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COVARIANCE FUNCTION AND ERGODICITY OF
ASYMPTOTICALLY STATIONARY RANDOM FIELDS

V.V. ANH AND K.E. LUNNEY

A class of second-order asymptotically stationary random fields is shown to con-
tain the class of almost harmonisable random fields. A continuity theorem which
leads to the spectral representation for the covariance function of asymptotically
stationary random fields is established. A mean ergodic theorem for the fields is
also given. When stationarity is assumed, the results reduce to the well-known
corresponding theorems for stationary random fields.

1. INTRODUCTION

Stationary random processes and fields have played a prominent role in the analysis
of ID and ID signals, and their theory has reached a mature state of development.
On the other hand, understanding of nonstationary processes and fields is still fragmen-
tary although their consideration seems more realistic in many important applications,
particularly in image processing. There have been many attempts to extend the results
for stationary processes to various classes of nonstationary processes (see Bhagavan [3]
and Rao [10] for recent surveys). In particular, harmonisable processes introduced by
Loeve [6] and asymptotically stationary processes studied by Parzen [8] and Kampe de
Feriet and Frankiel [5] received much attention. The latter class, also named the class
KF by Rao [9], is denned as follows.

Let {X(t), —oo < t < oo} be a second order process with zero mean and covariance

R{s, t) = EX(s)X(t).

{X(t)} is said to be asymptotically stationary if the limit as T - t oo of

r—[*|/2

exists for every k £ R. The limit, denoted by R(k), is defined to be the covariance
function of the process.
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In Bhagavan [1] the class KF was studied in detail. An interesting result estab-
lished in Bhagavan [1] is that the class of harmonisable processes is a subclass of the
class KF. The spectral representation for the covariance function of processes in the
class KF was also given there. A mean ergodic theorem for the same processes was
presented in Bhagavan [2]. In these studies, the fourth moment condition on {X(t)}

is not assumed. However, one of the following conditions was imposed in Bhagavan's
investigation:

C\ The real part of Rx(k) is of bounded variation in a small closed interval
[0, S] including the origin;

Ci RT(0+) exists and two positive constants A and A exist such that

\RT(k) - RT(0+)\ < A\kf

for every fc in a small interval [0, 8} including the origin;
C3 RT(Q+) exists and for fc in a small interval [0, 6] including the origin,

the integral

L
6

(RT(k)-RT{Q+))dk/k

converges absolutely.

As remarked by Bhagavan [1, p.60], the conditions C\, Ci., Ca do not seem to
allow the results to cover the entire class of stationary processes as a particular case.

In this paper, we shall consider random fields. The class of asymptotically sta-
tionary random fields is denned. Its covariance function will then be studied. We shall
establish a spectral representation for this covariance function under very mild condi-
tions; in particular, the conditions C\, Ci, C% corresponding to random fields will not
be needed in the analysis, thus allowing the results to hold for stationary random fields.

Several examples of asymptotically stationary processes were given in Kempet de
Feriet and Frenkiel [5] and Parzen [8]. Some practical application of the theory of these
processes, particularly the computation of their spectrum, was demonstrated in Wolters
[11] in an economic context. A particularly useful subclass consists of periodically
correlated random fields. A study of the covariance function and spectrum of these
fields through simulation is being carried out and will be reported elsewhere.

The assumptions required in the analysis are described in the next section, which
also investigates the relation between almost harmonisable and asymptotically station-
ary random fields. The continuity theorem, and hence the spectral representation, for
asymptotically stationary random fields is established in Section 3. Section 4 gives a
mean ergodic theorem for these fields.
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2. ASYMPTOTICALLY STATIONARY RANDOM FIELDS

Consider a random field {X(t) , t £ R n } on the probability space (f2, !F, P) with
mean zero and covariance R(s, t ) = EX(s)X(t). We shall make the following assump-
tions:

(i) X{t, w) is continuous in mean square;
(ii) E\X(t)\2 <oo, t £ R n ;

(iii) / R(t, t)dt < oo;
[o,»]

where [a, b] = {x £ R n : a ^ x ^ b , a, b e R n } and dt is Lebesgue measure on R n .

Under condition (iii), Fubini's Theorem then implies that

/ |-X"(t)|2 dt < oo almost surely,
J[a,b]

E f \X(t)\2dt <oo and
J[a,b)

(2.1) E f \X(t)\2dt= f E\X(t)\2dt.
Jla,b] J[a,b]

u c b A . — V 1 * - ! ? • • • ) K n ) ) •*- — V l ) ' * * ' n / » * ^ » — 1 j " • ) ' * '

We define

RT{k) = Y[{Tj)~l I . . . / R(t,t + k)dt,

where

{ T- —T- < Jfc- < 0

i = 1, 2, . . . , n , and

FT(s) = TT (Tj)-1 I f I J^t .uJe-^-
jJi J(-o=,.]J[0,T\J\0,T\

The random field {X{t), t £ Rn} is said to be asymptotically stationary if the limit as
Tj -» co, j = 1, . . . , n, of -Rr(k) exists for every k £ R n . The limit, denoted by R(k),

is defined to be the covariance function of the random field. The class of asymptotically
stationary random fields is denoted by A.
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In the following, unless written out completely, the simpler notation lim will be
T-»oo

used to mean lim
i=l,...,n

We first note that if {X(t)} is stationary, then R(t, t + k) = R(k). It then follows
readily that lim i?T(k) = R(k).

Thus A covers the class of stationary random fields. We next define the class of
almost harmonisable random fields, following Rao [9].

Let g(., A) be an almost periodic function of Rn for almost all A € R n (see the
Appendix). A zero mean random field {X(t)} is said to be almost harmonisable if its
covariance function can be represented as

(2.2) R(s, t) = / / g(s,

where j{d\, dfi) is of bounded variation on each finite domain of Rn x R". The class
of almost harmonisable random fields is denoted by 7i. It should be noted that, in
the scalar case (n = 1), this is a subclass of Cramer's class C, where {g(., A)} is a
family such that the integral of (2.2) exists. It is clear that H contains the class of
harmonisable random fields, where g(., A) takes the special form <j(t, A) = e^*'^. We
now want to show that

(2.3) HC A.

In fact, using (2.2) in i?x(k), we get

-Rr(k) = 1 (" ... I* f f g(t, A)fl(t + klAih(dA, drfdt.

An application of Fubini's theorem yields

fir(k) = / / Tfr-^ fn ••• I"' 9(t, AMt + k,Ai)dt7(dA, d/x).
JB.n JE» J 1 • • • J n Jan Jai

In view of result (Al) of the Appendix, we have that

= M(«,(t, A)5(t + k, fi); k, A, / i) .

It now follows that

l i m i ? T ( k ) = / / M(g(t, A)5(t + k, /i);k, A,

by the dominated convergence theorem, and (2.3) is obtained.
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REMARK. The result that harmonisable processes are asymptotically stationary was
first proved by Bhagavan [1] using a different argument. The above approach, which is
based on the mean value theorem for almost periodic functions, is due to Rao [9].

3. A CONTINUITY THEOREM

We first establish several results for -Rr(k) and .FV(s). It follows directly from its
definition that i i r ( k ) is Hermitian symmetric, that is,

(3.1) iZr(-k) = -Rr(k), T > 0, - T ^ k < T.

Also, under the assumption that the random field {X(t)} is continuous in mean square,
it can be shown via the mean value theorem that ilr(k) is a continuous function of k
in [ -T .T] .

From definition, we get lim FT{&) = 0 for some S{. For Si < S2,
$i—•—00

(3.2)

™ f f f

jJi J[.u.J]J[0,T\J[0,T]

" / • [ / • f , x 1
= T T ( T i ) - 1 / E I X(t)ei ( t 'v )dt / X(u)e- ( u ' v ) ( iu iv using (2.1)

t=i "'[*I.«J] J[^,T\ J[o,T\ J

=n(r'r ljLnI
Ejfia l

Thus ^ ( s ) is non-negative and non-decreasing.

LEMMA 1. |i2T(k)| ^ RT(0) fork e Rn and Tj, j = 1, . . . , n, sufficientlyiarge.

PROOF: We first prove that, for k 6 R n ,

(3.3) lim JJ(Tj-)"1 / . . . / E\X(t + k)\2dt

= hm f[ (Tj)-1 fn ... I* E \X{t)\2 dt.

In fact, by a change of variables,

fifoy1 I" ... I* \X(t + k)\idt=f[(Tj)-1 I * " - I 1 l \X(t)\2dt.

https://doi.org/10.1017/S0004972700029452 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029452


54 V.V. Anh and K.E. Lunney [6]

Using the same argument as in the proof of result (Al) in the Appendix will give (3.3).
Next, we have

+ using (2.1)

) l/2 / t n &1 \ :

[/"•••/ ^ ^ ( t + kJl'A Jusing Cauchy-Schwarz's inequality

-1(£n...j'1E\X(t)\2dt\

for Tj, j = 1, ..., n, sufficiently large in view of (3.3)

^IlPi)-1 F ... P E\X(t)\2dt

= RT(0).

Thus, |i2T(k)|<i2T(O).

LEMMA 2 . Fr(oo) = (27r)ni2T(0) for Tj, j = 1, . . . , n, sufficiently large.

D

PROOF: A change of variables (t, u) -» (k, t) with k = u — t gives, using the
definition of .FT(S), that

=fT(r,-)-1 / / /"... f1

fJi J(.-oO,.)J[-T,T]Jan Jai

= [ I
A-oo,.] J[-T,T\

= f f
J(,-oo, M] JB.n

where

0, otherwise.
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For /x > 0, we then get

FT{P)-FT(-II)= I i flT(k)e-
i(k'v>dkdv

using Fubini's Theorem, since Rx(k) is continuous on [—T, T],

= I * T O O T T /"' e-ik>v>dVjdk

It follows that, for s > 0,

f [ (^r1 / {FT{y.) - FT{-p))dr = 2"

= TT 2n(sjy
1 [ R*T(k) [ ' ^^'diijdk by Fubini's Theorem

^ i 7 R " JO
 ki

J-oo 7rrei

= (27r)"max|i?T(k)|.

With the change of variables fij = SJOCJ , j — 1, . . . , n , we have

t=l

= I ••• [FT{SICII, . . . , snan) -
7o JO

Thus, for A* > 0,

(3.4) /
J[o,i]

= (2n)nRT{0)

using Lemma 1.
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Since FT(« ) is non-decreasing, the integral on the LHS of (3.4) is a non-decreasing
function of a. It follows that

lim . . . lim (.FT(S) — Fx( — s)) exists.
• l — • o o j n —»oo

We then have for Tj, j = 1, . . . , n, sufficiently large, that

= .JS5. ft2" LRiWl^hdk

i=l,...,nj=l J* J

where tj = —, j = 1, . . . , n

— COS Kj _

Thus, for any e > 0 and for Sj, j = 1, . . . , n, sufficiently large,

|FT(oo) - (27r)nJ2T(0)|

max

r
I 4.) -

_coskl

*

(£«!
n i >

TP-T 1 — cos kj

n
j=2

1 — cos kj
dkj.

Repeating the argument for the remaining components of k, we will find that

| * T ( * I , • • • , 4.) - - R T ( 0 ) |max

n / f'i 1 — cosos A:,- „ . _

where TZ involves terms with integrals of the form I JLoJ + /T/a J . These integrals

V 'j J
vanish as Sj, j = 1, . . . , n , can be chosen arbitrarily large. Also, since e can be
arbitrarily small, we get

|FT(oo) - (2ir)nRT(0)\ ^ (27r)"Umsup \RT(t) - RT{0)\.
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As .RT(^) is continuous at I = 0, we obtain immediately that .FT(OO) —

(27r)nflT(0). D

We will now establish the required continuity theorem.

THEOREM 1 . For a random field {X(t), t G R n } under conditions (i) - (Hi), and

assuming that lim .RT(O) exists finitely, we have lim Fx[s) = F(s) at every continu-

ity point of F ( s ) , a non-negative, non-decreasing and bounded function on R n , if and

only if lim iEx(k) = R(k), a function which is continuous at the origin. Furthermore,

R(k) has the representation

PROOF: AS in the proof of Lemma 2, we have

(3.5) FT(s)= f f i^(k)e-i(klV)<fkdv.
y(-<»,»] J E »

For T1 > 0, define

(3.6) JT1 = ( ^ -

Then, from (3.5),

/ J[-Tl ,

using Fubini's theorem as i?r(k) is continuous on [—T\, T]

(3-7) » /x\n f s i n ( -kAT]

- ^ - t ) ^ *•
using the change of variables T;- = (u;- — kj)TJ, j = 1, . . . , n.

Lemma 2 yields that

) - F T ( - o o ) = (27r)ni?T(0) < oo./
B.n
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Thus the dominated convergence theorem implies that

r ( M " f «»
urn I — I / eH

In view of the dominated convergence theorem and the continuity of -RT(&) on [—T, T]
we have for Tj, j = 1, . . . , n , sufficiently large that

. . . drn
l l " \ ~ 'J.'x ' ' 'J.'L J T"

j=l
n n

= -RT(U).

Thus it follows from (3.6) and (3.7) that

(3.8)

Under the condition that lim . . . lim .RT(O) exists finitely, so that the measure
TJ-.00 Tn—oo V '

denned by FT(S) is uniformly bounded, we obtain the result of the theorem in view of
Levy's continuity theorem (see Cuppens [4], p.40). D

4. ERGODICITY

The function i^s) as given in Theorem 1 is denned to be the spectral distribution
function of the random field {X(t)}. We now consider a mean ergodic theorem for
{JC(t)} which possesses finite first and second moments:

EX{t)=m(t), t£R",

R{s, t ) = E{X(s) - m(s))(X(t) - m(t)) , j , t G R

under a condition involving the spectral function F(s) only.

THEOREM 2 . For a random field {X(t), t € Rn} satisfying conditions (i) - (Hi),
and assuming lim iZi(k) exists finitely for each k € R n , we have

T—»oo

Urn

https://doi.org/10.1017/S0004972700029452 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029452


[11] Asymptotically stationary random fields 59

in mean square if F(s) is continuous at s = 0.

PROOF: Using the change of variables (t, u) —» (k, t) with k = u — t we get

E

= f[(Ti)-
2 I f R(t,u)dtdu

f=l J[0,T)J[0,T]

[-T,T]

f R*T{k)dk

where iZ^(k) is as defined in the proof of Lemma 2.
In view of (3.8), we have for Tj, j = 1, . . . , n, sufficiently large that

using Lemma 2 and Fubini's theorem

jT1 I 6(si)...6(sn)dFT(s),

where ^(^i) denotes the usual Kronecker delta function.
Under the condition that lim i?T(k) exists, Theorem 1 yields that

T—>oo

lim . . . lim Fi(s) = F(s). Consequently, using Lemma 2 and the dominated con-
Tj—»oo Tn —»oo
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vergence theorem we get

lim E

j=l, ...,n

ft(I))"1 ^ (JT(t)-m(t))dt

(3.9) = lim

It is seen that if F(s) is continuous at s = 0, the right hand side of (3.9) is zero, which
gives the theorem. D

APPENDIX

Almost periodic functions on Rn

A function / G L°°(Rn) is, by definition, almost periodic if the set of all translates
{fy'tV £ R"} of / is totally bounded in the uniform norm of L°°(Rn). The space
of all almost periodic functions on R n is denoted by AP(Rn). As shown by Loomis
[7, p.166], under the uniform norm, AP(Rn) is a commutative C*-algebra with an
identity. Also, a constant function

M(f) = I /(x)tfx exists for / G AP(Rn).

This constant is called the mean value of / . It should be noted that in the above
integral, dx denotes the Haar measure, that is the normalised Lebesgue measure on
R n (with total mass one). We shall now prove that

(Al) = lim
...in

for / e AP(Rn), T = (Ti, . . . , Tn) e Rn.
Given e > 0, we choose the finite sets {c,-} and {a;} such that c,- > 0,

and | |M(/) - £ c , / ( x - a ^ l L < e, x, a i 6 R".
It follows upon integrating that

= 1

(A2)

By a change of variables

< £.

/
[0,T)

f(x-Bi)dx= f(t)dt.
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We first prove that for any a,- = (an, ..., a,-n) € Rn ,

(A3) Urn — - ! — / f{t)dt = Urn — 1 — / /(t)dt.
Tjf—oo II . . . T n A _ o . T _ o . i T,->oo T l . . . J n y[o,T]

i = l n -•-*

For o,i ^ 0,

(A4)

f(t)dt

Now,

= -—— / ...— / + / - /

1 /•"

T?™OO r " / ft*1' • • ' ' < n ^ f l = °

as / ( t ) is bounded. Also,

1 fTl 1 /"Tl

l i m — / f{tu...,tn)dh= Km — f(tu...,trTx-.oo i j J^-an Ti — cxj Ji ./„

= 0.

Therefore, the right hand side of (A4) becomes

^ l „ I '"•••^- / * f(h,...,tn)dt1...dtn.

A similar result holds for an < 0. Repeating this process, we get (A3). It now follows
from (A2) that

Urn

M(f) - lim

/
[o,T\

lim / /(t)dt

Since e can be arbitrarily small, we get

M(f) = lim
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