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REMARKS ON
THE YABLONSKII-VOROB’EV POLYNOMIALS

MAKOTO TANEDA

Abstract. We study the Yablonskii-Vorob’ev polynomial associated with the
second Painlevé equation. To study other special polynomials (Okamoto poly-
nomials, Umemura polynomials) associated with the Painlevé equations, our
purely algebraic approach is useful.

Introduction
For a non-negative integer n, let P, be the rational functions of a vari-
able ¢ determined by the following recurrence relation

tP2 — 4(P,P" — P.?)
Pnfl

(1) Pn—i—l =
with initial conditions Py = 1, P, = t. Vorob’ev proved the following

PROPOSITION 1. For every non-negative integer n, P, is a polynomial.

The {P,} are called the Yablonskii-Vorob’ev polynomials. In Section 1,
we give a proof of Proposition 1 close to the one given by Fukutani, Okamoto
and Umemura. (See Fukutani, Okamoto and Umemura [2], Proposition 9.)
In the proof of Proposition 1, we show together the following lemmas.

LEMMA 1. For a non-negative integer n, roots of the algebraic equation
P, =0 are simple. (See Fukutani, Okamoto and Umemura [2], Proposition
9.)

LEMMA 2. For a positive integer n, P, = 0, P,_1 = 0 do not have a
common root. (See Fukutani, Okamoto and Umemura [2], Proposition 9.)

Moreover we prove the following
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PROPOSITION 2. P, is divisible by t if and only if n =1 (mod 3). P,
is a polynomial of t3 if n Z 1 (mod 3) and P,/t is a polynomial of t3 if
n =1 (mod 3).

We know that the {P,} satisfy the two Hirota bilinear relations. (See
Fukutani, Okamoto and Umemura [2], Definition 3). In Section 2, using one
of the Hirota bilinear relations, we prove the following

THEOREM 1. Ifn =1 (mod 3), the coefficients of t* of the polyno-
mial P, is equal to 0.

Kajiwara and Ohta [3] proved the following
THEOREM 2.

n(n+1)/6 n
(2) B, = (‘%) {H(Zk - 1)!!}

k=1

3 1/3
X X(n,n—1,..,,1) <_Z> t,0,1,0,0,... ],

where x» is the Schur polynomial for a partition .

In Section 4, we give another proof of Theorem 2 as well as by Noumi
and Yamada [5]. Namely we check that the right hand side satisfies the
recurrence relation (18). Moreover we show that the Hirota bilinear relation
(23) follows from a Pliicker relation.

§1. The second Painlevé equation

In this section we review how the Yablonskii-Vorob’ev Polynomials arise
from the second Painlevé equation. For detail see Okamoto [6]. By the
second Painlevé equation, we mean the differential equation

(3) y' =2y +ty + a,

where t is the independent variable and « is a parameter. The second
Painlevé equation is equivalent to the Hamiltonian system

dy _ OH _ 5 't

a 9z y 2’
(4)

% = —8—H *2z+a—|—1

dt oy 4 2’
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where the Hamiltonian H is given by

(5) H(a,y, 2) :%zQ— (y2+%t>z— <a+%) y.

For a solution (y(t), z(t)) of the Hamiltonian system (4), we have

d ~ OH(a,y,2)

(6) —H(,y(t), 2(t)) 5

a = —5+(0),

y=y(t),z=z(t)
which we denote by H'(«,y, 2).
We denote the set of solutions of the Hamiltonian system (4) for a

parameter o by X(a).
We define a transformation I* : ¥(a) — X(—a — 1)) by

1/2 1
(y+a+ / 72)7 lfOé?é—§7
o z
(7) I*(y, 2) = .
ifa=——.
(y,2), ifa=—3
If z = 0 then a = —3. So, the denominator in (7) is not equal to 0. Similarly,

we note that the denominators in the following definitions is not equal to
0. We define a transformation 7% : ¥(a) — X(a — 1) by

_ 1
(— _;éfl/af’ 2y2_2+t), 1f0¢#§,
(8) T%(y.2)= ot
1
(—y, 29 — 2+ 1), if =3

and a transformation 7¢ : ¥(a) — X(a + 1) by

9)  T¥(y,2)

2
1
(_y_a+zl/272<y+%l/2> —Z+t>7 ifa;é—_’

2
(_yv 2y2—2—|—t), ifa:—%.

We note that 797" o T = idyy,) and T2 o T = idy ).
Now, for v € C and an integer n > 0, we define (yy—n,2y—n) by the
recurrence relation

(10) (%—nv zw—n) = Tz_(n_l) (yw—(n—l) y By—(n—1) )-
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For 8 € v+ Z, we set h(5) = H(8,yg,23). If v ¢ 1/2+ Z, then we have by
definition

h(B—=1) =H(B = 1,y3-1,25-1)
1 1 1
= 52’%— (y%;—l—;f) zZ3 — (54—5) Ys T Ys
= h(B) + ys-

Namely, we have
(11) ys = h(B—1) = h(B).
By the Hamiltonian system (4) and (11)

2] +1/2
(12) B =2y + f+y
23 23
=Yg — Yp+1

=h(B—1) = 2h(B) +h(B +1).

We here introduce the so-called 7 function by

d
(13) 77108 7(B) = h(B)
so that P . .
(14) 25 log () = I8 _72)(5()“ )

by (6) (12) and (13), where ¢ is a constant. The relation (14) is called the
Toda equation. The second Painlevé equation has a rational solution if and
only if « is an integer. For detail see Umemura and Watanabe [9]. It is easy
to see that for @« = 0 the Hamiltonian system (4) has a unique rational
solution (0,¢/2). Hence, if we put v = 0 and choose (yo, 20) as (0,t/2), then
we immediately obtain

(15) h(0) = —étQ,
(16) 7(0) = Apexp <—2—14t3> )
(17) T(—=1) = A_1exp (—it:g) ,
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Ap, A_1 being constants. We define a function P,(t) by

(18) (en—1) = Ay Pa(t)exp (—iti‘*) ,

for a non-negative integer n, where 4,, is a constant. So we have P_;(t) =
Py(t) = 1. Substituting (18) into the Toda equation (14), we find that

4 P?

(19) B g t PnP;L/ - PT? - Aanfan Pnflanrl
c A2 p2

—n—1
Setting A, = 1 and ¢ = 1/2 in the above formula (19), we have
tP? — 4(P,P" — P?)

Pnfl '

PnJrl:

This is just the recurrence relation (1) satisfied by the Yablonskii-Vorob’ev
polynomials.

We know that the 7 function is an entire function. For detail see
Okamoto [6]. Admitting this fact, we easily see from (18) that P, is a
polynomial. We here make a remark that a rational solution (y_,—1,2—n—1)
of the Hamiltonian system (4) is represented by the following formulas

d P, n+1

2 1 =h(=n—=2)—h(-n—1)=—1
(20) Yono = h(=n=2) = h(=n — 1) = = log =

by (11), (13) and (18), and

(21) e = T(-n—=2)7(=n) PP
- 273 (—n — 1) 2P?

by (6), (13), (14) and (18).

Now we review the Hirota bilinear relation. For detail see Fukutani,
Okamoto and Umemura [2], Definition 3.

From the Hamiltonian system (4), we have

(22)
/ 2 1
Zen—1 =Y p1t¥Yp1t 5
2 7 /2 7 7 / /
_ Poi1(P: — AP, P, +4P7) + 2P, (P11 P, + Py Py — 2Pn+1Pn)
2P, 1P} '
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Combining (22) with (21), we have
(23) P P+ P'_HP 2PT/H_1PTIZ = 0.

This equation is one of the Hirota bilinear relation satisfied by P, and
P,. (See Fukutani, Okamoto and Umemura [2]|, Proposition 9.)

Substituting the equation (20) and (21) into the Hamiltonian system
(4) written by the following

d 1
az—n—l =2 Y-n—12—n-1 —N — 57

we have

P7;+1Pn,1 PnJrlP -1 Pn—l—lpn—lprlz

2P2 2P2 P3
_ P7/1+1Pn—1 . Pn—s—an—lPﬁ o 1
- P2 P3 2’
Hence we obtain
(24) Pl 1Py1—PyPy_y = (2n+1)P..

§2. Proofs of Proposition 1 and Proposition 2
We define the operator Iy by

2 2
(25) un=19- (%)

o = (£2) - (2)(%)+ (52

for the functions f, g of a variable t. We then have the following formulas

(27) L(cf) =,

(28) L(fg9) = 2 l(g) + ¢* Li(f),
(29) L(f+9) =L(f)+1(f 9)+(g),
(30) L(t) = -1,

(31) L(t3 + ¢) = =3t(t> — 2¢),
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for a constant c¢. We here note that the recurrence relation (1) is written as

tP2 — 41,(Py)

2 Py =
(32) =

We shall prove Proposition 1, Lemma 1 and Lemma 2 together by
mathematical induction on n. As we have Py =1, P, =t, P, = t3 + 4 and
P3 = t5 4 20t — 80. Proposition 1 and Lemma 1 hold for 0 < n < 3 and
Lemma 2 holds for 1 < n < 3. We now make the following

AssuMPTION 1. If3 < n < N, then P, is a polynomial, roots of an
algebraic equation P, = 0 are simple and P, =0 and P,,_1 = 0 have not a
common 1oot.

We have to show Proposition 1, Lemma 1 and Lemma 2 for n = N + 1.
Let f be an arbitrary polynomial and let ’ = %. Setting h = tf2 —4 I;(f) =
tf2 —4(ff" — %), we have

(33) h =4f” + f x (a polynomial),
(34) Wo=froff —a(ff" -1
=4f'f" + f x (a polynomial),
R =Aff' +2tf? +2tf " —A(ff" — %)

= 2tf"? + 4" + f x (a polynomial).
Then we can see

(35)  ly(h) = hh" —h?
= 8t + 162" — 162" 4+ f x (a polynomial)
= 8tf'* + f x (a polynomial),

(36) 2th? — 4 1;(h) = 32t — 32t f"* 4 f x (a polynomial)

= f x (a polynomial).

Hence we have
(37) f | 2th? —41,(h).
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Here the symbol | means that the right hand side is divisible by the left
hand side. Now, replacing f by Py_1, we have h = Py_o Py and

(38) Pn_1 | 2tP%_oP% —41y(Py_2PnN).

By (28), we obtain that

(39) 2tPy_o PR — 4 1(Pn—2Py)
= P}, {tP% —41,(Px)} + P {tP%_o —41,(Pn_2)}
= P} _o {tPy —41(PN)} + Py Pn_3Pn_1.

Hence, we see
(40) Py-1 | tP{ —41L(PN).

Combining this result with (1), we can conclude that Py is a polynomial.
If Py =0 and Py41 = 0 have a common root 7, then P} (r) = 0 by (1).
This contradicts Assumption 1. So, Py = 0 and Py4+; = 0 have not a
common root. If a root r of Py41 = 0 is not simple, then Py(r) = 0 by
(24), a contradiction! We hence verified that roots of Pyy; = 0 are simple.
Consequently, we have completed mathematical induction and hence proved
Proposition 1, Lemma 1 and Lemma 2.

Now, we prove Proposition 2. The following simple proof was proposed
by H. Kawamuko during a discussion about our original proof. Let w be
a primitive cube root of 1. In order to prove Proposition 2 we show by
mathematical induction on n the following

P,(t), ifn#l (mod3),

(4D Falt) { wP,(t), ifn=1 (mod 3),

for a non-negative integer n. As we have Py = 1 and P; = t. The equation
(41) hold for n = 0,1. Suppose that the equation (41) is proved for all
n < N, N > 1. Then we have to show the equation (41) for n = N + 1.
Assume first that N = 1 (mod 3). By induction hypothesis, then, we see
Pn_j(wt) = Pn—1(t) and Py(wt) = wPn(t). So we have Py (wt) = P\ (t)
and P (wt) = L P (t) = w?P}(t). Then, replacing t by wt in the recurrence
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relation (18), we have

wt P} (wt) — 4(Py(wt) PR (wt) — Pi(wt)?)
Pn_1(wt)

Py (wt) =

= Prny(t).

Hence we have verified the equation (41) forn =N +1, N =1 (mod 3).

Next, if N = 2 (mod 3) then we have Py_j(wt) = wPy_1(t), and
Py (wt) = Py (t) by induction hypothesis. So we can see Py (wt) = w?Ph ()
and Py (wt) = wPy(t). Hence, replacing ¢ by wt in the recurrence relation
(18), we have Pyii(wt) = Pn41(t), which proved the equation (41) for
n=N+1, N =2 (mod 3).

Next, if N =0 (mod 3) then we have Py_;(wt) = Py_1(t), Pn(wt) =
Py (t) , Py(wt) = w? Py (t) and Py (wt) = wPy(t) by induction hypothesis.
Hence, replacing ¢ by wt in the recurrence relation (18), we have Py 41 (wt) =
wPp41(t), which proved the equation (41) forn =N + 1, N =0 (mod 3).

With these result, we have verified the equation (41) for n = N +1 and
hence obtained the equation (41) by mathematical induction. Therefore,
combining the equation (41) with Proposition 1, we have Proposition 2.

63. Proof of Theorem 1

To illustrate Theorem 1, we have
Py =t 4+ 60t + 11200t,
Py = % 4 504t%° + 75600t 4 5174400t
+62092800¢' + 13039488000¢'3
—828731904000£° — 49723914240000t" — 3093932441600000¢.

In order to prove Theorem 1, for a non-negative integer n, we define the
rational function ®P,(t) by

P,(t), ifn#1l (mod3),
(42) “Pa(t) =
P,(t)/t, ifn=1 (mod 3).

and the rational function ®P,(v) of variable v by

(43) "Pu(v) = P, (t),v = 3.
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From Proposition 2, we have that P, (t) and *P,(v) are polynomials for a
non-negative integer n.

We shall prove Theorem 1 by mathematical induction. As we have
Py (t) = t and see that Theorem 1 holds forn = 1. Let N be N =1 ( mod 3).
Suppose that Theorem 1 is proved for n = N —3. We have to show Theorem
1 for n = N. From (24), we have

(44) *Pn Py _o + 3v(° Py Py _o — "PNPPy_y) = 2N — 1)°P3_4,
(45) —*Pn_1°Pn_3 4+ 30(°Py_*Pn_3 —"Py_1°Py_3) = (2N — 3)°P%_,,
(46) 3("Py_s"Pn—a —"Pn_o"Py_4) = (2N = 5)" P} _3.

Substituting v = 0 into (44), (45) and these derivation, we have

(47) *Pn(0)"Pr—2(0) = (2N — 1)’ P{_1(0),
(48) —"Pn_1(0)"Py_3(0) = (2N — 3)" P} _5(0),
(49) 2" Pyy(0)" Pr—2(0) — "Py (0)" Py_5(0)

= (2N = 1)"Pn-1(0)"Py_4(0),
(50) " Py _1(0)"Pyn_3(0) — 2° Py _1(0)" Piy_5(0)
= (2N — 3)°Py_2(0)° Py _,.

Combining (47) with (49), we have

(51)  "Pn(0)"Py_y(0)"Pn—2(0) — 2P (0)" Py—1(0)" Py —2(0)
+ Py (0)° Py_1(0)° Pir_5(0) = 0.

Combining (48) with (50), we have

(52)  —"Py_1(0)"Py_5(0)"Py_5(0) — *Py_1(0)* Px—2(0)" Py_3(0)
+2°Py_1(0)° Py_2(0)° Piy_5(0) = 0.

We have *P4_,(0) = 0 by induction hypothesis and *Py_3(0) # 0 by
Proposition 2. By (52), we hence see

(53) *Py_1(0)"Py_5(0) + Py, (0)" Px—2(0) = 0.
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Combining (53) with (51), we have
(54) 5PN (0)° Py—1(0)" Py_2(0) = 0.

We see *Py_1(0) # 0 and *Py_2(0) # 0 since Py(0) = Py_3(0) = 0 and
Lemma 2. Consequently we obtain

(55) Py (0) = 0.

We have completed mathematical induction and hence verified Theorem 1.

On the other hand, another proof of Theorem 1 can be carried out as

follows: From (24), we have
P, P, (2n+1)P?
PnJrl Pnfl Pn+1Pnfl .

From the differential of (1), we have

(56)

- Pivi , Py _ P24 20P.F, — A(P,PY — PFY)
Pn+1 Pn—l Pn+1Pn—1

Combining (57) with (1) and (56), we have

sy Dn_ (0rDPR R 2REY - PP

Pri1 t P2 — 4(P,P) — P.?)
Substituting (58) into (20), we have

(50) T (n+1)B; +tP, P}, — 2(P. P} — P,P)) 5'1.
o t P2 —4(P,P" — P'?) P,

Substituting (59) into the second Painlevé equation (3), we find a differ-
ential equation satisfied by P,. Similarly, we can make several differential
equations satisfied by P,. From the reduction of these differential equations,
we conclude that P, satisfies the following differential equations

(60) dy(? (ty(m — 40y ® 4 3y(2)2)
+ 4y (_Qty(mym) —y(13 1 9y(M2,(0) 4 9,12y (3) _ Qy(m)
4242 <t2y(1)2 — a4ty y®) 45y @2 4 302 _42) @) Qy(:a)s)

+ 293 (—2t2y(2) +ty™® — y(3)) —n(n+1)y* =0
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and

(61) 24/(1) (tg/(m HONCON 3y<2>2)
Yy <_3ty<1>y<2> —oy(12 4 5y (@) _ 2y<2>y<3>)
+ o (ty<3> 42y y<5>) —0,

where y(™™ is defined by y™™ = (d"y/dt")™. From (60) and (61), we can
verify that

(62 Palt(P,)? — AP,P + 3(PL),
(63 Palt(P)* Py 4+ (PP — 6PLPLPL! + AP

From the last formula, we obtain P/”(0) = 0 if P,(0) = 0, which completes
the proof of Theorem 1.
84. Proof of Theorem 2

We review the Pliicker relation and present useful relation. Let A be a
commutative ring. We consider the free A-module

(64) Voo = {H(v1,v2,03,..)|v; € Afori=1,2,...}.
We define
(65) e; =%0,...,0, 1, 0,...).

i-th place

For v; = *(v1j,v95,v35,...) € Voo (j =1,2,3,...,n), we define

(66) o1 Avg Avz A+ Ay | = det(vij)i j=1.23,..n
Vi1 V12 st Vip
Vo1 V22 ot U2p
= det
Unl Un2 - Unn

By the Pliicker relation, we mean

n+1

(67) D (1) {]vr Ava - Avny AT
j=1

X VLA A AV A A ] =0
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where v1,v2,...Up—1,0],...,0, 11 € V. (For detail see Date, Jimbo and
Miwa [1], p.70.) Now, for v = Y(vy,v9,v3,...) € Vi, we set v = (v, v3,
vy, ...). For positive integers n, m < n, we define

(68) X0 ={( A, A2 s Am) €EZMI <A < A <o < Ay <)

For positive integers n, m, A = (A1, Aa,...,Ap) € X7 and v; € Vo (1 =
1,2,...,n), we give Dy(v1,v2,...,v,) by

(69) (1)1,7)2,..., n)

"1)1/\’02/\1}3/\ AV A AT A AT A Ay
We then have

(70) Z Dy (v1,v2,...,0,)

Aexn,

= (=)™ v Ava Avg A=+ Avp A eptim]| -

We here give our original proof. H. Kawamuko tought us another simple
proof of (70). See the appendix in this paper for detail.

First, we prove the equation (70) for m = 1 by mathematical induction
on n. As we can see |v{| = (—1)[v1 A e1]. The equation (70) holds for
m = n = 1. Suppose that the equation (70) is verified for m = 1 and
n < N — 1. We shall prove the equation (70) for m = 1, n = N. From the
Laplace expansion of N-th row vector, for a positive integer j = 1,2,..., N,
we have

(71)  Dgjy(v1,v2,. .., 0N)

-1
(_1)N+k

.

ONE D(j—1)(V1,02, -+ s Uk—1, Vk 415+ - -, UN)

B
Il

1

—|—(—1)N+j’l)n+1 j ‘1}1 ANCH WAERIVAN ) S QAN WA /\’UN’

N k
+ Z + UNEk -D(j)(/UI)UQ)"')Uk—lulvk‘-i-lu"')vN)'
k=j+1

So, we have
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N
(72) ) Dgjy(vi,va,...,0n)
j=1

N
:Z( N+k ZD(j U1, 02, . '7’kalavk+17"'7’UN)
k=1
N
+Z(—1)N+k7)]v+1 k |U1 ANVIAN - ANU—1 ANVpg1 A A UN| .
k=1

By induction hypotheses, we have

Mz

(73) ( N+k ZD(] 1}1,1)2,...,Uk_l,vk+1,...,UN)

b
Il
—

(—1)N+k+1UNk |v1 NV AN ANVUp—1 NVg1 N AUy A €N71|

[
] =

I
=7
I

On the other hand, we can see

(-1

E

(74) ’UN+1k’vl/\1}2/\"'/\1}]9,1/\UkJrl/\"'/\’UN’

b
Il
—

=(=1)|vy Ava AvsA--- Aoy Aen|.

Combining (73), (74) with (72), we have
(75) ZD(j)(vl,vg, ooN) = (=1) vt Ava Avs A--- Aoy Aenl|.

We have verified the equation (70) for m = 1, n = N and hence obtained
the equation (70) for m = 1 by mathematical induction on n.

We shall prove the equation (70) for a positive integer m < n. Suppose
that the equation (70) is verified forn < N —1 and form < M —1,n= N.
We have to prove the equation (70) for m = M, n = N. By the Laplace
expansion of N-th row vector and induction hypotheses, we have
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(76) Z Dy(v1,v2,...,0N)

N
xesh,

I
] =

(—D)NE vy, D Da(vi,v2,- .. Uk—1, Ukt 1, - - - UN)

PYS i

b
Il
—

n
WE

N+k

(=D " ong1 E Dy (v1,v2, ..., Vg1, Vg1, -+ -, UN)
N-—1

! AEX 1

b
Il

(—1)N+k+MUNk |U1 NV N NU_1 ANVg1 N NUNNeN_pm

I
E

T

=~

4 (_1)N+k+M—1,UN+1 X

o
—_

><|U1/\UQ/\"'/\Uk_l/\vk_i_l/\"'/\UN/\eNJrl,M
= (=DM vy Avg Avz A--- Aoy Aenpi—u]-

We have verified the equation (70) for m = M, n = N and hence obtained
the equation (70) by mathematical induction.
By the elementary Schur polynomial, we mean, for a non-negative in-

teger n,
l1412 l
tits -t
(77) Sy = > L2 n
| ... |
112>0,15>0,...,1n >0 (L) (E!) (ln!)
l142l2+4nlp=n
so that

(78) exp (i tixi> = i Spa™.
=1 n=0

For a negative integer n, we define S,, = 0. Now, for a partition A = (\; >
Ag > -+ > \), we define the Schur polynomial x, by

(79) Xa = det(Sjita, 1 )ij=12,.k-
Let S,, = (Sy, Sn_1,Sn_2,...,). Here we note

(80) X\ = ‘EA,C /\§1+>\k_1 VANRREIVAN gk—l—i—)q‘ .
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For example, we have

S1 S2 S5 Se Sy

1 8 S S S
X(4,33,1,1) = ‘Fl VAN §2 VAN §5 A FG A gg‘ = det 0 1 S3 S; Sg
0 0 S S3 S;
0 0 S Sy Sy

For T,, = S,(t,0,1,0,0,...), we note from (77) and the differential of the
variable x of (78)

(51) ST =T (),
52) WL(1) = 1T 1(0) + 3T, (1)

For a positive integer n, we define y,, by

T I3 T5 -+ Toua
1 T Ty - Toyo
Xn = X(nn-1,..1)(t,0,1,0,0,...) =det [ O T1 T5 - Ton
0 i e e T,

and define xo = 1. Setting T,, = Y(T},, T—1,Tn_2,.-.,), we have for a
positive integer n
(83) Xn=|T1AT3 A NTop1].

Here we prove the following

PROPOSITION 3.  For a positive integer n, x,(t) satisfy the following
relations

(84) (20 + Dxn-1Xnt1 =t (xn)* +3 {Xn <j_:2Xn> - (%m)Q} ;

d? d d d?
(85) (WXTL'Fl) Xn — 2 <EXTH—1) <EXTL> + Xn+1 <ﬁXn) =0,

d d
(86) <aXn+1> Xn—1— Xn+1 (Ean) = (Xn)2 .
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Proof. As we have xo =1, x1 =t and x2 = %t?’ — 1. So Proposition 3
holds for n = 1. Hence we have to prove Proposition 3 for n > 2.

First, we shall prove the equation (84) for n > 2. Using the Pliicker
relation for T1,T3,...,T2,_3,e, and T1,T3,...,Toni1,€nt1, We have

(87)
Xn—1(t)Xn+1(t)
= [Ty AT3 A ATon_gAen Aengt| [Tt AT A+ ATap—1 A Toni
=— [Ty AT3 A ATon_gNep AT
X | Ty ATg A ANTap_3 NTopi1 Aenit
+|TyATsA - ATon—3 Aen ATong1| [Ty AT3 A+ ATan_1 A€npa
=Ty AT3A-- ANTan_3 ATon_1 A ey
X |Ty AT A+ ANTap_3 ANTopni1 Aenit
— Ty AT A ATon-g ATonp1 Aen| [Ty ATs A= ATan—1 Aenyal.

Here we set
(88) wn(t) = |T1 ANTs N~ ANTop_3NTonyi1].
By (81), we note

d—

(89) ST = (Ta)*,

for an integer n. By (89) and (70), we have
d LT o _
(90) g n(t) = > ‘Tl ATs A A(Tai1) A-e A T2n—1‘
i=1

)

:—‘Tl /\Tg/\”'/\Tgnfl/\en

n—1
d — — _ — —
(91) a?/)n(t) = Z ‘Tl AT3 A A (Tai1) " Ao AT2n 3 A T2n+1‘
i=1

= = = = +
+ ‘T1 ATs A ANTap3 A (Tont1) ‘

:—‘Tl /\T3/\"'/\72n73/\72n+1/\6n‘.
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By (70), (89), (90), we note

d? "= = — —
(92) WXn(t):_Z‘Tl/\TS/\”’/\(T2i71)+/\”’/\T2n71/\6n
=1
:|Tl /\73/\“'/\72”_1/\6”/\671_1_1‘

+ |Tl /\Tg AR /\TQn_l /\€n_1‘ .
On the other hand, we have
d2

@x(t) =2 Y DA(T1,Ts,...,Ton1)
reny

(93)

:2|Tl /\Tg/\"-/\Tgnfl/\enfl‘.

Hence, by (92) and (93), we can see

2

(94) (t)ZQ‘Tl /\Tg/\"'/\Tgnfl/\en/\en+1 .

WX
Now, combining (87) with (90) and (91), we have
@) 1% = xalt) (500) = (a0 vl
Hence

(96)
(20 + 1)xn-1(O)xn+1 () = t (xn (1))

=0 {24 1) (Fn0) = txal)} = (a0 {20+ Do)

2
— 03 { @0+ D) - S0}

- (S0) {@n+ vt - St}

In order to prove the recurrence relation (84), we show the following
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LEMMA 3. For an integer n > 2 and an integer : = 1,2,...,n+1, we
have

(97)

R — S — —
—5‘Tl/\T3/\---/\T2n_1/\ei|+t|T1/\T3/\---/\T2n_1/\€Z-+1‘

— — — d — — —
—l—(i—f—l)|T1/\T3/\"'/\T2n,1/\€i+2‘ —SE‘Tl/\Tg/\"'/\Tanl/\GA
+(2n+1) ‘Tl /\Tg/\"'/\Tgn_g /\Tgn+1/\6i| =0.

In particular, for i =n+ 1, we have

t2 d
(98) - EXn(t) + (2n + 1)%(75) = SaXn(t)'

(Further see Noumi and Yamada [5], p.65, Lemma 3.)

Proof. Let y,(i) be the left-hand side of the equation (97). Now, for
n>21=1,23,...,n, noting

(99) [Ty AT3 A+ ANTap—1 AF(tTh,T2:,0,0,...)| =0
by T1 = %(t,1,0,0,...), we have

(100)
(Yn(1),yn(2),. .. yn(n+ 1)) (Toic1, Thi—2, ..., Toimn—1)

2 o — — S — — —
:—5|T1/\T3/\---/\T2n_1/\T2i_1‘+t|T1/\T3/\--~/\T2n_1/\T2i|

+ |T1 /\Tg VANRRIIVAN Tgn,1 AN [diag(O, 1,2,.. .)Tgi+1] ‘
—3%|T1/\T3/\"'/\T2n71/\72@;1|+3|Tl/\Tg/\”'/\Tgnfl/\TQ@;Q‘

+(2n+1) [Ty AT3 A+ ATon_3 ATaps1 AToi1|
=Ty AT3 A ANTop_1 A [diag(2i 4+ 1,2i,...)Toi11]|

—3|T1 ATs N+ ATop—1 ATais]

+ [Ty AT3 A+ ATop—1 A [diag(0,1,...)Toi41]|

+3[T1 ATy A+ ATon—1 ATais]
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+@2n+1) [Ty ATs A+ ATop—3 ANTop1 AT21]
=20+ 1) [Ty AT3A - ANTop-3 ATon—1 AT941]
+@2n+1) [Ty ATs A+ ATon—g ATop1 ATai1],
where diag(iq, iz, ...) is a diagonal matrix defined by
i1 0
diag(iy,ig,...)= [ 0 2

We prove Lemma 3 by induction on n.
As we have by the equation (100) (y2(1),y2(2),32(3)) *(T1,To,0) = 0
and (y2(1),y2(2),y2(3)) ¥ (T3, Ts, T1) = 0. Moreover we can show

(101) () = L2 [Ty ATy| +5 [Ty ATs| - 84 [Ty A To| =01

Hence we have y2(1) = y2(2) = y2(3) = 0 and verified that Lemma 3 holds
for n = 2. Suppose that Lemma 3 is proved for 2 < n < N — 1. We shall
prove Lemma 3 for n = IN. Using the Laplace expansion of the N-th column
vector of yn (NN + 1) and the equation (82), we have

(102)  yn(N +1)

= (yn—1(1),yn—1(2), - ., yn—1(N)) ((Ton—1, Ton—2,...,TN).

We hence obtain yn (N + 1) = 0 by the induction hypothesis. Moreover, by
the equation (100), for i = 1,2,..., N, we have

(103) (yN(l), yN(2), e ,yN(N =+ 1)) t(Tgi_l, Tgi_g, e ,TQi_N_l) = 0

Consequently, we have yy(i) = 0 for ¢ = 1,2,...,N + 1, which proved
Lemma 3 for n = N. We hence obtain Lemma 3 by induction on n.

Combining Lemma 3 with (96), we have the recurrence relation (84).

Next, we shall prove the equation (86) for n > 2. Using the Pliicker
relation and the equation (70), we have
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(104)
d
EXnJrl(t) Xn—1(t)
= — |Tl /\Tg AR /\T2n+1 /\6n+1| ‘61 /\Tl /\Tg AR /\TQn_l /\€n+2‘
= — |T1 /\Tg ARER /\TanJrl /\€n+2| ‘61 /\Tl /\Tg VAR /\Tgnfl /\6n+1‘
+(_1)n+1 |Tl /\Tg AR /\T2n+1 A 61|

X |T1 /\Tg VANRRIIVAN Tgnfl N epnt1 N enta
d 2
= Xn+1(t) Eanl(t) + Xn(t) .

Next, we shall prove the equation (85) for n > 2. Using the Pliicker relation
and (90), (94), we have

(105)
d2
(gzoa®) 00
=2 ‘Tl /\Tg AR /\TanJrl /\6n| ‘Tl /\Tg AR /\Tgnfl N ent1 /\6n+2|

:2‘71 /\Tg/\"'/\Tgn+1/\€n+1| ‘Tl /\Tg/\"'/\Tgn_l/\en/\en+2|

—2 |Tl /\Tg AR /\T2n+1 /\€n+2‘ ‘Tl /\Tg VAR /\Tgnfl N en /\€n+1‘
d d d?
=2 (50 0) (F00) = (Fe0).
Hence we have completed a proof of Proposition 3.

Using Proposition 3, we shall verify Theorem 2, the Hirota bilinear
relation and the relation (24). Let a = (—3/4)'/3. For a non-negative integer

n, we set
(106) bn = a_@’
(107) cn = [J(2k - D!
k=1
(108) Qn(u) = bpepxn(u), u= at.
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Then we see
1.,
(109) bn+1bnfl = abna
(110) Cnt1Cn1 = (2n+1)c2,

for a positive integer n. We have Qo(u) = Py(t) = 1 and Q1 (u) = Pi(t) =
Now, by (84), (109) and (110), for a positive integer n, we have

(111)
Qn+1 (U)Qn—l (u)

= bpt1bn—1¢n+16n—1Xn+1(1)xn—1(1)

- %bici [u(xn(U) ) +3 <du2 xn( > <%XH(U))2H
— B2 [t(xn(U))2 33 { (dt2 xn(u > (éxn(u)f}]
= tQp(u) — 4 {Qn(u) <dt2 Qn(u )) - (%Q”(u))Q} ’

which is just equal to the recurrence relation (1). From the uniqueness of
recurrence relation, we hence conclude P,(t) = Q,(u) for a non-negative
integer n which is Theorem 2.

By (85), for a positive integer n, we have

1) (£50un) Q) -2 () (FQu()

+ Quis(u) (5@l

d2
= a2bn+1bncn+lcn { <WXTZ+1(U)) Xn(u)

-2 (xnni(@)) (mxa) +xuni(@) (o)}

=0.
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By (86), (109) and (110), for a positive integer n, we have

113 (50 () Qa0 - Quea) (500w

d
= bpt1bn—1Cnt100—1 { <%Xn+1(u)> Xn—l(u)

() (o) |

= (2n + b2 { <%Xn+l(u)) Xn—1()

(0 (o))}

= (2n+1) (Qn(w))*.
We hence have verified (23) and (24).
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Appendix by Hiroyuki Kawamuko

We give a simple proof of equality (70). Let n be a positive inte-
ger and x be a variable. We set X,, = f(z", 2" 1, 2" 2,...). For a v; =
Y014, 024,034, .. .) € Vo (i =1,2,...,n), we consider

(114)  K(x)=|viAva AvsA--- Aoy A X,y

V11 V12 vz ... Ulp x
-1
V21 V22 v23 ... Vg, "
Un1 Un2 Un3 cee Unn
Untl1l Un4l12 Untl3 --- Ungln 1
We have
n
(115) K(x) = g o1 Avg Avg A=+ Aoy A epgiom|z™
m=0
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On the other hand, we have
(116)
V11 — V21 V12 — TV e VUin — TV 0
V21 — XV31 V99 — V32 e Von — LVU3n 0
K(x) = :
Unl —XVpt11 Up2 —TUpg12 --- Upp — TUnpln O
Unt1 1 Un41 2 Un+1n 1
U221 — V11 V22 — V12 e TV — Uln
n Tv31 — V21 V32 — V22 e TU3p — Von
=(=1)
TUn4+11—Unl TUn4+12 —Un2 ... TUptln — Unn

= (—1)"‘(:vv;r—vl)/\(awiF —vg)/\"'/\(xv;{—vnﬂ,

by multilinearity of determinant

= Z (=1)"™Dyx(vi,v2,...,v5)2™.

Aexn,

Comparing the coefficients of 2™ of (115), (116), we get (70).
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