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A NOTE ON QUASI-METRIZABILITY 

GARY GRUENHAGE 

1. I n t r o d u c t i o n . Let X be a set. A function d from X X X into the non-
negative real numbers is called a {non-archimedean) quasi-metric on X if 

(i) d(x, y) = 0 if and only if x = y, and 
(ii) for all x, y, z G X, d(x, z) ^ d(x, y) + d(y, z) 

(d(x, z) ^ max {d(x, y), d(y, z)}). 

A topological space (X, T) is said to be (non-archimedeanly) quasi-metrizable 

if there exists a (non-archimedean) quasi-metric on X compatible with T 

(i.e., the e-neighborhoods form a base for the topology). Denote by N the set 
of positive integers, and let g : N X X —» T be a function such t ha t for each 
x Ç X , x G n«=ig( w > x ) - T h e above notions can be simply characterized in 
terms of such a function g (see, e.g., Hodel [1]). Consider the following prop­
erties which such a function g could have: 

(A) {g(n, x)\n G N} is a local base a t x; 
(B) if y G g(w, x), then g(n, y) C g(w, x)\ 
(C) if y G g(w + 1, x), then g(« + 1, y) C g(w, x) ; 
(D) for each x and each n, there exists rn (: N such t ha t if 3/ G g(m, x)} then 

g(m,y) C g(w, 3c). 
Of course, first countable spaces are characterized by those spaces which 

admi t a function g satisfying proper ty (A). Non-archimedeanly quasi-metriz­
able spaces, quasi-metrizable spaces, and the so-called 7-spaces [1] are charac­
terized by the existence of a function g satisfying (A) and (B), (A) and (C), 
and (A) and (D) , respectively [4]. As demonstra ted by Lindgren and Fletcher 
in [3], the class of 7-spaces is the same as the class of co-Nagata spaces and the 
class of Naga ta first countable spaces. For any space, the following implica­
tions hold: n.a.-quasi-metrizable => quasi-metrizable => 7-space => first count­
able. Kofner [2] has exhibited a quasi-metrizable space which is not 
non-archimedeanly quasi-metrizable. However, it is not known whether every 
7-space is quasi-metrizable. 

A base B for a space X is an ortho-base if whenever B' C B and x G Pi B'', 
then either O B' is open or B' is a local base a t x. In [4], Lindgren and Nyikos 
ask whether any of the above implications reverse in the presence of an or tho-
base. T o give a partial answer to this question, we consider the class of proto-
metrizable spaces, i.e., the paracompact spaces with an ortho-base. We show 
tha t the first two implications do reverse in the class of proto-metrizable spaces. 
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We give an example to show tha t the third implication does not reverse, 
however, even for non-archimedean spaces. Recall t ha t X is a non-archimedean 
space if there is a base Se for X which has rank 1 (i.e., if B, B' G Se and 
B D Br y£ 0, then either B C B' or B' C B). Non-archimedean spaces are 
u l t raparacompact and Se is an ortho-base [5]. Our example is also a linearly 
ordered space with a point-countable base which is not quasi-metrizable, so it 
also answers a question of Heath [6]. 

2. I t is the purpose of this section to prove the following theorem: 

T H E O R E M 1. If X is a proto-metrizable space, then the following are equivalent: 
(i) X admits a non-archimedean quasi-metric; 

(ii) X is quasi-metrizable; 
(iii) X is a y-space. 

Before we embark on the proof of this theorem, we shall s ta te another 
characterization of proto-metrizable spaces due to Nyikos [5]. 

Let X be a topological space, and let y be any ordinal number. A collection 
{ Ua}a<y of open collections is called a proto-uniformizing family if 

(i) U Ua = U Ua+i for every a < y ; 
(ii) if /3 < a < 7, then Ua star-refines Up, i.e., {st(x, Ua)\x G X] is a refine­

ment of Up; and 
(iii) for every x G X, js t(x, Ua)\a < y} is a base a t x. 

X is proto-metrizable if and only if there exists a proto-uniformizing family 
lorX. 

LEMMA 1. Let X be proto-metrizable, and let 0 be an ortho-base for X. There 
exists a proto-uniformizing family { Ua}a<y, where each Ua is minimal {i.e., for 
each U G Ua, Ua — {U} is not a cover of W Ua), and collections Va C 0, a < y, 
such that for each a, Ua+i star-refines Va+i, and Va+i star-refines Ua; also if 
V 6 Va, then there exists U G Ua with U C V. 

Proof. Let V\ — 0, and let U\ be a minimal star-refinement of 0. Let 
Vi = { V G TV |there exists U G £/i such tha t [/ C F} . 

Suppose cV« and F« have been constructed for all a < p. If fi = /3' + 1, we 
can use the hereditary paracompactness of X to find a subset p y C 0 which 
star-refines Up. Let C//3 be a minimal star-refinement of V$ such tha t if 
st(x, Up) C £/ G C//3', then either st(x, ZZ/s) ^ U, or [7 is degenerate. Let 
Vp = { F G F/1 there exists 17 G ^ such tha t f/ C F} . 

If /3 is a limit ordinal, let 

| l n t yn st (x, Ua)J \x G x | 

- i U G U Z7a|?7 = {x} for some x G X 
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Using the fact t ha t for each a < /5 and x f U Ua+i, there exists 7 G Va+i 
such t ha t s t(x, Ua+i) C V C st(x, Ua), and t ha t 0 is an ortho-base, it is easy 
to see t h a t if x ? U Dp, then {st(x, [/a)|a: < 0} is a base a t X . Let V be a 
subset of 0 which star-refines Dp. Let Up be a minimal star-refinement of Vp , 
and let Vp = { V G Vp\ there exists U ^ Up such tha t £/ C 7 } . We continue 
until Dy = {0} for some ordinal 7. I t is easy to check t ha t { Ua}a<y and { Va}a<y 

satisfy the desired properties. 

Proof of Theorem 1. I t is clear t h a t (i) =» (ii) => (iii). We shall prove 
(Hi) =* (i). 

Suppose X, { Ua}a<y, and { Va}a<y are as in Lemma 1, and suppose also t h a t 
g : N X X —> r satisfies properties (A) and (D) . Wi thou t loss of generality, 
we can assume gin, x) D g(n + 1, x) for all x G X and n £ N. Call an ordered 
pair ( 7 , 7 ' ) G 7 a X 7a> an (w, m)-pair of x corresponding to z if 

( i ) x G F H 7 ' , 

(ii) F C g(w, z) and 7 ' C g(m, z), 
(iii) y G g(w> 2) implies g(m, 3/) C g(w, 2), and 
(iv) if ( 7 " , 7 ' " ) G 7/3 X 7 ^ satisfies (i)-(iii), then a S 0 and a ' g 0'. 
Fix x f l , x not isolated, and integers ?z and m, with n ^ m. Define 

a0(x, w, w) = inf [a' < y\ there is an (n, w)-pair ( 7 , 7 ' ) for x with 7 ' G Va>\, 
providing this set is non-empty. If a(x, n, m) has been defined for all 0 < 0 ' , 
define ap>(x, n, m) = inf {a' < y\ there is an in, m)-pair ( 7 , 7 ' ) for x with 
( 7 , 7 ' ) G Va X 7 a S and a > c^ (x, w, m) for all 0 < 0 '} , providing this set 
is non-empty. Continue until it is in fact empty , and suppose this occurs after 
ap(x, n, m) has been defined for all 0 < 0O. Now we make the following 
definitions: 

(i) a (x, n, m) = sup {ap{x, n, ni)\fi < 0O} ; 
(ii) 7 ' (x , n,m) = P { 7 G Va\a ^ a (x, n, m) and x G 7} ; 

(iii) a (x , w, m) = inf {a|st (x, 7 a ) C 7 ' (x , n, m)} ; 
(iv) 7 (x , n, m) = Pi { 7 G 7a|o: ^ a (x , w, m) and x G 7 } . 

Claim I. I t is t rue t h a t a! (x, w, w) < 0Z, where 0X is the least ordinal 0 such 
t h a t {st(x, Va)\oL < 0} is a base a t x. 

T o see t ha t Claim I holds, first note t ha t ap(x, n, m) < (3X for all 0 < 0O. 
For each 0 < 0O, there is an in, w)-pair ( 7 , V) G 7a(/3) X Va'W) for x corre­
sponding to zp with aj'(0) = ap(x, n, m) and a (0 ) > a§(x, n, m) for all 5 < 0. 
Now x G P)/3</3o &(m> 2/s), so gim, x) C P^</30 g(n, zp). We have assumed x is 
not isolated, so by proper ty (iv) in the definition of in, w)-pair , it must be 
true tha t sup {a(0)|0 < 0o} < px. Since a (0) ^ a ' (0) = a(x, n, m) < 
a ( 0 + 1) for all 0 < 0O, it is now clear t ha t a {x, n, m) < (3X. 

From Claim I it follows t ha t V'(x, n, m) is open, for suppose not. Then 
{ F G Va\a S a {x, n, m) and x G F} is a base a t x. T h u s there exists some 
F G Vp, with x G 7 $£ st (x, 7a'(.T)7,;W)) and with 0 + 1 ^ a ' (x , w, m). There 
exists U (z Up with U C 7 . Since E/p is minimal, there exists p ^ U — 
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U{U' G Ut\U' * U). Now p G st (x, Va>(x,n,n)) C st (x, Vni) C U' for 
some U' G Up. Since p G 17', we must have U' = U. The contradiction 
U C F £ st (x, Va'or.n.m)) C £/ proves tha t V'(x, n, m) is open. From this it 
is easy to see t ha t a(x, n, rri) < /3X1 and reasoning identical to the above shows 
tha t V(x, n, m) is open. 

Claim II. If y G F(x, w, m), then F (3/, w, m) C V(x, n, rri). 

T o prove this claim we need only show tha t if y G V(x, n, m), then 
a(y,n,rn) }£ a(x, n,m). Let us suppose y G V(x,n,m) and a(y,n,m) < 
a(x, n, m). Note t ha t every (», w)-pair for x satisfies conditions (i)-(iii) in 
the definition of an (n, w)-pair for 3/. Thus ao(y, w, m) ^ ao(x, n, m). If 
«oCy, w, w) < ao(Xj n, rri), then there is an (n, w)-pair (V, V) for y which is 
not an (n, ra)-pair for x, where V G Fao(l/, ï ï im). Thus x G V Pi V. Since 
x G st (x, Va{X!ntm)) C st ( j , Fa(3;jn)m)) and st (y, Va{y,n,m)) C V C\ V, it must 
be true t ha t a(y, n} m) > a(x, n, m), contradiction. Thus a0(y, n, m) = 
ao(x, n, rri). Now suppose a$(y, n, m) = ap(x, n, m) for all /3 < /3'. Then by 
exactly the sane reasoning as above, we can show tha t ap>(y, n, rri) = 
<xp (x, n, rri). Thus ap(y, n, rri) = ae(x, n, m) for all $ < /30. Hence a (y, n, m) ^ 
a'(x, n, rri). From this it easily follows tha t a (y, n, m) ^ a(x, n, m), a con­
tradiction which proves Claim I I . 

Let {(nk, mk)\k G N} be an enumeration of {(n, m) G N X N\n ^ m). For 
each non-isolated point x G X, define g ' ( l , x) = F(x, wi, mi) . If g'(i, x) has 
been defined for a l H < k, let 

' ( F(x, Wfc, wfc) otherwise. 

If x is isolated, define g'(n} x) = {xj for all n (z N. Now suppose 3/ G g'(&, x) , 
y 9^ x. Let &' be the least integer such tha t g'(k', x) = g'(k,x). Then 
3/ G F(x, nh>, mk>), so g'(fc, 3/) C g'(kf, y) C 7(y , % , rar) C F(x, w r , mk>) = 
gf (k, x ) . Thus g' satisfies property (B). T h a t g' satisfies property (A) follows 
from the fact t ha t if n and m are such tha t y G g(rn, x) implies g (m, y) C 
g(n, x ) , then V(x, n, w) C g(w, x) . Thus X admits a non-archimedean quasi-
metric, and the proof is finished. 

3 . I t is the purpose of this section to describe an example of a first countable 
non-archimedean space which is not a 7-space. The space we describe is also a 
linearly ordered space with a point-countable base. The author is grateful to 
Peter Nyikos for suggesting tha t this space may be such an example. 

Let A be an uncountable set. The points of the space X are all sequences 
{xa}«</3 of elements of A which are of the following type : 

(i) 0 < wi; 
(ii) there exists an a G A which is repeated infinitely many times in the 

sequence; and 
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(iii) if 7 < /3, then no element of A is repeated infinitely many times in the 
sequence {xa}a<y. 

If x = {xa}a<p G X, and 7 < fi, we denote by x(y) the sequence {xa}a<y. Let 
U(x(y)) = {yeX\y(y) = x(y)}. Let 

U = { U(x(y))\x = {x*}a<£ G X and 7 < 0} 

be a base for a topology on X. I t is easy to see t ha t if U(x(y)) D U(y(d)) 7^ 0, 
then either x (7 ) = y(y) or x(<5) = y(<5); hence £/(x(7)) D £/(;y(<5)) or 
U(x(y)) C U(y(d)). T h u s X is a non-archimedean space. Note also tha t if 
x = {xa}a<i3 G X , then the only elements of U which contain x are the sets 
U(x(y)), y < p. Thus X has a point-countable base. Finally, let " < " b e any 
linear order on A. If x — {xa}a<p and x' = \xa\a<$> are in X, define x < x' 
and only if xy < x / , where 7 is the least ordinal such t ha t x7 9^ xy . I t is easy 
to check t ha t the linear order topology induced on X is the same as the topology 
induced by U. 

I t remains to prove t ha t X is not a 7-space. By Theorem 1, we need only 
show tha t X does not admi t a non-archimedean quasi-metric. Suppose there 
exists a function g' : N X X —> T satisfying properties (A) and (B) given in 
the introduction. For each x G X and n G N, there is a least ordinal 7 such 
tha t U(x(y)) C gf (n, x). Define g(n, x) = U(x(y)). I t is easy to check tha t g 
also satisfies properties (A) and (B). 

Let A' = {a1, a2, . . .} be any countably infinite subset of A. Since 
Xo = (cLn

l)n£w, where an
l — a1 for all n, is an element of X, there exists w(0) G w 

such t h a t U(aol, ai1 , . . . , «m(o)1) = g(w(0), x0) for some w(0) G N. Let 
So = (^o1, ai1, . . . , a^co)1)- (Of course, we can take n(0) = 1, but this is not 
necessary.) Similary, there exists mil) G w such t ha t U(ao1

1 cii1, . . . , (imw1, 
am(0)+in(0\ • • • , am(i)

w(0)) = g(n(l), Xi) for some w(l ) G iV, where Xi = 
(ao1, . . . , am(0)1, flm(o)+in(0), «m(o)+2n(0), • • •)• Let 

si = (ao1, . . . , amW\ am(o)+iw(0), . . . , am(i)
w(0)). 

Now suppose m (a), n(a), sa and xa have been defined for all a < f3. Let 5 
denote the sequence such tha t s(y) = sa(y) for every 7 for which sa(y) is 
defined, and s(y) is not defined if sa(y) is not defined for any a < (3. Suppose 
t ha t no element of A is repeated infinitely many times in s. We define rn(0), 
n(P), 5/3, and xp as follows: 

(i) If jS is a limit ordinal, pick an element eft G A —A' which does not 
appear in the sequence s; there exists m(/3) G w such tha t 

U(sn (a0, ai , . . . , am(p))) = g(n(/3), Xp) 

for some n(/3) G N, where Xp — s n (a/)new. (If 5 and t are sequences, s n / 
denotes the sequence 5 followed by the sequence t.) Let 
Sp = sn (a0, ai , . • . , am(0)). 

(ii) If fi = y + 1, then 5 = sy and t/(s7) = g(n(y), xy). There exists 
m(13) G w such t ha t E/(s n (a0

w(7), a / ^ \ . . . , am(fi)
n^)) = g(w(/3), x^) for some 
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n(P) 6 N, where xp = s n (ak
n^)k,w. Let sp = s7

 n (a„n<*\ a ^ \ . . . , a*<flw(l0). 
Continue until the sequence 5 as defined above contains an element of A 

which is repeated infinitely many times. By the construction, this element will 
be an element of A', say av. This will occur at some stage /3' of the construction 
with ft < W\. There exists, then, a sequence yn converging to /3' with U(srn = 
g(p, xy ). But s £ X, and so g(p, s) C H«=i g(p,%y ) = {^}. This contradic­
tion proves t ha t X does not admit a non-archimedean quasi-metric, hence X 
is not a 7-space by Theorem 1. 

In a letter to the author, P. Nyikos notes tha t the above example answers 
in the negative the following question of Hodel [1]: Is every space with a 
point-countable base a wd-space? This is due to the following theorem of 
Nyikos, which we include here with his permission. 

T H E O R E M 2 (Nyikos). Let X be a non-archimedean space. The following are 
equivalent: 

(i) X is a y-space; 
(ii) X is a wy-space; 

(iii) X is a wO-space; 
(iv) X is a 6-space. 

Proof. From [1] we known tha t (i) => (ii) => (iii), and (i) =» (iv) => (iii). 
Thus it is sufficient to show (iii) => (i). Suppose X is a w#-space, tha t is, there 
exists a function g : N X X —> T such tha t x £ Dn=i g(n, x) , and if {p, xn) C 
g(^> Jn) and yn 6 g(n, £>) for n = 1 , 2 , . . . , then {xre}^=i has a cluster point. 
We may assume the g(n, x) 's are elements of a rank 1 base for X. 

Let X ' = {x (z X\ there is a neighborhood of x which is compact}. Since X 
is hereditarily paracompact , and since compact non-archimedean spaces are 
metrizable, X' is an open metrizable subset of X. Thus there exists a function 
gf : N X X' —» r satisfying properties (A) and (D) , and the g'(w, x) ' s are 
elements of the rank 1 base for X, with g' (n, x) C g(n, x ) . 

Suppose p ({_ X', and fix w £ AT". Let \zn)^=i be a countable subset of g(n, p) 
with no cluster point. Suppose tha t for each m £ N, there exists ym £ g(m, p) 
with g(ra, ;ym) (2 g(», p). Then g(m, ym) D g(n, p), and so {/>, zm) C g(m, yw) 
and yrn (z g(m, p) for m = 1, 2, . . . , yet {zm}m=i has no cluster point, con­
tradiction. Thus there exists rn £ N such tha t y £ g(w, £) implies g(ra, y) C 
g(w, £ ) . I t is easy to verify also tha t {g(n, p)}n=i IS a base a t p. Thus the func­
tion h : N X X —>T defined by 

7 / \ ) g'(n, x) if x G X' 

U(w, x) if ^ ^ X ' 

satisfies properties (A) and (D) , and so X is a 7-space. 
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