ϕ) = sup
{
huμ(f )+

∫
M

ϕ dμ : μ ∈ Mf (M)

}
.

We prove the second equation in Theorem A.
Let ρ > 0 be sufficiently small. Then there exists an invariant measure μ such that

huμ(f )+ ∫
M
ϕ dμ > Pu(f , ϕ)− ρ/2. By (4.6), there exists an ergodic measure ν such

that

huν(f )+
∫
M

ϕ dν > huμ(f )+
∫
M

ϕ dμ− ρ/2 > Pu(f , ϕ)− ρ.

Since ρ is arbitrary, we have

Pu(f , ϕ) = sup
{
huμ(f )+

∫
M

ϕ dμ : μ ∈ Me
f (M)

}
.

The proof of Corollary A.1 is straightforward and hence is omitted.

Proof of Corollary A.2. The inequality Pu(f , ϕ) ≤ P(f , ϕ) follows from the definition
directly.

If f is C1+ε and there is no positive Lyapunov exponent in the center direction, then,
by the Ledrappier–Young formula [11] and [9, Theorem A], hμ(f ) = huμ(f ) for any
μ ∈ Me

f (M). Then, by Theorem A and the classical variational principle for pressure
(cf. [21, Theorem 9.10]),

Pu(f , ϕ) = sup
{
huμ(f )+

∫
M

ϕ dμ : μ ∈ Me
f (M)

}

= sup
{
hμ(f )+

∫
M

ϕ dμ : μ ∈ Me
f (M)

}
= P(f , ϕ).
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5. U-equilibrium states
In this section, we shall first give some fundamental properties for the set of u-equilibrium
states, proving Theorem B. Then for the particular potential ϕu = − log | det Df |Eu | we
relate the u-equilibrium states at ϕu to the Gibbs u-states of f .

5.1. Properties of Mu
ϕ(M , f ).

Proof of Theorem B. It follows from Lemma 4.3 that μ �→ huμ(f )+ ∫
M
ϕ dμ is affine.

Hence, (1) holds.
It follows from Lemma 4.4 that μ �→ huμ(f )+ ∫

M
ϕ dμ is upper semicontinuous.

The set Mu
ϕ(M , f ) is non-empty because an upper semicontinuous function on a

compact space attains its supremum. If μn ∈ Mu
ϕ(M , f ) and μn → μ in Mf (M), then

huμ(f )+ ∫
M
ϕ dμ ≥ lim supn→∞ huμn(f )+ ∫

M
ϕ dμn = Pu(f , ϕ). This together with

Theorem A proves that Mu
ϕ(M , f ) is compact. Thus (2) is proved.

If μ ∈ Mu
ϕ(M , f ) is ergodic, then it is an extreme point of Mf (M) and hence

of Mu
ϕ(M , f ). Now let μ ∈ Mu

ϕ(M , f ) be an extreme point of Mu
ϕ(M , f ) and

suppose that μ = pμ1 + (1 − p)μ2 for some μ1, μ2 ∈ Mf (M) and p ∈ [0, 1].
By Lemma 4.3, Pu(f , ϕ) = huμ(f )+ ∫

M
ϕ dμ = p(huμ1

(f )+ ∫
M
ϕ dμ1)+ (1 −

p)(huμ2
(f )+ ∫

M
ϕ dμ2). By the variational principle, Theorem A, we must have

μ1, μ2 ∈ Mu
ϕ(M , f ). Hence, μ1 = μ2 = μ since μ is an extreme point of Mu

ϕ(M , f ). It
means that μ is an extreme point of Mf (M) as well. Thus, μ is ergodic. This proves (3).

Now we prove (4). By Proposition 3.5(2), (4) and (6), Pu(f , ϕ) = Pu(f , ψ)+ c.
On the other hand, it is easy to see that

∫
M
ϕ dμ = ∫

M
ψ dμ+ c and hence huμ(f )+∫

M
ϕ dμ = huμ(f )+ ∫

M
ψ dμ+ c. Thus, Mu

ϕ(M , f ) = Mu
ψ(M , f ).

5.2. Gibbs u-states. There are two leading cases for a potential ϕ. First, ϕ is the constant
function 0. In this case, the unstable topological pressure is just the unstable topological
entropy (Proposition 3.5(1)) and Theorem B(2) gives existence of measure of maximal
unstable metric entropy.

Second, ϕu = − log | det Df |Eu |. Theorem B(2) gives existence of u-equilibrium states
with respect to ϕu. We start to prove Theorem C, which claims that when f is C1+ε such
u-equilibrium states coincide with Gibbs u-states first studied in [14].

LEMMA 5.1. (cf. [24, Proposition 5.2]) If f is C1+ε and μ ∈ Mf (M), then

huμ(f ) ≤
∫
M

−ϕu dμ.

The equality holds if and only if μ is a Gibbs u-state of f .

Remark 5.2. We have replaced hμ(f , Fu) in [24] by huμ(f ), where Fu is the unstable
foliation of f . Indeed, see [9], we have huμ(f ) = hμ(f , Fu). See also the discussion after
Definition 2.1.

We characterize Gibbs u-states of f by u-equilibrium states of f with respect to ϕu.
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Proof of Theorem C. By Theorem A and Lemma 5.1,

Pu(f , ϕu) = sup
{
huμ(f )+

∫
M

ϕu dμ

}
= 0.

By Lemma 5.1 again, μ is a Gibbs u-state of f if and only if μ is a u-equilibrium state
of ϕu.

Corollary C.1 was already obtained in the proof of Theorem C.

Proof of Corollary C.2. Since a u-equilibrium state for any continuous function ϕ always
exists by Theorem B(2), we know from Theorem C that a Gibbs u-state always exists.

6. Unstable topological pressure determines Mf (M)

Proof of Theorem D. We modify the proof [21, Theorem 9.11] for the unstable pressure
case. If μ ∈ Mf (M), then it is easy to see that

∫
M
ϕ dμ ≤ Pu(f , ϕ) by Theorem A.

Now let μ : B(M) → R be a finite signed measure such that
∫
M
ϕ dμ ≤ Pu(f , ϕ) for all

ϕ ∈ C(M , R). Firstly, we show that μ is a measure. Let ϕ ≥ 0. If ε > 0 and n > 0 is large
enough, then, by Proposition 3.5(3),∫

M

n(ϕ + ε) dμ = −
∫
M

−n(ϕ + ε) dμ

≥ −Pu(f , −n(ϕ + ε))

≥ −(hutop(f )+ sup(−n(ϕ + ε)))

= −hutop(f )+ n inf(ϕ + ε) > 0.

Hence,
∫
M
(ϕ + ε) dμ > 0. Since ε > 0 is arbitrary,

∫
M
ϕ dμ ≥ 0 and μ is a measure.

Next we show that μ is a probability measure. For n ∈ Z,
∫
M
n dμ ≤ Pu(f , n) =

hutop(f )+ n. If n > 0, then μ(M) ≤ (1/n)hutop(f )+ 1. Hence, μ(M) ≤ 1 by letting n →
∞. If n < 0, then μ(M) ≥ (1/n)hutop(f )+ 1. Letting n → −∞, μ(M) ≥ 1. It follows
that μ(M) = 1.

At last we show that μ ∈ Mf (M). For n ∈ Z, n
∫
M
(ϕ ◦ f − ϕ) dμ ≤ Pu(f , n(ϕ ◦

f − ϕ)) = hutop(f ) by Proposition 3.5(6) and (1). If n > 0, then
∫
M
(ϕ ◦ f − ϕ) dμ ≤

(1/n)hutop(f ). Hence,
∫
M
(ϕ ◦ f − ϕ) dμ ≤ 0 by letting n → ∞. If n < 0, then

∫
M
(ϕ ◦

f − ϕ) dμ ≥ (1/n)hutop(f ). Hence,
∫
M
(ϕ ◦ f − ϕ) dμ ≥ 0 by letting n → −∞. There-

fore,
∫
M
ϕ ◦ f dμ = ∫

M
ϕ dμ. So, μ ∈ Mf (M).

The proof is an adaption of that of [21, Theorem 9.12]. Recall that we already know that
the unstable entropy map μ �→ huμ(f ) is upper semicontinuous. The fact that huν(f ) ≤
inf

{
Pu(f , ϕ)− ∫

M
ϕ dν : ϕ ∈ C(M , R)

}
immediately follows from Theorem A. To

prove the other direction, let b > huν(f ). Put

C = {(μ, t) ∈ Mf (M)× R : 0 ≤ t ≤ huμ(f )}.
By Lemma 4.3, C is a convex subset of C(M , R)∗ × R, where C(M , R)∗ is endowed with
the weak∗ topology. Then (ν, b) /∈ C̄ as μ �→ huμ(f ) is upper semicontinuous at ν. By a
classical result [6, p. 417], there is a continuous linear functional F : C(M , R)∗ × R → R

such that F(μ, t) ≤ F(ν, b) for any (μ, t) ∈ C̄. We can suppose that F has the form
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F(μ, t) = ∫
M
ψ dμ+ td for some ψ ∈ C(M , R) and d ∈ R. Then

∫
M
ψ dμ+ td <∫

M
ψ dν + bd for any (μ, t) ∈ C̄. In particular,

∫
M
ψ dμ+ huμ(f )d <

∫
M
ψ dν + bd for

any μ ∈ Mf (M). Setting μ = ν, we have huν(f )d < bd. Hence, d > 0. We have∫
M

ψ

d
dμ+ huμ(f ) <

∫
M

ψ

d
dν + b

for any μ ∈ Mf (M). By the variational principle (Theorem A),

Pu
(
f ,
ψ

d

)
≤

∫
M

ψ

d
dν + b.

Then

b ≥ Pu
(
f ,
ψ

d

)
−

∫
M

ψ

d
dν ≥ inf{Pu(f , ϕ)−

∫
M

ϕ dν : ϕ ∈ C(M , R)}.

Therefore, huν(f ) ≥ inf{Pu(f , ϕ)− ∫
M
ϕ dν : ϕ ∈ C(M , R)}.

7. Differentiability properties of the unstable topological pressure
In this section, we consider the differentiability properties of the unstable topological
pressure. We shall first give the relation between the u-tangent functionals and the
u-equilibrium states and then consider the Gateaux differentiability and Fréchet differentia-
bility of the unstable topological pressure. The equivalence of the Gateaux differentiability
of Pu(f , ·) and the existence of the unique unstable tangent functional Pu(f , ·) at a given
ϕ is obtained and several necessary and sufficient conditions for Pu(f , ·) to be Fréchet
differentiable at a given ϕ are given.

7.1. U-tangent functionals.

Proof of Theorem E. First, we show that tuϕ (M , f ) ⊂ Mu
ϕ(M , f ). Let μ ∈ tuϕ (M , f ). By

Proposition 3.5(7), for all ψ ∈ C(M , R),∫
M

ψ dμ ≤ Pu(f , ϕ + ψ)− Pu(f , ϕ) ≤ Pu(f , ψ).

By Theorem D(1), μ ∈ Mf (M).
Then, for all ψ ∈ C(M , R),

Pu(f , ϕ + ψ)− Pu(f , ϕ) ≥
∫
M

ψ dμ =
∫
M

(ϕ + ψ) dμ−
∫
M

ϕ dμ,

which implies that

Pu(f , ϕ + ψ)−
∫
M

(ϕ + ψ) dμ ≥ Pu(f , ϕ)−
∫
M

ϕ dμ.

Since ψ ∈ C(M , R) is arbitrary, one has

inf
{
Pu(f , h)−

∫
M

h dμ : h ∈ C(M , R)
}

≥ Pu(f , ϕ)−
∫
M

ϕ dμ.
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By Theorem D(2), we have huμ(f ) ≥ Pu(f , ϕ)− ∫
M
ϕ dμ. Combining with the

variational principle (Theorem A), we have Pu(f , ϕ) = huμ(f )+ ∫
M
ϕ dμ. Thus,

μ ∈ Mu
ϕ(M , f ).

Conversely, if μ ∈ Mu
ϕ(M , f ), then Pu(f , ϕ) = huμ(f )+ ∫

M
ϕ dμ. We have

Pu(f , ϕ + ψ)− Pu(f , ϕ) ≥ huμ(f )+
∫
M

(ϕ + ψ) dμ− huμ(f )−
∫
M

ϕ dμ

=
∫
M

ψ dμ for all ψ ∈ C(M , R),

where the variational principle (Theorem A) is used in the first inequality. Therefore, μ ∈
tuϕ (M , f ).

Remark 7.1. The proof of Theorem E is based on Theorem D. Our proof of tuϕ (M , f ) ⊂
Mf (M) using Theorem D(1) is much shorter than the one in [21, Theorem 9.14].

7.2. Gateaux differentiability. Since Pu(f , ·) is convex (Proposition 3.5(5)), for any
ϕ, ψ ∈ C(M , R) the map t �→ 1/t (P u(f , ϕ + tψ)− Pu(f , ϕ)) is increasing and hence
the following two limits exist.

Definition 7.2. We define

d+Pu(f , ϕ)(ψ) := lim
t→0+

1
t
(P u(f , ϕ + tψ)− Pu(f , ϕ))

and

d−Pu(f , ϕ)(ψ) := lim
t→0−

1
t
(P u(f , ϕ + tψ)− Pu(f , ϕ)).

The following proposition is immediate.

PROPOSITION 7.3. We have
(1) d−Pu(f , ϕ)(ψ) = −d+Pu(f , ϕ)(−ψ);
(2) d−Pu(f , ϕ)(ψ) ≤ d+Pu(f , ϕ)(ψ).

Recall that the unstable topological pressure Pu(f , ·) is said to be Gateaux differen-
tiable at ϕ if

lim
t→0

1
t
(P u(f , ϕ + tψ)− Pu(f , ϕ))

exists for any ψ ∈ C(M , R) (see Definition 2.6). By Proposition 7.3, Pu(f , ·) is Gateaux
differentiable at ϕ if and only if for any ψ ∈ C(M , R),

d+Pu(f , ϕ)(ψ) = −d+Pu(f , ϕ)(−ψ).
LEMMA 7.4. d+Pu(f , ϕ)(ψ) = sup{∫

M
ψ dμ : μ ∈ tuϕ (M , f )} for any ϕ, ψ ∈ C(M , R).

Proof. If μ ∈ tuϕ (M , f ), then by definition
∫
M
ψ dμ ≤ 1/t (P u(f , ϕ + tψ)− Pu(f , ϕ))

for all t > 0. Taking the limit, one has
∫
M
ψ dμ ≤ d+Pu(f , ϕ)(ψ).
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Conversely, let us denote c = d+Pu(f , ϕ)(ψ). Consider a linear functional γ on the
linear subspace {tψ : t ∈ R} given by γ (tψ) = tc. Due to the convexity of Pu(f , ·),
γ (tψ) = tc ≤ Pu(f , ϕ + tψ)− Pu(f , ϕ), i.e., γ is bounded above by the continuous
convex function h �→ Pu(f , ϕ + h)− Pu(f , ϕ) on the subspace {tψ : t ∈ R}. Then the
Hahn–Banach theorem asserts that γ can be extended to a linear functional on C(M , R)
such that

γ (h) ≤ Pu(f , ϕ + h)− Pu(f , ϕ)

for any h ∈ C(M , R). Then, using the Riesz representation theorem, there exists μ ∈
tuϕ (M , f ) such that ∫

M

ψ dμ = γ (ψ) = c = d+Pu(f , ϕ)(ψ).

Proof of Theorem F. If Pu(f , ·) is Gateaux differentiable at ϕ, then, for any ψ ∈
C(M , R),

d+Pu(f , ϕ)(ψ) = −d+Pu(f , ϕ)(−ψ).
By Lemma 7.4, we have for any ψ ∈ C(M , R),

sup
{ ∫

M

ψ dμ : μ ∈ tuϕ (M , f )
}

= − sup
{ ∫

M

(−ψ) dμ : μ ∈ tuϕ (M , f )
}

= inf
{ ∫

M

ψ dμ : μ ∈ tuϕ (M , f )
}

.

It follows that tuϕ (M , f ) consists of a single element μϕ .
Conversely, suppose that tuϕ (M , f ) consists of a single element μϕ . Then, by

Lemma 7.4,

d+Pu(f , ϕ)(ψ) =
∫
M

ψ dμϕ = −
∫
M

(−ψ) dμϕ = −d+Pu(f , ϕ)(−ψ).

So, Pu(f , ·) is Gateaux differentiable at ϕ.

Corollary F.1 follows directly from Theorems E and F.

7.3. Fréchet differentiability.

LEMMA 7.5. The following two statements are mutually equivalent:
(1) Pu(f , ·) has a unique u-tangent functional at ϕ;
(1) there exists a unique measure μϕ such that every (μn) ⊂ Mf (M) with huμn(f )+∫

M
ϕ dμn → Pu(f , ϕ) satisfies μn → μϕ as n → ∞.

Proof. (1) ⇒ (2): If huμn(f )+ ∫
M
ϕ dμn → Pu(f , ϕ) and μn → μ for some μ ∈

Mf (M) as n → ∞, by the upper semicontinuity of the unstable entropy map, we have

huμ(f )+
∫
M

ϕ dμ = Pu(f , ϕ).
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Namely, μ ∈ Mu
ϕ(M , f ) = tuϕ (M , f ). Hence, by (1) there is only one such measure μ,

which is denoted by μϕ . Thus, (1) ⇒ (2).
(2) ⇒ (1): Let μ be a u-tangent functional to Pu(f , ·) at ϕ. Note that such μ

exists by Theorems E and B(2). Put μn = μ. Then huμn(f )+ ∫
M
ϕ dμn → Pu(f , ϕ).

Thus, μ = μϕ . It follows that μϕ is the unique u-tangent functional of Pu(f , ·) at ϕ.

Recall that Pu(f , ·) is called Fréchet differentiable at ϕ if there exists γ ∈ C(M , R)∗
such that

lim
ψ→0

|Pu(f , ϕ + ψ)− Pu(f , ϕ)− γ (ψ)|
‖ψ‖ = 0

(see Definition 2.7). If Pu(f , ·) is Fréchet differentiable at ϕ, then

lim
t→0

|Pu(f , ϕ + tψ)− Pu(f , ϕ)− tγ (ψ)|
t‖ψ‖ = 0.

Thus, Pu(f , ·) is Gateaux differentiable at ϕ. Moreover, γ (ψ) = ∫
M
ψ dμϕ , where μϕ is

the unique u-tangent functional to Pu(f , ·) at ϕ by Theorem F and Lemma 7.4.

Proof of Theorem G. (1) ⇒ (2): Suppose that Pu(f , ·) is Fréchet differentiable at ϕ. By
the discussion above, Pu(f , ·) is Gateaux differentiable at ϕ. Hence, γ (ψ) = ∫

M
ψ dμϕ ,

where μϕ is the unique u-tangent functional to Pu(f , ·) at ϕ. Let (μn) ⊂ Mf (M)

with huμn(f )+ ∫
M
ϕ dμn → Pu(f , ϕ) as n → ∞. Put εn := Pu(f , ϕ)− huμn(f )−∫

M
ϕ dμn. For any ε ∈ (0, 1

2 ), there exists δ > 0 such that whenever ‖ψ‖ < δ, we have

0 ≤ Pu(f , ϕ + ψ)− Pu(f , ϕ)−
∫
M

ψ dμϕ ≤ ε‖ψ‖.

Then∫
M

ψ dμn−
∫
M

ψ dμϕ = Pu(f , ϕ)+
∫
M

ψ dμn − Pu(f , ϕ)−
∫
M

ψ dμϕ

= huμn(f )+
∫
M

ϕ dμn+ εn+
∫
M

ψ dμn−Pu(f , ϕ)−
∫
M

ψ dμϕ

≤ Pu(f , ϕ + ψ)− Pu(f , ϕ)−
∫
M

ψ dμϕ + εn

≤ εδ + εn.

This is also true for −ψ and hence we have | ∫
M
ψ dμn − ∫

M
ψ dμϕ | ≤ εδ + εn when-

ever ‖ψ‖ ≤ δ. Thus, if n is large enough, then for any ψ̃ ∈ C(M , R) with ‖ψ̃‖ ≤ 1,∣∣∣ ∫
M

ψ̃ dμn −
∫
M

ψ̃ dμϕ

∣∣∣ = 1
δ

∣∣∣ ∫
M

δψ̃ dμn −
∫
M

δψ̃ dμϕ

∣∣∣
≤ 1
δ
(εδ + εn)

= ε + εn

δ
< 2ε,

which means that ‖μn − μϕ‖ → 0.
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(2) ⇒ (3): Assume that (2) holds. By Lemma 7.5, μϕ is the unique member of
tuϕ (M , f ). Moreover, μϕ is ergodic by Theorem B(3). By Theorem A, there exist ergodic
measures (μn) with huμn(f )+ ∫

M
ϕ dμn → Pu(f , ϕ). It follows from (2) that ‖μn −

μϕ‖ → 0. On the other hand, distinct ergodic measures are mutually singular and hence
have norm distance two. Thus, there exists N ∈ N such that μn = μϕ for any n ≥ N . This
implies that Pu(f , ϕ) > sup{huμ(f )+ ∫

M
ϕ dμ : μ is ergodic and μ �= μϕ}.

(3) ⇒ (4): Assume that (3) holds. Put

c = Pu(f , ϕ)− sup
{
huμ(f )+

∫
M

ϕ dμ : μ is ergodic and μ �= μϕ

}
.

Suppose that ‖ϕ − ψ‖ < c/2. Then, by Proposition 3.5(4),

sup
{
huμ(f )+

∫
M

ψ dμ : μ is ergodic and μ �= μϕ

}
≤ Pu(f , ϕ)+ ‖ϕ − ψ‖ − c ≤ Pu(f , ψ)+ 2‖ϕ − ψ‖ − c < Pu(f , ψ).

It implies that every ψ ∈ C(M , R) with ‖ϕ − ψ‖ < c/2 has μϕ as the unique
u-equilibrium state by Theorem A. Thus, Pu(f , ψ) = huμϕ (f )+ ∫

M
ψ dμϕ for all ψ

in the ball centered at ϕ of radius c/2. In other words, Pu(f , ·) is affine in a neighborhood
of ϕ.
(4) ⇒ (5): Suppose that Pu(f , ·) is affine in a neighborhood V of ϕ, i.e., there exist a

linear functional γ and c ∈ R such that Pu(f , ψ) = c + γ (ψ) for any ψ ∈ V . It is easy
to check that Pu(f , ·) is Fréchet differentiable at any ψ ∈ V . Thus, Pu(f , ·) is Gateaux
differentiable at ψ and γ (ψ) = ∫

M
ψ dμ0, where μ0 is the unique u-tangent functional to

Pu(f , ·) at every ψ ∈ V . (5) follows immediately.
(5) ⇒ (6) is clear.
(6) ⇒ (1): Assume that (6) holds. Let μ ∈ tuϕ+ψ(M , f ) = Mu

ϕ+ψ(M , f ) by
Theorem E. Then Pu(f , ϕ + ψ) = huμ(f )+ ∫

M
(ψ + ϕ) dμ. We have

0 ≤ Pu(f , ϕ + ψ)− Pu(f , ϕ)−
∫
M

ψ dμϕ

≤
(
huμ(f )+

∫
M

(ψ + ϕ) dμ

)
−

(
huμ(f )+

∫
M

ϕ dμ

)
−

∫
M

ψ dμϕ

=
∫
M

ψ dμ−
∫
M

ψ dμϕ

≤ ‖ψ‖ · ‖μ− μϕ‖.

Hence, 0 ≤ Pu(f , ϕ + ψ)− Pu(f , ϕ)− ∫
M
ψ dμϕ ≤ ‖ψ‖ inf{‖μ− μϕ‖ : μ ∈ tuϕ+ψ

(M , f )}. So, Pu(f , ·) is Fréchet differentiable at ϕ.
(3) ⇒ (7): Assume that (3) holds. By Theorem E, μϕ ∈ Mu

ϕ(M , f ). Denote c =
Pu(f , ϕ)− sup{huμ(f )+ ∫

M
ϕ dμ : μ is ergodic and μ �= μϕ}. Define

V := {μ ∈ Mf (M) :
∣∣∣∣
∫
M

ϕ dμ−
∫
M

ϕ dμϕ

∣∣∣∣ < c/2}.
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Then V is a weak∗ neighborhood of μϕ . If μ ∈ V is ergodic and μ �= μϕ , then

huμ(f ) ≤ huμ(f )+
∫
M

ϕ dμ−
∫
M

ϕ dμϕ + c/2

≤ Pu(f , ϕ)−
∫
M

ϕ dμϕ − c/2

= huμϕ (f )− c/2.

Thus, (7) is proved.
(7) ⇒ (3): Assume that (7) holds. Assume that Pu(f , ϕ) = sup{huμ(f )+ ∫

M
ϕ dμ :

μ is ergodic and μ �= μϕ}. Then there exists a sequence of ergodic measures {μn} with
μn �= μϕ ergodic such that huμn(f )+ ∫

M
ϕ dμn → Pu(f , ϕ). By Lemma 7.5, μn → μϕ

and hence μn ∈ V whenever n is sufficiently large. Thus,

lim sup
n→∞

huμn(f )+
∫
M

ϕ dμϕ = Pu(f , ϕ).

This implies that lim supn→∞ huμn(f ) = huμϕ (f ), contradicting (7). So, (3) holds.
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