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STABLE MANIFOLDS OF A MAP AND A FLOW
FOR A COMPACT MANIFOLD

MASAHARU KATO

§0. Introduction

The purpose of this paper is to generalize the notion of the stable
manifolds in Smale [5] and [6], in which the stable manifolds of flows or
diffeomorphisms for a singular point or a closed orbit are defined in certain
conditions. This generalization is concerned with Fenichel[1]. He considers
the stable manifolds of flows and diffeomorphisms for a torus. Here, we
consider the case of a compact manifold. But our argument does not
exactly imply Fenichel’s result.

It is interesting to investigate the conditions for the existence of stable
manifolds of flows or diffeomorphisms. If the stable manifolds exist, then we
can see to some extent the state of the orbits of flows or diffeomorphisms
near the stable manifolds.

In §1, we prove Theorem 1 by the method of successive approximations
and we obtain a local stable manifold of a map for a compact manifold
as a graph of the solution map. In Corollary of Theorem 1, we study the
state of the orbits of a map. In §2, we construct a local stable manifold
of a flow by using the result of §1 and we study the state of the orbits of
the flow.

The author wishes to express his gratitude to Professor Shiraiwa who
gave him many valuable advices very kindly.

§1. The stable manifold of a map.

First, we shall explain the notations.

Let T be a compact C*-manifold (1< < ) and E; be a k; dimensional
Euclidean space for i =1, 2. We denote by L; a k;xk; non-singular matrix
for i =1, 2. Define the norm of a vector z = (2, + + +,24)EE,; (resp. a

matrix L,) by |lzll = max (|2, « -+, |24 1) (resp. || Ll =”s2h1_;?l ILz|)). We suppose
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that the norms of L, and Lj3' are less than one. If we put ||L;]l = and
LY = —}, then ¢ <1<b. Put Byr) = {z€E, | |z]| <7} for a positive con-
stant 7. Let &1 T X B,(ro) X By(re) = T be of class C* and let ¢,: T X By(ro) X By(7,)
— E,; be of class C* for i =1, 2. Define F: T XB(ro)XBy(rs) > T XE,XE, by
F(z, 2, y) = (&(z, ®, ¥), Lix + ¢z, 2, ¥), Loy + @u(z, %, ¥)).

For defining the norm of dé&(r, #, y) and |lz — <'|| for sufficiently close =,
7’ of T, we shall give the following remarks.

In general, let M and N be two compact C'-manifolds and z: M— N be
a C'-map. Let {V,;}7., be a finite open covering of N by *nice coordinate
neighborhoods V;. Next, let {U;}7., be a finite open covering of M by *nice
coordinate neighborhoods U; such that for each ¢ A(U;) is contained in a
suitable V;. Let {A;}7, (resp. {h}}}-,) be a coordinate system associated
with {U;}7., (resp. {V;}7-;). We define the norm of di by |ldh| = max
ldhjnh7(z)|| for each (i, j) such that A(U;)cV;. When m and m’ ar:a
sufficiently close in M, we put |[m — m'|| = max ||k(m) — hym’)|| for each i
such that m, m’'eU,.

By the first remark, we can define the norm of dé(z, #, y) and we put
¢ = max {||dé(z, 2, y)|| | c= T, x=B,(r.), y=By(ry)}. Also, wecan use the mean
value theorem with respect to the first variable by the second remark.

Let f: MixM,xM;— N be a C'-map. We denote by d,f the partial
derivative of f with respect to the i-th variable for i =1, 2, 3 and by de,»f
the partial derivative of f with respect to the second and third variables.

THEOREM 1. Suppose that
(1- 1) ﬂ%('l‘, 0, 0) =0, d(z,a)%(f, 0, 0) =0, 1= 1, 2’

Jor any t€T and ¢, % « - +,c" <b (L=<1U'<1), then there exist a positive number

6 and a CY map g: T XBy(d)—> E, such that

(1.2) g(z, 0) =0, dp9(z, 0) =0 for any =T,

(1.3) g(&(r, @, g(zy %))y Li® + @u(r, &, g7, ®))) = Log(c, #) + ¢olz, @, g(7,2)).
CoRroLLARY. For afixed (zoy ®oy Yo)E T X By(#0) X By(ro), we put (zyy %y, Y1) =

F(toy oy Yo)o  If (Tmy Ty Ym)ET XBi(#0) X By(ro), then we define (tpity Tmits Ymet)
= F(Tmy Tmy Ym)-

*) Let {U;}7-; be a finite open covering of a compact manifold M by coordinate
n
neighborhoods and U{(cU;) be compact and F{II“tU =M. We call these {(U;,U!)}?-,
nice coordinate neighborhoods.
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If yo = glzo, ®o)y then y, = g(tm, ©n) for any m and ||(Xms Yu)ll = O((a + 26,)™)
as m — oo, where 0, is a sufficiently small positive number.

If yo 5= glzo, o)y then Ym 7= 9(Tms Tn) aSfar as (T, Tmy Ym) is defined.  Actually,
there exists a constant d > 1 such that ||Ym — 9(tm, Zu)ll =d™||yo — 9(ze, %o)l| and

also ||(2m, ym)||2%d’"llyo — 9(o, o)l as far as (cmy Ty Yn) 15 defined.

Let V = {(z, 2, g(z, z))|c€T, ||| <é}, then V is a CY-manifold and (1.3)
implies F(V)cV. By Corollary of Theorem 1, V consists of the point (z, , ¥)
such that lim F*(z, 2, ¥)€T x0x0. We call V the local stable manifold of

Nn—>00

a map F for a compact manifold 7.

If F: T xBy(ro) x By(ro) = T x E;xE, is an imbedding, nljoF'"(V) is a Cv-
manifold and is called the stable manifold of a map F for a compact
manifold 7. We can define the unstable manifold by a similar method.

Proof of Theorem 1. Let 6, be a sufficiently small positive number, which
will be determined later so that the following arguments hold. (1.1) implies
that for any ¢, > 0 there exists a positive number 7(<7,) such that

(1.4) ldeill, lldgall <6, for =T and ||| <7.

Since ¢;, ¢, and & are C'-maps, there exists a positive number 6,
(m =2,3,-+-,1) such that

(1.5) @™ eull, ld™e.ll, ld™ell <0, for <7, |lz]l<r and |yl <.

Denote by I' the set of the map f with the following properties:

(1.6) y = flz, @) : TxBy8)—> E, 1is of class C¥,

— 1 " . 1—a
where5~T_~d__01-7. Let 6, < 5 Then0<d=<7.
(1.7) flz, 0) =0, dof(z, 0)=0 for any c=T.
(1.8) If zeT and ||z|| <4, then

@ Wfl= <,

(b) L@ + @iz, @, f(=, )l <3,

() WLP'[f(Ee, 0, flz, ®), L@ + ¢4(z, @, Sz, @) — ¢olz, @, flo, @) <7,
(1.9) ldf(z, )| <o, for any =T and |z| <3,

0, _
b—max(c,T)c Letfi<b—max(c, 1). Then 0<s <1

Define a map 9: I' > I" by &(f) = ¢, whgre Oz, 2) = L[ f(&(z, 2, flz,2)),
Lz + ¢z, 2, flz, 2)) — ¢y, 2, f(r, ))]. We shall show ¢=rI. It is trivial

where ¢, =
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that ¢ satisfies (1.6}, ¢(r, 0) =0 and (a) of (1.8). First, we shall show d,(z, 0)
=0. Since
dof(z, &) = L3 [d, f(E(z, ®, flz, ), Ly + ¢4z, %, f(z, @) {d:£(z, x, f(z, 2))
+ dsé(z, %, f(z, x))+ dof(z, 2)} + dof(&(z, @, f(z, %)), L
+ ¢i(z, @, flz, ) {Ly + dopi(z, @, Slz, @)
+ dspi(z, #, flz, ) dof(z, ®)} — dopsle, %, flz, )
— dyps(, %, flz, @) dof(z, )],
dy(z, 0) = L3'[d,f((z, 0, 0), 0) - ds&(z, 0, 0)] by (1.1) and (1.7).

Since f(z, 0) =0, d,f(z, 0) = 0. Therefore, d¢(z, 0) = 0.
Next, we shall prove (b) of (1.8). Let c=T and ||| <4. Then

1L + ¢4z, %, $(z, )l
<ao + ”§01(2', X, ¢(Ta x)) - ¢1(Ty z, 0)” + ”501(79 X, 0) - ng(Ty 03 0)”

<aé + 0,|¢(z, 2)|| + 6,)]z]] (mean value theorem and (1.4))
<ao+ 0,y 4+ 6,0 ((@) of (1.8) for ¢)
<90 (1.6)

Now, we shall prove (c) of (1.8). Let c=T and |z||<é. Then
[[L;1[¢(E(T! Z, ¢(T9 117)), le + @1(79 x, ¢(79 x))) - 972(7’ Z, 5["(7, x))]“
S%[Hsb(&(f, z, Pz, )y L1 + ¢4(z, @, Pz, ) + ll@alz, 25 ¢(z, )]

=LY 400+00) ((a) and (b) of (1.8) for ¢)

=51+ 29,)r.

S

Let 6, <2 S Then L (1+20)r=r.
Finally, we shall show (1.9). Since

dg(z, ) = L3 [df(é(, =, flz, %)), L2 + ¢, x, f(r, x)))-(dé(z, x, f(r, x))-
L, 1, df(z, ®)), L+ dei(z, =, flz, )+ (1, 1, df(z, x))
— dos(z, x, f(z, 2))+ (1, 1, df(z, ®))],
ldg(e, @) < 717«;1 max (c, @+ 0;) + 6,).

Let a+6,<1. Then %(01 max (¢, a + 6,) + 6,) S—})—(al max (¢, 1) +6,). By
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the definition of ¢, it is easy to see that the above right term equals to o,.

Thus, we have ¢=I" and the map @ is well defined.

Define gy(z, ) =0 for any =7 and ||z]| <4, then it is easy to see g, &I
Put Q(go) = 91 Q(gl) =gyt 0, then Q15 G2y ¢ ° * erl.

It will be verified by induction that there exist a positive number %(<1)
and M such that
(1.10) lgm(Ty ) — gm-i(z, 2)|| < ME™ for z&T and |z| <.
For m =1,

loste, #) = gole, @) < IL3H = oals, =, O) <G,

Put Mk = —01—;—5, then (1.10) holds for m = 1. Assume that (1.10) holds if m

is replaced by m —1. Then
lgm(zs %) = gm-slz, @)
= 5L1gn-1(8(5, %, gnos(es @), L + 0405, 2, Gnesle, 2)

— In-28(rs Ty Gn-s(t, @)y L1@ + ¢1(ts &y G-a(z, )|
+ llgn-2(£(Ts %y Gna(z, @)y L1% + @1ty &,y Gr-ale, )

= gn-2(£(Ty Ty Gm-s(7, @)y L1% + @47y &5 Gn-alt, X))l
+ 1gn-2(6(z, %, gn-s(z, ), L1 + ¢41(zy @5 Gn-a(z, )

— Om-2(&(t, &y Gnoslt, 2)), L1 + ¢i(z, @, gm-o(r, )|
+ 192(z, @y Gm-slzy ) — o, %y Gnozlz, ).

By the assumption of induction and the mean value theorem,

”gm(T, x) - gm—l(T! x)”
= —})—(Mk’"" + 0,0, ME™ + g,c ME™1 + 9, ME™1)

s%Mkm-l(l T 00, + o1 + 0)).

We put k= 71)—(1 + 0.0, +o.c +6,). For a sufficiently small ¢, the following

inequality holds: ¢,0;, +a,c + 6, <b—1 (Note g = b_—-rnZ&W) For such
a 0, we have 0 <k <1 and ||gn(z, &) — gn-i(7, )|l << ME™. Therefore, g(z, z)

= lim gn(r, ®) exists uniformly for z€7 and ||| <4. It is trivial that g is
M~ 00

continuous and g satisfies g(z, 0) = 0 and (1.3).
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Next, it will be proved that the solution map g is of class C!. For any
map f = f(u) (resp. f=f(v, w), let 4f = f(u+ du) — f(u) (resp. 4df=
fo+ v, w+ dw) — f(v, w)). Put vi(e) = sup (|4d¢ll, 14deyll, [14desl)) for |4z,
Idz], |dy)l=<e. We shall show that

(1.11) l4d fll < u,(e) implies ||4d¢| < u,(e),

where fel, O(f) =¢ and u,(e) = Ky,(¢) and K, = b_max(lc +1§’x_ e 7

For a sufficiently small 6,, & — max (¢, 1) > oyc + 6, (Note o=

, max (¢, 1) >
For such a 6, we have K; > 0. Assume |4df]| <u(e). By usmg the analogue

of ALfi(u)fo(u)] = fi(u + du)d fy + (41,) fo(u), we have the following equation:
4d¢ = L3'4df(deQ, 1, df), Ly +dey(1, 1, df)) + df(4deQ, 1, df)
+ d&(0, 0, 4df), 4de(1, 1, df) + de,(0, 0, 4d f)) — 4de.(1, 1, df)
— dos(0, 0, 4d )1
Then  ||4d¢| s—})—(ul(s) max (¢, @ + 6,) + oy max (v,(€) + cuy(€), v,(e) + 0,u,(€))

+ v,(&) -+ 01u,(¢))

< —F-(m(e) max (c, a+0) + a,04(&) + aicum(e) + vi(e) + 0,14(e))

(let 6, <¢)

<

(u1(e) max (¢, 1) + ow1(€) + orcuy(e) + vi(€) + 0,u(8))

oo

= F(u,(e)(max (¢, 1) + a:1¢ + 6,) + v:(e)(1 + 01)).

S

By the definition of #;(¢), it is easy to see that the above term equals to
u,(e). Therefore, ||dd¢|| < u,(e). Since g,&I' and ||ddg)| < u,(¢), we have
4dgnll < ui(e) for m =1, 2, -+, that is, {dgo dgy, * ++} is equi-continuous.
Since gn.€TI', {dgs, dg,, -+ -} is uniformly bounded. Therefore, g is of class
C! and d.g(r, 0) = 0 since dygn(z, 0) = 0.

Next, we shall show that the solution map g is of class C¥. Define
Lz, ) = @4z, ®, f(z, x)) for j=1, 2, 3, where &z, x) = (s, 2, f(, 2)). By
induction, it is easy to see that

(1.12) dmf;=d"e;(1, 1, df)™ + P, + dg;(0, 0, d™ f)

for m =2,3,++,l’, where P, is a polynomial of d*¢;, (1,1, df)* and d*f
for k<m —1. Also, put 9(c, 2) = f(&(z, @), L,x + &(z, 2)). By induction, it
is easy to see that
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(1.13) d™y) =d"f(d8y Li+ db)™ + P, + df(d"s, d™0)

for m =2,3,--+,0'’, where P, is a polynomial of d*f, (d&s;, L,+ d&)* and
(d*Cs, d’C) for j, k<=m —1. Since ¢ = L3'(y — &),

(1.14) d™y = L3;'({d™y) —d™&,) for m =2,3,+--,1,

We shall show by induction that there exists a positive number ¢, (m =
2,3,-+-,0") such that

(1.15) ld™fll <o. implies [[d™¢| <on,

1 + 01
—[max (¢, VF —aic — 0, *

Since ¢? < b, 6, >0 for a small ¢, such that b —[max (c, DV >ac + 0, (Note

where feI" and ¢(f) = ¢. For m =2, put ¢, =

oy = —bTm?Tle,T» Assume ||d%f]| <o, By a simple calculation, we have
(1.16) d* = d*f(d§s Ly + d§,)? + df(d*Cs, d*Cy),
(1.17) a*§, = d*ey(1, 1, df)? + des(0, 0, d*f).

By (1.14), (1.16) and (1.17),

ld®d| < (Uz[max (¢, a+ 0)1 + oy max (0, + caz, 05 + 018;) + 05 + 6104)

He—]

= (eddmax (¢, 1) + 640, + 6,¢05 + 02 + 6,0)

I

(oo(fmax (¢, 1) + o1c + 01) + 62(1 + oy)).

By the definition of ¢, it is easy to see that the above term equals to o,.
Thus, we have ||d%¢|| <<o,. Next, assume that (1.15) holds for m =2, 3, + -+ -,
p —1. Therefore, we can assume that oy, g, - + »,0,-, are defined. By (1.12),
(1.13) and (1.14), we have the following inequality:

ld?dll <= (op[max (¢, a+ 0,7 + |Pl

+ oimax (0, + | Pl + cap, 0, + ||P1ll + 0:10,) + 0, + | Psll + 6155)

1

g,lmax (¢, 1) 4+ ayc + 6,) + ),

o
b —[max (¢, 1) —o1c — 6,
the above term equals to ¢,. Since ¢ <b, ¢,>0 for a small ¢, such that

b—[max (¢, 1)J¥ >o.c + 6, (Note g = TTZ!}WT)) Thus, we prove (1.15).

where « is a positive constant. Put ¢, = , then
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Since g’ and ||d™gl| <om for m =2, ---,1', we have ||d™gl| <o, for k=

1,2,--.. That is, {d™go, d™g;, * ++} is uniformly bounded. Next, put

Un(€) = sug) (lad™¢&ll, llad™o,ll, 11dd™¢s)l) for m =2,3, -+ -,1I’. By
li4zll, [| 4]l 11| < e

induction, it is easy to see that

(1.18) 4d™8; = 4d™9,(1, 1, df)" + P+ de,0, 0, 4d™ f),

(1.19) 4d™y = 4d™ f(dEy, Ly + d8)™ + Q + d f(4d™ 8, 4d™Ey),

where P and @ are suitable polynomials. Also,

(1.20) 4d™¢ = L3;Y(4d™y — 4d™E,).

Replacing (1.12), (1.13) and (1.14) by (1.18), (1.19) and (1.20) respectively,

we can prove similary as above that there exists a positive number K,, for
a small 4, such that

(1.21) 14d™ fll < Knvn(e) implies [|4d™¢|| < K, vn(€)

for m =2,8,.-+,0', where feI" and @(f) = ¢. Since g,&I" and |[dd™g.|| <
K,v,(e) for m=2,3,+++,1'", we have ||4d™g| < K,vn(e) for k=1,2, - - -.
That is, {d™g., d™gy, » + -} is equi-continuous. Thus, g is of class C¥ and
ger.

This completes the proof of Theorem 1.

Proof of Corollary.

If y =g(r, ) for z=T and ||z|| <5, then
(1.22) Iyl <llg(z, 2) — 9(z, O)l| < oyllx]| < 6.
It is trivial that
{1.23) Yo = 9(zo, ¥o) implies y; = g(zy, @,).

By (1.22) and (1.23), we see that y, = g(zo, %,) Implies (tn, Tm, Yu)E TXBy(5)
X By(3) and ¥y = g(tm, ¥») for any m. Suppose ¥, = g(ro, ¥o). From the
equations 2, = L% + ¢4(to, %o, ¥o) and y, = g(r;, ,), we have

lyall < N2l < all@oll + llei(z, 0 oy Yo) — ©1(70s Zoy O)]]
+ 191z, %oy 0) — @1(70, 0, 0)|| < @l|@ol| + 04|yl + Oull2oll < (@ + 28,)]|2ll.

Therefore, Yl < |l << (@4 20)™|lzoll. Let a+ 26, <1. Then we prove
the first assertion of the corollary.
Ino rder to see that y, # g(zs, o) implies y,;  g(zy, #4), it is enough to
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consider the case of ||l#;]| <46 and ||yl <7, From the equations
71 = &(70, %oy Yo),
2y = L2y + ¢1(z0, %oy Yo)»
Y1 = Loy + ¢2(7o, 2o, Yo),
9(zo, o) = L3'[9(&(zo, Doy 9(7os o))y L1Zo + @1(ze, Toy 9(zoy @0)))
— @2t @0y g(Tor @),
we have the following inequalities:
lyo — 9(zo, )l
= L3 Mlyy — Paltor Toy Yo) — g(&(T0s %oy 9(T0, o))y Li@o + ¢1(7oy Tor G(70s @0)))
+ Pal7o, %o, 9(zoy @)l

< -1-lly: — gz @)l + 96 Lito + 01z Toy o)) = glesy Liso

+ 901(701 Lo, g(TO’ xo)))” + ”9(5(707 Loy :’/0)’ Lo+ 901(7()’ Lo, g(To, xo)))
- g(E(TO’ Loy g(’f()r xo)), Lyzy+ QDI(T(» Loy g(To, xo)))” + “gDZ(To, Loy g(TO, xo))
~— @5(70, Zo» Yol

<y — gl @)l + aillve — gz, @)l + arcllys — gleo, o)l

+ 04llyo — glzo, x0)ll].

Then (b — 610, — o1¢ — 0)|lYo — 9(zoy %o)ll <y — glzi, 2.  Put d =0—00,—
gic—0;,, Then d=1+b1—k)>1 since k<1, If ||z, <<o and |ly.ll<7o
for k= 1,2, -,m, then dm”?/o - Q(Tm xo)” = ”ym - g(Tmy xm)“- NeXty

@ ms Yl ZNYnll = NYm — 9(Tms Tl — 19(Tms )l
= “ym — 9(tm, xm)“ - me”

= ”ym - g(Tnu xm)” - ”(xm’ ym)”-

Therefore, [(®n, ¥n)ll=—5-1Un = g(ens @a)ll=—5-d"|¥o = glew 2)ll. Thus, the

second assertion of the corollary is proved.

§2. The stable manifold of a Flow.

Let 7, E, and B;(r,) for i =1, 2 be the same as in §1. Let¢,: Tx
B(re) X By(ro) > E; be of class C* such that ¢;(r, 0, 0) = 0 and d¢, 5¢;(r, 0, 0) =0
for i =1,2. Let P, be a k,xk; matrix for i =1, 2. Assume that the real
parts of the eigen values of P, (resp. P, are negative (resp. positive). If
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we put |leP1]] = aand |le~P2|| = —})—, then a<<1<b. We shall denote by 7. the
tangent space at a point ¢ of 7. Let &: T XB(r) X By(r0) —>TgTT, be of class
C' such that é(c, , y)e7.. Using a local coordinate neighborhood in T,
we can express & as a map from E?XB;(ro)XBsy(r,) to E? where E? is a
Euclidean space. We suppose dé(z, 0, 0) =0 for any r€T.

Let f be a function of class C' from E;XE, to the set of all real numbers

such that

(2.1) 0< f(z, y) <1 for any (%, y)€EE,XE,,
(2.2) fle,y)=1 for | =L and [yll=7
(2.3) fla, 9) =0 for lel=2r or lyl=-2r.

We consider a vector field X on T XE,;XE, such that
(2-4) X = (f(x’ y)E(T’ Z, y)» Plx + f(xy y)¢'1(7, X, y), ng + f(-’X?, y)(tbz(fy X, y))
on T XB(ry) X By(ro),

(2.5) X=(0, P, By) on [all=2-r or |yl=-270.

This vector field X is an extension of a vector field (&(z, «, ¥), Px + ¢,(c, %, ¥),
Py + ¢uls, &, 9) on TxB(Z)xBy(72).  Let (E(t, v, ), (t, =, 3, ),
Oy(t, 7, %, ¥)) be an integral curve for X with initial value (z, #, y) for
—a<t<§B (a, $>0), where the interval (— a, f) is the maximal interval
for the existence of the solution for X. If B< + oo, then a part of this
integral curve is out of T><B1<%ro XB2<%70> by p. 65 of Lang [2]. Since

X equals to (0, P, Py) in the exterior of T><B1<-§—ro>><32(%ro>, we can
extend this integral curve. This contradicts the assumption < + c. Thus,
B= + . And also @ = + . Therefore, the vector field X is complete.
Let F® be the one-parameter group generated by X. Then F'(, z, y) =
(B(t, <, ®, ), D4(t, 7, %, ¥), Do(t, 7, ®, y)) for any ¢ and any (7, x, y)T XE; X
E,. Put 0,(¢,7,2,y) = ePifx + ¢,(t, 7,2, y) and @u(t, 7, 2,y) = eP2'y + @,(t, 7, 2, ¥).
From the initial value condition (z, %, ¥), we have £(0, z, %, ¥) =7 and
000, 7, ¢, y) =0 for i =1, 2. Also we have ¢,(¢, 7, 0, 0) = 0 since the solution
for X with initial value (z, 0, 0) belongs to Tx0x0. Denote by Y(¢, <, 2, ¥)
the Jacobian of (5, &,, 9,) with respect to (r, #, ¥) and denote by Az, 2, )
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the Jacobian of (¢, P, + ¢,, P, + ¢,) with respect to (z, =, y) for |jzll, |yl < ro.
00 0

Put B=| 0 P, 0 |. By solving the following variation equations with respect
00 R

to the initial value (¢, 0, 0),

(2.6) A Y(t, 20,0 = AE(t, 7, 0, 0),0, 0¥t 5, 0, 0),
(2.7) Y0,z 0, 0 =FE (E is a unit matrix),

we have de p¢(t, 7, 0,0) =0 for i =1, 2 and a sufficiently small 7. Using
the compactness of T and the property of one-parameter group F°, we have
di. ity 7, 0, 0) =0 for any ¢ and 7. Moreover, we have Z(t, 7, @, y) =
constant and ¢,(t, =, ©, y)=0 for ||z||=s, or ||y||=s, where s, is determined
by # and s,—0 as »,—0. We note that |lde,(¢, <, @, y)|| =0 as s,—0 for
0=<t?t=1.

Put M, = max{l|A(z, 2, ¥)|ll(z, 2, y)ET XB(r,) X By(¥y)} and M, = §r<1?<xl]lel”]l.

et —1

Let ¢ be a small positive number such that ¢=1 +35M2——1W~— <b. For
1
M, =0, ———-6M1M—1 will be replaced by 1. TFrom the properties of &, ¢, and
1

¢, we can choose a small positive number 71<$ 7;) such that ld¢(z, z, ¥
=e&, |ldds(e, , y)ll<e and ||dé(z, z, y)ll<e for c€T, [z <r, and |ly[|<r.
Now we consider the following variation equations with respect to the initial
value (7, @, y).

LYt <, 3, 9) = AFe, @, Y)Y, 7, 3, 9),
(2'-9) Y(()’ T, X, y) =K.

From the properties of ¢, and @,, we can choose a small positive number
ro(<ry) such that |@,(t, =, x, y)||<<r, for |z]| =<7, and |ly]|<7.. Since

1 Be”t — A(F'(x, @, y))e™||

0 0 0
e w gt
0 0 0
< P a7 &, '5@’* 1 - |le®|
b 0 0
w?” @ | P e )
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<3eM, for 0<t <1, ||z|| <7, and |yl < 7,

e is an 3eM,-approximate solution of (2.8). By p. 56 of Lang [2], we have
the following inequality,

eMllc] —1

WY, «, =, y) — eBt|| <3el, s

for 0<t<1, |lz||<7, and |ly]|<7,. For ¢# =1, we have

__ pB eMl - 1

”Y<1’ Ty X, ?/) eB|| < 3eM, M, .

eMi—1
M,

e — 1
M,

That is,

[igu, e, %, y) — E||s3sM2
ot

H aaac 51, r, 2, y)”£3s]% and
0 - ”< e — 1
” ay ._/(1, Ty, Xy ?/) —35M2 - —

- for Il Iyl < 7.

My
Therefore, we have |[d2(1, =, 2, ¥)|| <1+ 381\42%1
1

The map F'(z, z, y) = (1, 7, &, ¥), eF1x 4+ ¢,(1, 7, 2, ¥), P2y + ¢u(1, 7, x,9)):
T X By(ry) X By(r;) = T X E, X E, satisfies the assumption of Theorem 1. There-
fore, there exist § >0 and a C'-map g defined on T XB;(3) X By(8) to E, such

= ¢ < b for |lz]], ly]| < 7..

that
(2.10) " gz, 0) =0, dog(z, 0) =0 for any z€T,
(2- 11) g(‘-':'(l’ Ty Xy g(T! x)); efiy + §01(1, Ty Xy g(T’ x))

= eng(79 x) + %(1, T, ¥, g(T’ x))~

We note that g is a CY-map if ¢, ¢,% -+ +,cV <b (I’<1l). Let V be the
local stable manifold of a diffeomorphism F?.

THEOREM 2. Let (t4 2oy Ye) = F'(tos @0y Yo) JOr (toy %oy Yo)ET XE ;X E,.

If (T, oy Yo)EV, then there exists no >0 such that (c,, %, y.)EV for t =n,
and (2, y)ll = O((a+ 200)) as t—>oo, where 6, is a sufficiently small positive
number.

If (o, oy Yo)EV and ||&,ll, |ysll <6 for0O<s<t + n,+1, then (5, 5, y;)&EV
and (w5, y,)l| =Kd* for s<t, where K is a positive constant and d > 1.

Proof. We shall first verify that if n<<t<wn-+1, then there exist
positive constants c¢;, ¢, independent of # such that
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(2.12) cll(@ay Yl < M@y Yl < Coll(®ny Yl
In order to see this, note that F'= F*"o F", that is,
x, = P Mg, + 0y(f — 1, Thy Tny Ya)y
Yo = €72y, + 9ot — 0, Ty Tny Ya)-
From this equations, we have the following inequalities:
lle, — eP1 =M, || < 9l(2n, ¥a)ll,s
llye — eP2 Myl < 7ll(za, yall,

where 7 is a small positive number under a small 7, Hence, we have
Nl < 9l(2ns ya)ll + lleP1¢=™] [|2,4]l. On the other hand,

)l = llePr* =, || — ||z, — eP1~Ma,||
= Tl = 2@ vl
For y,, we have similar inequalities. Thus, we have (2.12).
There exists a natural number #, such that cy(a + 26,)" <1 for n=mn,,

where 9, < X ;”. If (o, oy wo)EV, then (g 4 yu)€V and |[(@,, ¥l <

(@ + 260)" (s o)l for any n from Corollary of Theorem 1. For n,<n<t=<
n+1, (@, ¥y < coll(@n, ¥a)ll < cala + 200)"||(20, yo)l| <8. Therefore, we have
(2 yo)ll <8 for t =mn, andt—Ign (@, yo)ll =0. Suppose that there exists #,
such that (¢, @;, ¥:)&V and #,=n,. By Corollary of Theorem 1,

i@ eqrts Yeors)| =5 (@1 9.l for any k.
This is a contradiction. Therefore, we prove the first assertion of Theorem
2.
If (7, 20y, yo)EV and |lz4ll, llysll <6 for 0<s=<t -+ n,+ 1, then we have
(eas @ny Y&V and (s, ¥2)ll = —5-d"l(20, ¥oll for =t + o+ 1 by Corollary
of Theorem 1. Suppose that there exists #,(<¢) such that (z,, #., y.,)EV.

By the above argument, we have (tn, Zn, Yn)EV for ¢, +to<<m <t + t,+ 1.
This is a contradiction. The last inequality is trivial by (2.12).

By Theorem 2, we have

V = {(zo, %o, yo)ETXB1(5)><Bz(5)[tli_)r£ F'(zo, %oy yo)€T X0X0}.

We call this V the local stable manifold of a flow F’. If we put W =
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tt>J0F -%V), then W is a C!-manifold. We call this W the stable manifold

of a vector field X. The stable manifold W is characterized as the set of
(tos %oy Yo)ET XEXE, such thattlim F'(zg, %oy Yo)€T x0x0. Similarly, we

can define the unstable manifolds of a vector field X.
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