Gauge symmetries and interactions

It is well known that the overall phase of a wave-function in quantum mechanics is not measurable.
On the other hand, the so-called Aharonov—Bohm effect [#= e.g., the texts [407, 471, 480, 472, 29,
3241]] is based on the interference of two wave-functions and measures the relative phase, which
proves that it is not possible to circumnavigate the complex nature of wave-functions. This then
shows: (1) phases of wave-functions are physically relevant variables, and (2) any change in the
overall (common) phase in a wave-function of the whole system must be a symmetry. This and the
next chapters focus on this symmetry, and the corresponding conserved charge guaranteed to exist
by Noether’s theorem.

Moreover, this phase should be variable locally: in one way in one spacetime point, in another
way in another spacetime point. It turns out that this seemingly simple (gauge) principle is actually
the foundation of the contemporary understanding of all fundamental interactions [ [31] for the
most complete review to date]. These five chapters (5-9) are dedicated to the application of this
gauge idea, from technically simple examples towards more complex and realistic applications,
and not following the history of its development but using the benefit of hindsight and the lessons
of that history. For a flippant introduction of this idea, see also Refs. [33, 275, 269].

5.1 The non-relativistic U(1) example
Start with the well-known non-relativistic quantum-mechanical description of a particle under
the influence of a potential V(¥), the wave-function of which is determined by the Schrédinger
equation:

;_ a = . 7/-12 =2 = N

i< (7, 1) = [— V24 V(r,t)}qf(r,t), (5.1)
and by the boundary conditions. In part, the boundary conditions follow from the shape of the
potential and the chosen energy E of the system, and are in part specified by choice. For example,
in directions/regions where V(7,t) > E as r — oo, we require lim,_., ¥(7,¢) = 0; we also require
that both [, d>7 |¥(7,t)|% and I d>7 ¥*(7,t)H¥ (7, t) integrals are finite for every choice of the
volume V. In the direction &, where r — oo is not obstructed by a boundary condition, we may

require that
(7, 1) ~ exp { —|—i/d(ék-?)\/Zm[E—V(?',t)]/h}, F — oo, (5.2)
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166 Gauge symmetries and interactions

Such a particle may freely “escape to infinity” in the direction &, along which the kinetic energy
remains positive, lim,_.. (E — V(7)) > 0.

It is very well known that in this formalism the complex wave-function ¥ (7, ¢) in its entirety
does not correspond to any measurable quantity, but that [¥(7,¢)|? is a physically measurable
probability density of finding the particle in an infinitesimal volume d7 at the point 7 in space and
t in time. It follows that the phase of the complex function ¥ (7,t) is not measurable,’ so that no
transformation

Y7 1) — EP¥(F 1) (5.3)

can have any physical (measurable) consequence. The transformation (5.3) is a symmetry of the
Schrodinger equation (5.1) if and only if the phase ¢ is a constant. In other words, the transfor-
mation (5.3) is a symmetry of the Schrédinger equation of the physical system described by the
equation if and only if the identical transformation is applied to all points in space and each mo-
ment of time. Such a symmetry transformation is called global. Its existence is the necessary and
sufficient condition for the application of Noether’s theorem, and — therefore - for the existence of
a corresponding conserved charge.

However, there should exist no physical obstacle for a transformation such as (5.3) to be
performed with the phase ¢ in one point of space and at one moment in time, and a completely
different phase in another point of space and at another moment in time. Indeed, the choice of
the wave-function phase should be a completely arbitrary choice of an unmeasurable degree of
freedom, with no measurable consequence. In other words, the transformation (5.3) would have
to be an exact symmetry of the physical system even if the phase ¢ is an arbitrary function of
x = (ct,7). Such transformations and symmetries are called local.

Digression 5.1 A rather formal justification for the transformation (5.3) to be a sym-
metry of the system is provided by noting that the formulation (5.3) in fact unnecessarily
relies on the coordinate representation of the abstract state |¥(¢)). Furthermore, it is
known that only pure quantum states may be represented by a state vector |¥(#)), while
a general state must be represented by a real, convex, normalized linear combination

p=)Y ruln)(n|, suchthat r,eR, 0<r, <1, Y} r=1 (5.4a)
n n

This is called the state operator [29], a.k.a. the density matrix/operator [471, 472, 360,
for example]. Equivalently, p* = p, Tr[p] = 1 and (u|p|u) > O for every |u). A state
operator (5.4a) represents a pure state if there exists a [¥) = ), cy|n) such that p =
|'Y) (¥|; otherwise, p represents a mixed state.

The phase transformation (5.3) of the state vectors |n), written as |n) — e'®|n),
leaves the state operator p invariant:

p— Zr ( 1) )( (n|e~'® ) Zrn|n (n| =

if and only if [e ,[n)(n|]] =0 and ¢' =¢.

(5.4b)

T Here, we have in mind only the overall phase. In the transformation of the linear combination ¥ = ¥; + ¥, —

e'P1¥) + ¢/72'¥,, the phase (@;+¢,) is the unmeasurable overall phase, while the relative phase (¢;—¢,) is measurable
by means of interference. This overwhelmingly reminds us of the fact that the absolute values of coordinates (and the
phase is indeed a kind of coordinate) are not measurable quantities, while coordinate differences — i.e., distances — are.
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In turn, the information about the change of this (or any other) choice cannot be transported
instantly, and there will have to exist some physical mechanism for transporting this information
from point to point in space and time.

It is not hard to verify that the transformation (5.3) with ¢ = ¢(7, ) is not a symmetry of the
Schrodinger equation (5.1):

n
in %‘I’ - [— Zva +V(F, t)}‘f, (5.5)
m \ transformation (5.3), with ¢ = ¢(7,t)

2
2 (f98) = [~ L2 v ] (o),
0 ¥ W o (. - ;
ip (;2¥ 9?2 — _ L 7. (el ip 7 £)el?
ile (z at)‘l’—i—zhe 5 sz (e (iVe)¥ +e V‘I’)—I—V(r,t)e Y,
0
;-1 1y
ilie <1at>‘1’+zhe
2 . — . _ . _ — P .
= —2"’—"1 (e’q’(ngo)z‘I’ + e (iV29)Y + 2617 (iV @) (VE) + el‘PVZ‘I’) V(7 D)e?Y,

so, using the original equation (5.1) and upon dividing by ¥ (7, t), we obtain

9 L (i(%%9) +2i(Te)(Vin(¥) — (Vg)?). (5.6)
This result is absolutely unacceptable! Not only did the (unmeasurable!) phase ¢(7,t) turn out not
to be an arbitrarily selectable function of space and time, but it would have to satisfy a differential
equation (5.6) that depends on the particular state of the system represented by the wave-function
Y(71)!

The resolution of this seeming paradox can only lie in changing the Schrédinger equation,
but in a way that does not ruin any of the many confirmed results obtained from this equation.
Evidently, this is a very demanding request.

Following the computation (5.5)-(5.6) closely, one notices that the ultimate — and absolutely
unacceptable — result stems from the fact that derivatives of the “new” wave-function e?¥ (7, )
differ from the ¢'-multiples of the derivative of the “old” wave-function ¥ (7,t). With this hint,
introduce a new kind of derivative:

a a =3 — - =
g—>Dt.—§+X, V—=D:=V+Y, (5.7a)

where the quantities X and Y will be determined so that these newfangled D-derivatives satisfy
the relations

DY’ = Dj(e'?Y) = e (Dy¥), DY = D' (%) = ¢'%(DY). (5.7b)
By writing ¥ = e ~!?¥’, these requirements show that
(D}---) =€ ?(De . ..), (D'---)=e%(De-..), (5.7¢)

where D}, D' denotes these new derivatives after the ¥ — ¢/?¥ transformation. In turn, with these
newfangled derivatives, the Schrodinger equation becomes

. 2 - . . i - .
inDy¥ = [— TR V(r)}‘{’, or [mot + 50— V(r)]‘f’ —0, (5.8)
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and changes under the transformation (5.3) as

0= [iho’ + ﬁﬁ’-ﬁ’—vm] (€?¥) = [ihe%t + ﬁﬁ’-e%—e"w(?)]‘f
T om ' 2m

.2
_— [mot + 27’715 B- V(f)}qf, (5.9)

which is satisfied precisely when equation (5.8) is. Thus, with these newfangled derivatives D;
and D, which themselves change via the transformation (5.3), the new Schrédinger equation (5.8)
remains invariant.

Comment 5.1 It is not at all unreasonable that the procedure for computing a rate of change
(the derivative operator) needed adjustment. Recall that the total derivative % f (t, g(t)) =

[% + %—f %] f may be viewed as the partial derivative % corrected for the fact that the func-
tion f also depends on t implicitly, via its dependence on g(t). By the same token, complex
wave-functions also depend on the spacetime coordinates implicitly, via their dependence

on the choice of a spacetime variable phase.

It remains to examine the nature of these newfangled derivatives (5.7), as well as the dif-
ferences between the new Schrodinger equation (5.8) and the old one (5.1). The newfangled
derivatives satisfy (5.7c)

9 N ] o2 —ig ...
[(2ex) ] = (2 e )],
[(V+Y) -] =e?[(V+Y)e @ - ];
which yields
X’:X—i%(f and Y =Y —i(Vg). (5.11)

The relations (5.11) ought to be familiar to all Students who have successfully completed a
standard electrodynamics course! With the definitions

=X, A=Y, A= "o, (5.12)
iq q q
the definitions (5.7a) become
b= i o, B:=v—idA (5.13)
t . at «— h 7 .

and are called the covariant derivatives. Combining, we have

oA

O =0, A— A=A+ (VA), (5.14a)
Y (7 t) — Y (7 t) = POD/ g7 p), (5.14b)

The first two relations are the standard gauge transformations of the vector and the scalar
electromagnetic potentials. The third relation is the corresponding gauge transformation of the
wave-function ¥ (7, t) of a particle with the electric charge g, which is evidently a translation of the
phase of this function.
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Comment 5.2 The action of the gauge transformation (5.14b) implies that the complex con-
Jjugate wave-function ¥* (7, t) represents a particle with the charge that is opposite to the
particle represented by ¥ (7, t): q(¥*) = —q(¥).

The first two transformation equations (5.14a) clearly imply that the effect of A(7,¢) is in-
distinguishable from that of A(7,t) + Ao, where Ag = const., and the single-valuedness of ¥ (7, )
then implies that Ay must be an integral multiple of 27'[-L where qo then must be a minimal, unit

electric charge. That is, the transformation function A(7, t) takes 27‘[ perlodlc distinct values, i.e.,

along a circle of radius - q . In turn, the exponential U, := ¢/®("t)/ " is unitary: (Uy)" = (U,)71,
and such A-parametrized exponentials form the gauge group, called U(1) [== Appendix A, and
especially A.2].

More precisely, note that the transformation function, A = A(7, ), remains an unrestricted,
arbitrary function of space and time? — true to the original insight and definition as discussed
above. The combined transformation (5.14) is then the true and complete local symmetry: a con-
tinuous family of U(1) gauge groups of symmetries, one independent U(1) symmetry in every point
of space and time!

Owing to the identity Vx(V f) = 0 valid for any scalar function f, it follows that (V x A)
is invariant with respect to the transformations (5.14). Similarly, since the transformation of V&
is precisely opposite of the transformation of %K, the sum (@CD + %A) is also invariant. These
expressions are, of course, familiar:

S = o . 0A

Bi=VxA and  E:=—(Vo+2D) (5.15)
are the magnetic and the electric ﬁeldsL exprefsed in terms of the electromagnetic potentials. The
ability to define gauge-invariant fields B and E will be shown to be an exceptional consequence of
the abelian (commutative) nature of the U(1) gauge transformation (5.14).

Digression 5.2 The term “gauge transformation” for the relations (5.14) is a historical
atavism: It is a derivative of the literally translated German original coinage by Hermann
Weyl, Eichinvarianz, by which he denoted the invariance with respect to transforma-
tions (5.14) [564]. Weyl noticed that Einstein’s general theory of relativity is invariant
with respect to complex rescalings. His original idea that the imaginary part of the
rescaling function ¢(7,t) in the transformation (5.14b) may unite gravity with elec-
tromagnetism turned out unphysical. Such a rescaling symmetry would permit fixing
a length unit in Nature, for which Weyl used the German verb eichen, meaning to gauge,
to calibrate. The word gauge and its derivatives that are used in the English literature,
jauge in French, Badu{dac in Greek, mérték in Hungarian, (simply imported) gauge in Ital-
ian, xaaubpdeownas in Russian, de gauge in Spanish, etc. are all literal translations of the
German verb eichen.

Soon, Vladimir A. Fok (first, according to Professor Okun [394], in 1926), Her-
mann Weyl, Erwin Schrédinger and Fritz London noticed that quantum mechanics,
as governed by the Schrédinger equation, has a symmetry with respect to the com-
bined transformations (5.14) using a real function ¢(7, t).3 This was derived here as a

2 Well, yes: A(7,t) clearly must be differentiable, at least once with respect to both t and 7 for the equations (5.14a) to be
well defined; see however also Section 5.2.3.

3 Woit recounts [577, pp. 61-62] that Schrédinger hinted at this in a 1922 paper, but was chidingly reminded of this
neglected “tidbit” in December of 1926 by the young London; see also the account in Ref. [119].
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transformation stemming from the innate property of wave-functions that their phases
are not measurable.

Fundamental physics is indubitably quantum. Equations (5.1)—(5.14) and their logic
then indicate the fundamental nature of this principle to be that of a local symmetry,
emphasizing that a spacetime variable parameter A(7,f) in the transformations (5.14)
parametrizes a spacetime continuum of U(1) symmetries. Local symmetry is then used
as a conceptually correct alternative for the historically well-entrenched term gauge
symmetry or the descriptive but rarely used modifier phase symmetry.

Comment 5.3 Note that the transformation (5.14) may be understood as a spacetime-depen-
dent translation of sorts in the (abstract, target) space of values of the functions defined
over the spacetime; a translation of the electromagnetic potentials and a phase-shift of the
wave-function:

Eq. (5.14) = Arg [Y(7,t)] — Arg[¥(F1)] + ¢(7 1), Arg[z] := £ 1In(%). (5.16)
The electromagnetic potentials and the phase of the wave-function are all physically un-
measurable variables, the existence of which is however necessary for the consistency of
the model. Lorentz symmetry requires the gauge potentials to be 4-vectors, although only
two polarizations (components) have a physical meaning; the complex-analytic structure of
the Schrédinger and Dirac equations requires the use of complex wave-functions, although
the (overall) phase is not physically measurable.

With the definitions (5.12), the Schrodinger equation (5.8) becomes

1o iQ W ore Q2 .
i [§+7¢}T7 - ﬂ(v+ﬁA) + V(7] ¥ (5.17)
That is,
N B, S
zfzg‘i’(r,t) = Hem ¥ (7, 1), (5.18)
where
Hew = o= (29 - @A 0) + VD + o) (5.19)
EM — 21’}’1 Z 7 7 7 .

is the Hamiltonian for a particle of mass m and electric charge g := Q(¥). The dynamics of this
particle is affected by the interaction with the potential V(7,t), as well as the electromagnetic
potentials A(7,t) and ®(7, ).

Conclusion 5.1 The transformation (5.14) with (5.16) is the fundamental assertion that we
are at liberty to arbitrarily change the quantities that were introduced in the (mathemat-
ical) model of the physical system for its consistency, but which on principle represent no
physically measurable quantity.

It is worth noticing that the quantum description of the interaction of a charged particle with
the electromagnetic field is inherently described in terms of the electromagnetic potentials A
and not in terms of the electric and magnetic field, E, B. Moreover, the Hamiltonian (5.19) can-
not, in the general case, be expressed locally (without integration) as an interaction of a charged
particle with the E- and B-fields.
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The following facts will be shown to be consequences of the abelian (commutative) nature
of the U(1) symmetry group: (1) the Maxwell equations? (5.72) as well as the corresponding
Lagrangian and Hamiltonian for the electromagnetic field can be expressed exclusively in terms
of the electric and the magnetic field, and (2) electromagnetic potentials can be fully eliminated
from the equations of motion, the Lagrangian and the Hamiltonian except if there is matter that
interacts with the electromagnetic field.

Indeed, the transformations (5.14) are parametrized by one function, A(7, ¢), which defines
the local unitary operator

p(7,t) — Uy :=exp{ip(7t)Q} (5.20)

as in equation (A.37), where the operator Q may be regarded:

1. from the mathematical vantage point, as the generator of the U(1) symmetry,

2. from the physical vantage point, the electric charge operator. The electric charge of a par-
ticle is then the eigenvalue and the wave-function of the particle the eigenfunction of the
operator Q.

At every point of spacetime x = (ct,7) separately, the (continuously many) operators U, defined
by equation (5.20) form an abelian (commutative) group, denoted U(1). Since the function in the
exponent manifestly satisfies ¢ ~ ¢ + 27, this group is sometimes identified with the circle, S!. To
repeat: Since ¢ = ¢(7,t) gives an independent “angle”-transformation at every point in space and
time, we have a 4-dimensional continuum of U(1) symmetry groups.

Comment 5.4 The full space of “coordinates” in electrodynamics is therefore of the form
(spacetime x S') — a 5-dimensional topological space, equipped with a particular geometry;
this was clear as early as in 1914 to Gunnar Nordstrgm [v= Digression 11.5 on p. 414].

5.1.1 Exercises for Section 5.1

% 5.1.1 Fill in the details of the computation (5.7)—(5.14).

% 5.1.2 From the definitions (5.15), derive Gauss’s law for the magnetic field and Faraday’s
law of induction. (This proves that the equations (5.72b) are consequences of Maxwell’s
definitions (5.15).)

% 5.1.3 Show that the gauge-invariant scalar functions of €y, }i, E and B with the dimen-
sions of (volume) energy density and which are analytic functions of the components of the
vectors E and B must be of the form

c1(eo Ez) —i—cz(‘“% Ez) + c3( ;—?’E’_’) (5.21)
The results in Table C.4 on p. 527, should be useful.

% 5.1.4 Determine the constants cy, ¢y, c3,Cy4, C5 SO that

/dt &7 { c1(e0 E?) + (L B?) +c5( %E-E) +oip® +c57-A’} (5.22)

Ho

4 James Clerk Maxwell described electrodynamics, originally in 1873, as a system of equations which would today be

written as E := —V® — %—‘? and B := VxA, and then V-(eoE) = p and V x(B/po) — a(eai(}é) = 7. By the Maxwell
equations (5.72) today, one understands the consequences of the first two of these equations together with the latter

two, expressed exclusively in terms of the electric and the magnetic field, where the electromagnetic potentials, A and
P, are eliminated, and where there are neither (monopole) magnetic charges nor magnetic currents: p,, = 0 = Jj,.
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is the Hamilton action the variation of which by & and K, using the relations (5.15),
produces Gauss and Ampére’s law (5.72a).

5.2 Electrodynamics with leptons

By quantum electrodynamics one understands the relativistic theory that describes the interaction
of photons and electrically charged particles. Unlike leptons, quarks and hadrons also interact via
the much stronger strong nuclear interaction, so the analysis of their interactions is considerably
more complicated. This section is limited to the electromagnetic interactions of leptons, and the
next one turns to the electromagnetic interactions of the hadrons.

It follows from the relations (A.43d)-(A.43f) that the components of the radius-vector, and
then also any other vector quantity, span a spin-1 representation of the rotation group. One thus
says that the photon (represented by the vector potential,” A) has spin 1. On the other hand, it is
well known that electrically charged particles such as the electron and the quarks, which make up
all tangible matter, have spin %

Thus, we must first establish the relativistic generalization of the Schrodinger equation for
particles of spin ! and 1, as well as the argument from the previous section, which specifies the
interaction between them.

5.2.1 Relativistic spinors and the Dirac equation
The Schrodinger equation
a e AL A Y /
nSYEH =HYEY e ¥EH=e Lo HE gz 1y, 1> (5.23)

is simply the statement that the Hamiltonian generates the time evolution of the wave-function
Y (7,t). In non-relativistic physics (here, without electromagnetic potentials),

2 1 a2 C
1ha—H—%(7V) +VE) e E=L4vi, (5.24)

the combination of which with equation (5.23) is the diffusion equation: of second order in
spatial derivatives, but first order in the time derivative. This also implies the “quantization
correspondence” (in the coordinate representation)
- L e ., 0
p < p=-V, and E «— H= zfzg. (5.25)
i

Instead of the non-relativistic relation (5.24), the relativistic version of the Schrédinger
equation would have to correspond to the relativistic relation (3.37), and using the correspon-
dences (5.25) we obtain

N2 2
p2c? 4 m?c*t = E? — {cz(§V> + mzc*}‘f’(?,t) = (ih%) Y(71),
MeN2 = o
= [D+ (T) }‘I’(r,t) =0 (5.26)
This is the so-called Klein-Gordon equation, where
) 1 o
O:= [szﬁ -] (5.27)

is called the d’Alembertian or the wave operator.

5 It will soon be shown that, as a consequence of the U(1) gauge symmetry, the four functions @, A represent only two

physical degrees of freedom, which may be identified with two components of the vector A that are perpendicular to
the direction of the photon motion.
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Digression 5.3 Ironically, Schrodinger seems to have known [243] about the equa-
tion (5.26) before publishing the equation that soon acquired his name, but discarded
it in the belief that the double-valuedness of the solution (3.37), E = +c+/p? + m2c?,
precludes a probabilistic interpretation |¥(7,t)|?. Wolfgang Pauli and Victor Weisskopf
proved in 1934 that the essential obstacle to this interpretation of the quantity |¥ (7, t)|?
in relativistic physics is the fact that relativistic physics must contain the possibility of
creating and annihilating particles, as permitted by conservation of energy, linear and
angular momentum, charge, etc. This implies that the number of particles in relativistic
physics is not a conserved quantity, and contradicts the elementary consequence of the
Schrodinger equation:

L. 2
(51) = %‘f = VT +28m(VE))e, (5.28a)
07 =[¥EOR  TEY = & Sm ¥ EHTE ) (5.28b)

This shows that
P O S N
T /a//d Fo(7,t) = éyd o-J + 7 /Vd 7 Sm (V(7)) o(7t). (5.28¢)

The probability of finding the particle (represented by ¥) within the volume ¥ changes
only by the probability flowing through 9% (the boundary of the volume ¥") - if and only
if the potential V (7, ¢) is a real function where ¢(7, t) is nonzero. The number of particles
is then also conserved, and this is indeed the case in standard quantum mechanics.

Motivated by the fact that the non-relativistic Schrodinger equation is of first order in time
derivatives, while the Klein-Gordon equation is of the second order, Paul Dirac found a way to
factorize the Klein—-Gordon equation and so obtain a differential equation that is of first order both

in spatial and in time derivatives. Indeed, in the rest-frame of the particle, 7 = 0, so that the
relativistic relation (3.37) reduces to

EZ —m?c* =0 = (E +mc”)(E — mc”) =0, (5.29)
which is the desired factorization. With § # 0, the desired factorization of the equivalent

equation (3.36) is of the form

p>—m?c> =0 = 0= (B'pu+mec)(y'py —mc),

= B'Y pupy + me(y = BF)py — mc’. (5.30)

As the original equation p> — m?c? = 0 has no linear terms in the 4-momentum p, it must be that
B" = . Equating the quadratic terms one then obtains that

2

Y'Y pupv =P = 0" pupy. (5.31)
Since pypy = pypu, we in fact have the conditions
{r 2} =29, (5.32)
where [##V] = diag(1,—1,—1,—1) is the matrix-inverse of the metric tensor (3.19) of empty
spacetime. This yields
p?—m*c? = 0 = (y'py —me) (¥ py +me). (5.33)
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Using the relativistic combination of the correspondences (5.25), this produces the Dirac equation:
f
Py — %aﬂ = [y, —mc]¥(x) =0, (5.34)
where the standard abbreviation [#== Digression 3.6 on p. 93]

- (~13,7), (5.35)

was introduced. The choice of the second of the two factors in equation (5.33) for defining the
Dirac equation is an arbitrary, but standard choice.
The question remains, what sort of objects the * are so as to satisfy the relations (5.32).

The Dirac spinor

Relations of the type (5.32) define so-called Clifford algebras. Their abstract structure, properties
and representation theory had been established by mathematicians William Kingdon Clifford and
Hermann Grassmann back in the second half of the nineteenth century. However, in the first half
of the twentieth century, this was unknown among physicists, and Dirac independently found the
smallest matrix realization of the 9* objects, which today we call Dirac matrices; relation (5.32)
then implicitly contains the unit 4 x4 matrix in the right-hand side. There exist several “standard”
choices of Dirac matrices; here we follow the traditional sources [64, 63] and use the so-called
Dirac basis:

0 _ 1 )] i ()] Cfi .
’Y - |:® 1!’ ’Y - 70.1' 0 s 1*1/2/3~ (536)

To satisfy the relations (5.32), 9" cannot be “ordinary” numbers but can be matrices. This implies
that the operator that acts upon ¥(x) in the Dirac equation (5.34) also has to be a 4x4 matrix,°
so ¥ (x) must be a column-matrix with four components!

Recall that the solutions of the Schrédinger equation, e.g., for the hydrogen atom (4.8), yield
¥ (7,t) as an expansion over spherical harmonics, Y;"(6, ¢), which correspond to components of

the “spin-¢” representation” of the SO(3) ~ SU(2) rotation group [= Table A.2 on p.469]. For
example, the hydrogen atom states with / = 1 and m = 41,0 span the 3-vector representation of
the rotation group, where it is also easy to define the Cartesian basis:

(‘I{n)x = %(Tnl +1 +‘Yn1 71)/
a4 e b4 =Y 10- (537)

(‘Yn)y = zli(‘fn,l,Jrl - II[‘rz,l,fl)/ ( n)z o

The elements of the (2/+1)-dimensional vector space {¥,, ¢, for |m| < ¢, Am € Z} may just as

easily be represented as (2/+1)-component column-matrices.

However, the 4-component nature of the solutions to the Dirac equation represents an
additional degree of freedom, a relativistic generalization of the “spin” factor that we used in
Section 4.4.2, such as in the factorization (4.123), for example. Even for £ = 0, the Dirac equation
has four linearly independent solutions. In the simple case when § = 0, the Dirac equation reduces
to

in 50
[77 - mcl}‘l’ — 0. (5.38)

6 Since the 9*’s are 4 x4 matrices, the Dirac equation should, pedantically, be written as [ifiy* pu —mcl]¥ = 0.
7 When it denotes a rotation group representation, the term “spin-j” is simply short for “the total angular momentum

where the eigenvalue of the quadratic operator J? equals j(j + 1),” regardless of the physical original and composition
of this total angular momentum.
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The solutions in Dirac’s basis of ¢-matrices are

way = (O] e g et A0 (s39)

where ¥ (t) represents the solutions with negative energy; i.e., anti-solutions with positive energy
that move backwards in time, according to the Stiickelberg-Feynman interpretation that is by now
the standard understanding: ¥g(t) — ¥g(—t) [== definition (5.49)].

Using the redefinition of solutions (wave-functions for particles) with negative energy as anti-
solutions (wave-functions for antiparticles) with positive energy, the standard solutions (following
the conventions of Ref. [243]) are

1 0
0 1
ul o pz¢ 1, ub o | (px—ipy)c |, (5.40)
E+mc= E+mc?
(pxtipy)c pz¢
L E+mc? | L E+mc? |
pzc T [ (px—ipy)c ]
E+mc? (PE+Z7Cy2)
x+ipy)c zC
o' [(I? ‘H u' « w , vl F]? Qﬂ)] ut o« E%mz , (5.41)
L 0 - L 1 -
(5.42)
where E = ++/p2c? + m2c* always, and the solutions with negative energy are
u' (E,p) = —v'(~E,—p) and  u'(E,p)=0'(-E, —p). (5.43)

Note that u',u',u' ,u* are four linearly independent solutions to the Dirac equation (5.34),
whereas v',v' satisfy the Dirac equation with p, — —p, — which precisely holds for the com-
plementary factor in equation (5.33). The solutions to the Dirac equation may then be written as

¥(x) = Z [Nu e~ (i/mxp u®(p) + Ny e (i/7)xp vs(p)} i (5.44)
s=1,1

which represents the “plane wave” of a spin-% particle, free of the influence of any potential. This
Y (x), however, is not a 4-vector in the 4-dimensional spacetime, but the so-called Dirac spinor,
which we will see transforms with respect to Lorentz transformations, in an intrinsic fashion,
distinct from 4-vectors.

Lorentz transformations of the Dirac spinor
From relation (A.121c), we see that the antisymmetrized products of two Dirac gamma matrices,
Y := f[7",7"], close a Lie algebra:

[V, A7) = Py — Ty g e — Pt (5.45)

It is not hard to verify that the definitions J; := %sjkl'ykl and K; := i9Y result in the commutation
relations (5.45) written as

[Jj, Jk] = iSjkam, [J]', Kk] = iS]'kam, [K]’, Kk} = —iSjkam. (5.46)
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While the J; elements generate SO(3) rotations, the K; elements generate Lorentz boosts. The
elements of the Lorentz group — in the representation that acts upon 4-component Dirac spinors —
are obtained as exponential functions of the linear combinations of these six generators:

8(3,B) :=exp{ —i(¢/Jj + BK))} =exp {BrY — i@V} = exp (A}, (5.47)

These may be shown to actually form a double covering of the SO(1, 3) group, denoted Spin(1,3):
to each non-identity element of the SO(1,3) group there correspond precisely two elements of the
Spin(1,3) group. For example, the 360°-rotations of SO(1,3) correspond to the +1 elements of
Spin(1,3), and only the SO(1,3) 720°-rotation corresponds to the unique element 1 € Spin(1, 3).
Let us just cite here [64] that the Lorentz boost in the x!-direction causes the transformation

¥ = [ 30+ 01— /3 - 12" ¥ ), (5.48)

where ¢ with no index denotes the familiar relativistic factor ¢ :=

l .
Noeyet It is then easy to
verify that ¥7¥ is not Lorentz-invariant, but that ¥79%¥ is. One thus defines

¥ = yiq0 (5.49)

as the Dirac-conjugate of the Dirac spinor ¥, and note that ¥ ¥ is Lorentz-invariant.
Using the results from Appendix A.6.1, the following bilinear® functions may be constructed
from a Dirac spinor and its Dirac-conjugate spinor:

Expression Lorentz representation Number of independent
components
¥Y = scalar, 1
Yy*¥Y = 4-vector, 4
f'ﬂ’” Y = antisymmetric rank-2 tensor, 6 (5.50)
Y y*y ¥ = axial (i.e., pseudo-) 4-vector, 4
Y4Y = pseudo-scalar, 1

Since every complex 4x4 matrix may be written as a complex linear combination of 16 matri-
ces (A.124) [580], the 16 functions (5.50) also form a complete system of bilinear functions of
the Dirac spinor, ¥. It is important to note that in the functions (5.50), the <-matrices do not
transform with respect to the Lorentz transformations, but ¥ and ¥ do, and in fact just so that
each bilinear product as a whole transforms in the indicated fashion. For example, Y4*¥ really
transforms, as a whole, as the components of any other contravariant 4-vector.

Comment 5.5 The careful Reader may have questioned the identification of the matrices J;
and K; as the rotation and Lorentz boosts. The list (5.50) gives unambiguous confirmation,
in the form of the correct Lorentz transformations of the listed bilinear expressions.

The notation (5.50) is standard, and supposes that one consistently uses that the #, y*" and
7 are all 4x4 matrices, ¥ is a 4-component row-matrix, and ¥ a 4-component column-matrix.
Instead, one may also use the index notation, so the Ath element of the column-matrix ¥ is writ-
ten ¥4, the ath element of the row-matrix ¥ is ¥4, and similarly for the <-matrices, so that the
expressions (5.50) become

WA‘YA/ ?A (’)’V)AB ¥, WA (’YW)AB IPBr ?A ('YH)AB (’?)Bc ‘ch, TA (’?)AB ¥ (5.51)

8 It is understood that “bilinear” here means “anti-linear + linear in ¥ and ¥, respectively.”
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Similarly, instead of column-matrices (5.40)-(5.41), we may write? u'4, etc., where, for example,

1 _ 12 _ 13 _ pzc a4 o (pxtipy)c
u-=N, u*<=0, u —Nm, u _N7E+mc2 , etc. (5.52)

The normalizing factors in equation (5.44) are chosen so that
uwu =2me =ulut and 0'o' = —2mc =vlv'. (5.53)

The solutions of equations (5.40)—(5.41) are also complete, in the sense that!?

Z u’us = g+ mcl and Z '8 = —mcll, (5.54)
s=1.1 s=1.1
that is,
Z uusy = (Y") ppy + medy and Z v sy = (YH) ppu — medy. (5.55)
s=1,1 s=1,1

The matrix (5.54) and the (explicit) index notation (5.55) may be used interchangeably, as needed
and for the sake of compactness and clarity. Also, by the general Dirac spinor ¥ one understands a
general linear combination

Y = e, ¥4, (5.56)

just as we write x = &, x¥ for a 4-vector. However, one must keep in mind that the ¢, are (Carte-
sian) unit vectors in the 4-dimensional spacetime in which we too move, whereas the é, are unit
vectors in an abstract vector space of solutions to the Dirac equation.

Helicity, chirality and the Weyl equation
It is useful to note a very important difference between two seemingly similar properties of spin-
% particles: helicity and chirality. Much of the analysis here may be found in standard texts on
particle physics and field theory as cited in the preface, but there is also a book dedicated to all
matters of spin in particle physics [334]. The generalization of this analysis of course also exists
for particles with arbitrary spin, subject however to the Weinberg-Witten theorem 6.1 on p. 249,
as well as to higher-dimensional spacetime as needed in string theory.
Using the projectors (A.121b)
roi=11+7], (5.57)

one defines in a fully Lorentz-invariant way:
Yi:=9.Y, SO Y, +¥Y_ =Y, 9 Y+=%y, 9. .¥+=0. (5.58)

For ¥ (also written as ¥z) one says that it has right-handed chirality, and ¥_ (also ¥;) has left-
handed chirality. To this end, Weyl’s basis (A.132) of Dirac matrices is particularly convenient. The
complex 2-component projections ¥ are Weyl spinors.

Independently of chirality, for particles with linear momentum 7 and spin 3, one defines the
helicity operator, h := p-S/71, the eigenvalue of which is the helicity of the particle. With the mental
(mnemonic and entirely fictitious!) image of the intrinsic angular momentum (spin) of the particle
represented as the rotation of the particle itself, helicity may be represented as the “projection of

the spin in the direction of motion.” For example, a spin-% particle may have helicity +3 or —},

9 Caution: the Dirac 4-spinors u'!,u’, v’ and v! are linearly independent and each has four components. Only a total of
four of these components are linearly independent.

10 Gaution: the normalizations (5.53) and (5.54) differ from the standard quantum mechanical ones.
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depending on whether, respectively, it “spins” about the direction of motion in the right-hand sense
or the left-hand sense.

Helicity is not defined in a Lorentz-invariant manner. Indeed, a particle with a nonzero mass
always has a rest-frame wherein it does not move, and where j = 0, so the eigenvalues of h
vanish. Also, it is always possible to pass such a particle, i.e., Lorentz-boost, into a coordinate
system wherein the particle moves in the direction opposite to the original p. Since this changes
the sign of 7 but not of S, the eigenvalues of h also change their sign. It follows that helicity cannot
be Lorentz-invariant for particles with nonzero mass.

For particles with no mass, helicity is Lorentz-invariant, and coincides with chirality.

I~y
— e —

The solutions (5.40)-(5.43) of the Dirac equation (5.34) indicate that the upper and lower com-
ponents of the Dirac spinor are not independent and it is not possible to separate them in a
Lorentz-invariant way. The relations (A.121b) define the projectors <, that are Lorentz-invariant
since the <-matrices do not change with respect to Lorentz transformations, which gives rise to
the hope that the Dirac 4-component spinor may be separated into two 2-component spinors in a
Lorentz-invariant way.

Digression 5.4 One often finds a “quick” argument in the literature that 9-matrices are
Lorentz-invariant: supposedly, in the product o*p,, the Lorentz transformations act upon
the physical quantity, the 4-momentum, and not on the 9-matrices. This recalls the view
that rotations of a vector 7 = &;0' act upon the basis elements &;, not on the components,
which are “only numerical values” in a given coordinate system. However, it is equally
reasonable to adopt the vantage point where the inverse rotations act upon the compo-
nents v, and not upon the basis elements &;. Both applications of the transformations
produce a net change in the physical quantity &;0', which is regarded as the “active”
transformation. By contrast, the “passive” transformation simultaneously rotates both the
basis vectors &; as well as the components v’ (in the inverse sense), so that the physical
quantity ¥ remains invariant.

However, this is not a case of active/passive action of the Lorentz transformations:
The Dirac v-matrices indeed are components of a 4-vector, but those components are
matrices, the rows of which are in the basis of the Dirac 4-component spinor ¥, and
the columns of which are in the basis of the Dirac-conjugated spinor ¥. The Lorentz
transformations act upon all three bases, and those actions mutually cancel so that the
y-matrices remain invariant. In other words, the product ¥9*¥ p,, is evidently Lorentz-
invariant: Y9*Y is a contravariant 4-vector and p, a covariant one, so Yy*¥ p,, is the
scalar product of a contravariant 4-vector and a covariant 4-vector. By adapting the index
notation so as to also count the components of the Dirac spinor (5.51), we have

(FY"Y) pu = (T4 ()5 ") Py, (5.59a)
so that the numerical values (y")*; for each fixed y, A, B are simply the Clebsch-Gordan
coefficients in the expansion of the product ¥ x ¥ in a spacetime 4-vector basis. In turn,

the coefficients (q#)“; also appear in the tri-linear Lorentz-invariant contraction of the
basis vectors &, (" )", &® [% Section A.6]. Lastly, rewriting the above equation as

(YY) pu = ()5 (Ta ¥° p1) (5.59b)
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re-interprets the matrices 9/ as the (in general) C-valued projection of the direct product
of Dirac-conjugate Dirac-spinors, Dirac-spinors and 4-momenta to Lorentz-invariant (in
general) complex numbers: 7 : {¥} x {¥} x {p} — C.

However, it is not hard to show that helicity projections do not commute with the Dirac
matrices:

[y, '] #0: LA =0={79} = 79 =77+ (5.60)

Owing to this, an attempt to use the projections (5.58) on the Dirac equation yields

Yo [ihy!oy — mcl|Y = [ihy "0y — mey Y = [yt y 0y — mclly J¥
= ihy"(0,¥x) —mc¥y, (5.61)

which is a system of differential equations that couples ¥ and ¥_ precisely when m # 0.
Conversely,

19, ¥ =0 &  m¥i=0. (5.62)

Conclusion 5.2 (Weyl) The Dirac spinor ¥ separates in a Lorentz-invariant way into the
right-handed Y, = Y; := vy, Y and left-handed ¥ _ = Y, := ¢_Y 2-component Weyl
spinor (the eigen-spinors of the 9 matrix) precisely when the mass of the particle vanishes.

These (Weyl) spinors satisfy the simpler differential equations, 94"9,'Y+ = 0. Indeed, the Dirac
differential equation (5.34) is a system of four coupled differential equations for four components
of the Dirac spinor Y. By contrast, 4"d,'¥Y+ = 0 is a system of two coupled differential equations
for two components of the Weyl spinor ¥ and separately for ¥_.

Hermann Weyl noticed and published the characteristics of this special case of the Dirac
equation in 1929. Yet, when Pauli invented the neutrino so as to preserve the energy conserva-
tion law, he did not want to use Weyl’s equations on the grounds that they permit violating the
symmetry of parity.!! To wit, the Lorentz-invariant separation of ¥, and ¥_ « P(¥.) permits
an independent — and different — treatment of these two halves of the Dirac spinor of opposite
chirality. This is quite ironic, since Pauli did correctly predict the mass of the neutrino to be either
very teeny or vanishing, and even during his own life it became clear that Nature really treats the
left-handed neutrino very differently from the right-handed one. Until the discovery of the see-saw
mechanism [ Section 7.3.2], the Weyl equations provided a much better model for neutrinos,
and describe the maximal parity violation as observed in Nature.

—

The frequent confusion of helicity and chirality has been fostered by the fact that massless parti-
cles are a specially simple case both for chirality and for helicity, where these two different physical
quantities coincide. On the other hand, the Lorentz invariance of chirality is of fundamental im-
portance in the contemporary formulation of weak and electroweak interactions, while helicity is
easier to measure. The Reader should strive to conceptually differentiate and carefully distinguish
between these two inherently different quantities.

11 Up to the experimental confirmations of parity violation in weak interactions [#¥ Sections 2.4.2 and 4.2.1], Pauli had,
just as many other renowned physicists of the time, ardently advocated against ideas that include parity violation; see,
e.g., A. Salam’s Nobel lecture [473].
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The Dirac Lagrangian density

The construction of the Dirac Lagrangian density is straightforward, if we only require the variation
of the Hamilton action with that Lagrangian density to produce the Dirac equation. First, note that
Y and ¥ may formally be treated as independent quantities. The Dirac equation (5.34) is then
simply multiplied from the left by ¥ (and by c for units) and we identify

Zp = BE(X) [cP+mc™1] ¥ (x) = —BY(x) [ilcy"d, — mc*1] ¥ (x), (5.63)

where $ is an arbitrary overall sign, since the variation by ¥ yields a g-multiple of equation (5.34).
Variation by ¥ yields the Hermitian conjugate of equation (5.34), i.e., nothing new (and nothing
unneeded).

Digression 5.5 The Dirac spinor ¥ is a 4-tuple of formally anticommutative variables. In
the general case, if i and x are anticommutative and f and g are commutative variables,
we have that

[f.8] =0, foyl=1f.x1=0=1[g9] =g xl but {p.x}=0;
(5.64a)
Jd 0 Jd 0 0 0 Jd d 0 0 Jd 0
rag) = Lspagl = lspad =0 lagrag) = g b {apac) =
(5.64b)
Also,
d 0 d 0
%X = —Xw and alp = —wa, (5.64¢)

which the Student must keep in mind when deriving the equations of motion from
Lagrangian densities that also contain fermionic (anticommutative) variables. It is
convenient to define the right-derivative:

) K} k) k)
Vg =V (1) = 55 = = wog =w(xg) =y ew, (G564

and diligently apply derivatives either from right or from left.

The definition of the Lagrangian allows us to identify the components of ¥ as the canonical
coordinates, so we may also define the canonically conjugate momentum densities:

<_

-
v 1= Ll = (= p¥lincydy —mPUY) 5rigy = —ipn ¥y’ = —ipn¥", (5.65)
where we applied the right-derivative [#= Digression 5.5 on p. 180]. The Hamiltonian then becomes

oy =9 ¥ — Lp = (—iph¥T)(F) + ﬁ‘f[zhuyﬂa —mc )Y
= —BY'HY + pY¥[icy"d, — mc*1]Y, =ind. (5.66)

The sign f in the computation (5.65) may now be determined as follows: For an on-shell
Dirac fermion, i.e., one that satisfies the equations of motion (5.34), the second term in the
expression (5.66) vanishes, and we obtain
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We thus choose f = —1 for the total energy (the Hamiltonian) of the Hamilton-Jacobi canonical
formalism on-shell and the expectation value of the quantum-mechanical operator H to have the
same sign. To sum up:

Zp = —F(x) [cF+mc1] ¥(x) = ¥ (x) [iicy"dy — mc™1] ¥ (x), (5.68a)
my = in¥, (5.68b)
My = 1y¥ — Lo =Y HY — F[ifcy”d, — mc™ 1] Y. (5.68¢)

Also, since the Dirac equation (5.34) may be written as

inY = Hp¥ := [(incd-V +mc”)y°] ¥, (5.69)

and Hp is the on-shell Dirac Hamiltonian operator: .54, (5:34) YHpY, as arranged in equa-

tion (5.67).

Digression 5.6 The Dirac Lagrangian densities are often “antisymmetrized” using the
identity

/d4x Yyto, ¥ = %/d‘lx Yy'o, ¥ + %/d‘lx [E)y (T"Y) — (ay?)'y"‘lf} (5.70a)

=1 [dx [T, ¥ - @7 + § § E0, (Tr), G700

=0

where the third, 3-dimensional integral is computed over the 3-dimensional boundary
of spacetime, which is “at infinity.” Physical fields are required to vanish there. We thus
write

910, Y ~ 1 [¥9"0, ¥ — (3, F)y"¥] =: 1 (¥y"0,¥), (5.70c¢)
where the middle expression defines the symbol 9. So antisymmetrized, we have that

%~ -Y(x) [%c?—i— mc’1] ¥(x) = ¥(x) [%fzcg — mc1] ¥ (x). (5.70d)

Finally, the components of the canonically conjugate momentum density (5.68b) are con-
stantly proportional to the Hermitian conjugates of the components of the Dirac spinor itself.
Roughly speaking, one half of the Dirac (4-component) spinor are canonical coordinates of the
system, the other half are conjugate momenta. The choice of which particular components are
regarded as coordinates and which are momenta is, of course, arbitrary — up to the condition that
the relations

{¢, (¥} =in1 = {¥,¥}=1 (5.71)

produce the canonical anticommutation relations between the canonical momenta and the
canonical coordinates. This arbitrariness is identical to that in classical physics.
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5.2.2 The U(1) gauge symmetry and photons
Classical electrodynamics builds on the Maxwell equations,

o 1 I ) 1 4m .
§ V-E = Trey TT Oe, Vx(cB) — v 47r507]€’ (Ampere) (5.72a)
(3]
&) ) B
S\ B = 0 _oup_ 19(B) _ podrm.
V:(cB) = 4n4npm, VXE — - Rl P [ (Faraday) (5.72b)

that encompass the indicated laws, and where ¢ = ﬁ is the speed of propagation of light in
Y !

vacuum. The densities of the magnetic (monopole!) charges, p,;, and currents, 7,,, are included
for later discussion of electro-magnetic duality [= Section 11.4]. No experiment indicates their
existence, so that the equations (5.72b) are cited in the literature almost exclusively with p,,, — 0
and j,, — 0. However, note that the units satisfy [p. /o] = [}10 pm], as well as [J./€o] = [0 Jm]-

The relativistic description
For the purposes of a relativistic description of electrodynamics [== also Comment 8.1 on p.294],

we introduce’?
Ay = (P, —CA'), (gauge potential) Al =yt A, = (Q,c[f); (5.73a)
Fui= 9,4~y () B i B 73)
and identify
Foo =0, F® =0, (5.73¢)
Foi = doA; — 9;Ag = %w - % =E;, F% = y%Fyy = —E, (5.73d)
Fij=diAj —0;A; = 8(;;;41) - 3(—8;{41‘)
- c(% - Zi{ ) — ceji* By = —cejf*B,  Fi=y*Fynplt = —c*B,  (5.73¢)
and, of course, F,, = —F,;,. In matrix form, we have
0 E, E  E; 0 —E —E —E
Fol=| Te om0 s | P e 0 o | 67
—E3 —cBy cBy 0 Ez —cBy cBy 0

Since F,, are components of a rank-2 tensor, it follows that the Lorentz transformations act
by [ Digression 3.5 on p. 91]

yr=L"x" = Fu(y) =L Fe(x)L7, ie. F(y)=LF(x)L. (5.75)

The familiar Lagrangian [== also Exercises 5.1.3 and 5.1.4] for the electromagnetic field may thus

be written as
Lem = — 50 Fy FM. (5.76)

12 The negative relative sign in the definition of Ay cancels the difference in signs in the definition (5.13), an additional
factor of ¢ equates the units of ® and A, which stem from the difference between D; and D.
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Example 5.1 Let E = &2E, and B = 0 be given in an inertial Cartesian coordinate system
S, and let the inertial system S move with respect to S with the constant speed é!v;. The
relations (5.75) then yield

E, = vE,, and also B; = 'yv—;Ez. (5.77)
c

A field that in one inertial coordinate system looks like a “purely” electric field, can in
another inertial system easily be represented by a combination of electric and magnetic
fields. Notice, however, that the equation E-B = 0 remains valid. Indeed, this is a Lorentz-
invariant characteristic of the specified field [#= relations (5.80a)].

The Maxwell equations (5.72a) may then also be written as

1 4m
9, FM' = —Je 5.

" 4reg ¢ ¢’ (5.78)
where j, = (cpe,Je) is the 4-vector of electric charge and current densities. Analogously, the
Maxwell equations (5.72b) may be written also as

1 uvpor _ Mo 4m
7€ aH FVP - ET]M!/ (5.79)

where j,, = (com, Jm) is the 4-vector of (monopole) magnetic charge and current densities.

Digression 5.7 Direct substitution yields
IF FW =E*—*B> and  1e"PF,F,, = —cE-B, (5.80a)

which, using the transformations (5.75), shows that these two bilinear expressions in E
and B are Lorentz-invariant. Evidently, these are the only linearly independent Lorentz-
invariant bilinear expressions in F,, and F'’, and so then also in E and B. Since
the Lagrangian density for electrodynamics must be a scalar (invariant) density and
quadratic in electric and magnetic fields, we find that the Lagrangian density must be
of the form

ZLgm = C1 B Y + Co e"P7 By Fypr. (5.80b)
The coefficients C;,C, are chosen so that the variation of the Hamilton action,
0 f d*x Zem = 0, reproduces the Maxwell equations. The fact that this renders C, = 0
then poses the (unanswered ) question: Why is, in the possible “addition”

Lyem =0 -’ﬁifnsyvptf Fvapm (5.80¢)

to the standard Lagrangian density (5.76) of the parameter ¢ = 0, either identically or
up to experimental error (i.e., ¥ < 1)?

Direct substitution of F,,, = d, A, — dy A, on the left-hand side of equation (5.79) yields

3e"79,, (9yAp — 9pAy) = 3eP70,0,Ap — 3€MP70,0, Ay, (5.81)
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where both terms vanish separately, since
79,0, = ""079,0, = e""70,0, = —€"""79,0,. (5.82)
N——
peov

That is,

o = 3,4, — 0,4, 22 o= %’46”]';',. (5.83)
The existence of magnetic charges and currents would then be an obstruction for equating F,
with d, A, — dyAy, i.e., the electric and the magnetic fields could not be expressed in terms of
an unambiguously specified 4-vector potential (5.15) [= Section 5.2.3], and conversely: if F,, =
0, Ay — 90y A, for an unambiguously specified 4-vector potential A;(x), then no monopole magnetic
charge or current can exist. We thus have:

Conclusion 5.3 Electric and magnetic charges and currents exist simultaneously if and
only if there can be no unambiguously specified 4-vector potential A, (x) for which the
electromagnetic field would be F,, = 9, A, — d, A, [= Section 5.2.3].

Digression 5.8 Define a “differential 2-form” F := F,, dx¥Adx", where “A” denotes the
antisymmetric product of the differentials, as well as the operator d := dx"d,. Then

dAd = 3(9,0, — 3,9,) dx* Adx¥ = 0. (5.84a)
The Maxwell equations (5.72b), i.e., (5.79), are then equivalent to
dAF = j,, Tan 8= 1—34%]5, €uvpo dXFAdXAdXP, (5.84b)
/

and the differential 3-form j,, is the obstruction for equating the differential 2-form F
with dAA, for any differential 1-form A = A,dx¥. F is said to be a nontrivial (non-exact)
2-form.’3

On the other hand, equations (5.72a), i.e., (5.78), may also be written in the
form (5.84b). To this end, however, we need one more item of notation: in tensorial
notation, any antisymmetric rank-r tensor may be turned into an antisymmetric rank-
(4—r) tensor by contracting with e, or e#'f?. Thus, a 4-vector jln is “translated” into
a rank-3 tensor jﬁ,ﬁ — (jf;,swpg) and a 3-form j,,. A double use of this operation yields
%ewvay(%smﬁmﬁ) = 9, FM"". The corresponding operation with differential forms is the
so-called “Hodge star,” which turns an r-form into a (4—r)-form: %A is a 3-form, *j,, a
1-form, etc. The Maxwell equations (5.72a) and (5.78) are thus equivalent to

1 4m U

dA*F = je, je = Trey — e euvpordx’AdxPAdx”. (5.84¢)

Equations (5.84b) and (5.84c) respectively provide a compact form of the Maxwell
equations:

dAF=j, and dA *F =j,. (5.84d)
Since dAd = 0, dAdA(*F) = dAj. produces dAj. = 0, which is the well-known con-
tinuity equation (2.66), the integral of which yields the electric charge conservation
law [s= also Section 6.1.2]. Similarly, dAdAF = dAj,, implies dAj,, = 0, the continuity
equation, and thus the (monopole) magnetic charge conservation law.

13 By the same token is “4Q,” in thermodynamics in general, a nontrivial 1-form and not an exact differential.
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Comment 5.6 The fact that the existence of (monopole) magnetic charges and currents ob-
structs the expression of the electromagnetic field F,, as an antisymmetric derivative of
an unambiguously specified 4-vector potential A, points to a significant difference be-
tween electric and magnetic charges and currents — in spite of the fact that the Maxwell
equations (5.72) look “symmetric.” This “symmetry” — a duality, more precisely — is the

mapping
0 —cBy —cBy —cBs
. THv WV [1oHVP0 — cBy 0 Es —E;
wEM . F — (*F) [28 Fpg-] CB2 —E3 O El , (585)

CB3 Ez *El 0

which swaps the roles of E and cB. This implies that the vanishing of p, and 7, is a necessary
and sufficient condition for the existence of some unambiguously specified 1-form A such
that *F = dAA; here, A = dx' A, is the 1-form of the dual 4-vector of gauge potentials.

Conclusion 5.4 The difference between F and «F, i.e., F,, and }e,,,0Ff, ie., E and B,

ie., (cpe, 7o) and (on/c,jm/c”) — and so also the whole formalism — is however fully
conventional.

The discrete transformation (5.85) is equivalent to @y : (E,cB) — (cB, —E). Sincew 2, =
—1 and CD'ELM = 1, @eum is equivalent to a 90°-rotation. In fact, one may define even a
continuous duality rotation

(0 5]

E cos¥ sin®d E
L] =15 ol 5] (5:86)
and correspondingly for electric and magnetic charges and currents. The statement that
there are no magnetic monopoles is then equivalent to stating that, using this “rotation,”
the variables E and cB (i.e., F,,) may always be chosen so that p,, = 0 = Jy, so that
F = dAA, ie, F,y = 9,A, — 0 A, — simultaneously in the whole universe and for all
particles in Nature.

The standard electrodynamics
In agreement with experiments, we set p,,, = 0 = 7y, so that the relations (5.15) and (5.73b) hold,
as does the so-called Bianchi identity, as a consequence of the now applicable definition (5.73b),

EVVPUaVFpg = 0, (5.87)

and instead of equation (5.79); equations (5.74)-(5.78) remain unchanged.

In classical electrodynamics, one primarily uses the electromagnetic field F,,, i.e., E and
B, and the potentials are secondary. However, in the non-relativistic formulation of the interac-
tion (5.19) of the electromagnetic field with substance in quantum theory, the potentials had
already been proved to be the fundamental quantities. Besides, the assumption that the elec-
tromagnetic field is defined in relations (5.73b) makes the relation (5.87) — and then also the
laws (5.72b) — a trivial consequence. Thus, in electrodynamics expressed in terms of the 4-vector
potential A, the dynamics reduces to the equation (5.78):

1 4m,

HAV _ QU AH) — H AV __ AV ny —
(0" AY — 9V AM) = 9,0" AV — 9" (9, A) e o)

(5.88)
The number of independent degrees of freedom in the electromagnetic field is thereby reduced

from six in the rank-2 tensor F,y (the components of electric and magnetic field) to four in the
4-vector Ay,.
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However, the 4-vector potential, A, is well known not to be unambiguously determined, as
we are free to change
Ay — A;J = Ay — coyA. (5.89)

This is precisely the gauge transformation of the scalar and vector potential (5.14a), as it was
derived in Section 5.1. The physical meaning of the transformation (5.89) may be seen from the
Fourier transform:

F R

Ay — A;[ = Ay —coyA = A;l = Ay +ickyA, (5.90)

where ky = Pu /T is the wave 4-vector of electromagnetic radiation. The component of the 4-

vector potential in the direction of motion (in the 4-dimensional spacetime!) of the electromagnetic

beam is arbitrary, and may be cancelled by a judicious choice of the gauge function A. In that sense
one frequently imposes the Lorenz gauge!#:

WAF =0  — kA =0. (5.91)

Notice that this gauge is Lorentz-invariant. Using it, the dynamical part of the Maxwell equa-

tions (5.88), simplifies to
] 4£ U

- _
DAk = -1, (5.92)

which is the wave-equation for the gauge potentials A*(x), with the sources j, .

The gauge (5.91) reduces the number of degrees of freedom in the electromagnetic field
(which is determined by the relation (5.73b) in terms of the 4-vector potential) from four to three.
But, that’s not all: the FitzGerald-Lorentz length contraction applies to all physical quantities,
and so also to the components of the 4-vector potential. Since, in vacuum, the changes in the
electromagnetic field propagate at the speed of light, it follows that the longitudinal component
of the 4-vector potential A,(x) equals zero, that is, its Fourier transform satisfies k-A = 0. The
inverse transformation then gives V-A = 0, the so-called Coulomb gauge. The combination of the
Lorenz and the Coulomb gauge produces Ay = 0, so that the temporal component of the 4-vector
gauge potential is an arbitrary constant.

This reduction of the number of degrees of freedom from three to two cannot be described
in a Lorentz-invariant way, so there are essentially two different approaches:

1. in addition to the Lorentz-invariant gauge, impose another gauge — such as the Coulomb
gauge V-A = 0, which explicitly violates Lorentz symmetry, or

2. leave A, “ungauged” and having more than two degrees of freedom. Subsequently, system-
atically track and subtract the contributions of the nonphysical degrees of freedom in the
4-vector Ay.

In the absence of free carriers of electric charge, jb = 0. The equation (5.92) then becomes
OA* =0, (5.93)

which is the d’Alembert equation, i.e., the Klein-Gordon equation with m.,, = 0. The solutions are
found in the form

= E=|pl,

0_ =

5.94
0= 72, (5.94)

AV(X) = ge_(l/h)p'xey(p), { p]ip
pue =0 — €

14 This gauge (as in “condition,” of “specification”) bears the name of Ludvig Valentin Lorenz (1829-91), not of Hendrik
Antoon Lorentz (1853-1928) after whom the Lorentz transformations, (FitzGerald—)Lorentz length contraction, and
Lorentz group were named.
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where in the second row we see the joint effect of the (Lorentz-invariant) Lorenz and (Lorentz-
violating) Coulomb gauge, and where a is the photon amplitude.

In quantum theory, A*(x) could serve as the wave-function of the photon: the 4-vector poten-
tial that has two physical degrees of freedom, which are transversal to the direction of the photon’s
propagation. In a Cartesian coordinate system where the photon moves along the (x3 = z)-axis,
the two transversal polarizations are

€1 =(1,0,0) and & = (0,1,0), (5.95)
and
€= 5@ +i&) and & = 5(& —id) (5.96)

are the so-called right- and left-circular polarizations, the eigenvectors of the rotation generator,
J3, with the eigenvalues 41, respectively.

5.2.3 The magnetic monopole sneaks in
The immediate interpretation of Conclusion 5.3 on p. 184, notwithstanding, Paul Dirac found in
1931:

1. There does exist a way to include magnetic monopole charges and currents into the standard
electrodynamics, i.e., the physical system described by the equations
1 4m,

p— 1 = =
o F = drrey ¢ ¢ 2679y Fyp =0, Fyy = 0y Av — dy Ay (5.97)

2. The quantum nature of Nature forces the magnetic and the electric charges to satisfy a
mutual, so-called Dirac (dual charge), quantization law:

Je qm = 2mhn, ne. (5.98)
From here,
1 e 1 1 ¢  n*dmeghc 137 ,
= —_— K — = = — = ) —n°, 5.
¢ 4meg he T 137 fm 47tpg hic 4 2 g " (5.99)

so that the interaction intensity with magnetic monopole charges and their currents must be very
large (52 ~ 4,690 n?), reciprocally to the relatively weak interaction with (electric) monopole
charges and their currents, a, =~ 1/137.

The magnetic monopole gauge potential

Dirac’s quasi-realistic model of a magnetic monopole stems from the very well known fact about
magnets, that the magnetic field is strongest near the ends of a magnetic (physical) dipole and
weakest near its middle. Take one such magnet — a cylindrical solenoid, for example — and affix
the coordinate origin to the “north” pole of the magnet, squeeze the cross-section of the solenoid
and stretch it so that the “south” pole is pulled out towards z — —oo. In the limit when the cross-
section of the solenoid is negligible and the “south” pole is infinitely far, the magnetic field of such
a magnet is spherically symmetric and has a source (the “north” pole) at the coordinate origin,
with the “south” pole nowhere in sight.

This thought-construction evidently shows that part of the space (the negative z-semi-axis) is
physically inaccessible: Every test-magnet detects a spherically symmetric (Coulomb-esque) mag-
netic field B « qm?/73 in all of space around the coordinate origin — except along the negative
z-semi-axis, where the test magnet cannot be placed as that is where the infinitely long and
infinitely thin solenoid is. This “forbidden zone” is called the Dirac string.
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Dirac showed that the vector potential [296]

A(F): sothat VxA=B=1" (5.100)

473
must be singular, as a function of the position 7, along some line (the Dirac string) that begins at
the coordinate origin and extends out to infinity — which is the location of the infinitely thin Dirac
solenoid. However, in 1975, T. T. Wu and C. N. Yang showed that there is no need to exclude this
line from the physically accessible space — paying the price in accepting that the vector potential A
then cannot be an unambiguously specified (vector) function. However, since the vector potential

is not directly measurable, this ambiguity (non-single valuedness) has no physically measurable

repercussion.
Indeed, define [536, 210]
A qmw g QmLyéx
A= TG+ A= iz =n) (5.101a)
_ucos(6)—1 . _ _mcos(O)+1,
47t rsin(9) ~ 4x rsin(e) ¥ (5.101b)

and notice that the function Ay is well defined everywhere except along the (“southern”) z-semi-
axis, while the function A; is well defined everywhere except along the (“northern”) z-semi-axis.
Also, define

Im 7 B O AT
By:=VxAy= Py and Bs:=V x Ag = et (5.102)
(except where x =0 =y and z < 0) (except where x =0 =y and z > 0)

Since By and B;s perfectly coincide as fungtions#everywhere where both are defined, the “true”
magnetic field B is defined to be equal to By or Bs, using that “auxiliary” magnetic field function

that is well-defined in the region of interest.’”
Since yér — xé
T 7 _Afm x Yy A fqm
As— Ay =2]m (Y Ty ) = =219 [Atan(x, )], (5.103)
where
- arctan(y/x) for x>0,
ATan(x,y) := { m+arctan(y/x) for x <0, (5.1042)
4
2
(5.104b)

15 This is the same “trick” that cartographers use when they carve up the map of the Earth’s globe (which cannot be
depicted accurately on a single flat sheet of paper) into a sufficiently large number of sufficiently small maps, each
of which depicts adequately a sufficiently small region of the Earth surface. These maps are then bound into an atlas
where “adjacent” maps overlap sufficiently to provide the traveller with connecting information along any — of course
continuous - voyage.
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it follows that Ay and Aj differ by a gauge transformation (5.89) with the gauge parameter A(x) =
2g,, ATan(x,y). Since the potentials Ay and As are not themselves measurable, but provide the
same (measurable) magnetic field, the gauge transformation

Ay — As = An+ Vs, Ans(X) = —ZZ—Z ATan(x,y) (5.105)

is then really a symmetry of the physical system.

Dirac’s dual quantization of charges
As relations (5.14a)-(5.14b) show, the gauge transformation (5.105) induces the change in the
phase of the electron wave-function:

¥(x) — ¥/ (x) = el1Mns (/g (x), (5.106)

As the value of the function ATan(x,y) is the azimuthal angle ¢ ~ ¢+27, the relation (5.105)
yields

exp {iquNs(x)/Tz} = exp { —i Z’;ﬁle 4)}. (5.107)

No gauge transformation — and so not this one — can change the single-valuedness of the wave-
function, which of course is chosen single-valued to begin with. Thus the phase (5.107) also must
be a single-valued function of ¢, and 2% must be an integer:

Qem 2 ; L, (2T
o ne4z, ie., Gm = n( 0 ), (5.108)

which is called the Dirac (dual charge) quantization of the magnetic charge, and where (27171/4,)
is the elementary (unit) amount of magnetic charge.
It will prove useful to rewrite this argument by direct integration of the relation (5.105):

2 . 2 . 2.
/1 a7 Ay :/1 a7 A + {/1 47V hs = As(72) = Axs (7)), (5.109)
that is,
2 2
/ a7 Ay —/ d7-As = Ans(Ta) — Ans(71). (5.110)
1 1

Dirac’s quantization of the magnetic charge thus stems from the requirement that ig, |, c dr-A may
depend on the choice of the concrete line integration contour only up to an integral multiple of
27

!

eiqg fCl di-A—qe sz d7-A _ eiqg fclfcz dr-A P2in _ 1, (5.111)

where (C;—C,) is a closed contour since C; and C, have the same end-points: 0C; = 9C,.’ 6 Using
Stokes’ theorem, fc dr-A = fs dsz-(VxA) where S is some surface bounded by the contour C,
i.e., C = 9dS, and the definition of the magnetic field, B:= (@xg), we have that

27+ qg/ a7 A — qg/ a7 A = qgj[ a7 A = qg/dzﬁ"g. (5.112)
o) G (C1—Cy)=05 s

Applied to the magnetic field of a (hypothetical) magnetic monopole charge, this condition pro-
duces the quantization (5.108). However, the same condition also represents a reason for the
existence of the so-called Aharonov-Bohm effect [== textbooks [407, 471, 480, 472, 29, 3241,

16 For any space 2, the symbol 9.2" denotes the “boundary of 2.
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for example], which is experimentally verified, and which should therefore be called the
“Dirac-Aharonov-Bohm effect.”

Today, several additional, alternative arguments are known to infer the same mutual quanti-
zation. One of them was published by Alfred S. Goldhaber in 1965. The magnetic field (5.100) of
a magnetic monopole exerts a force upon a particle of electric charge g, that passes through the
magnetic field at the velocity ¢. This so-called Lorentz force,

F, =4.7x B, (5.113)

is perpendicular to the plane containing 7 and B. Select a coordinate system so that 7 = vé,,
where 0 := £(7,7) = £(B,%) since for the magnetic monopole B « 7 [s= relation (5.100)]. The
distance b := |rsin(0)| is called the “impact parameter,” just as in the set-up for the collision of
two marbles, in Example 3.2 on p. 111. Select the x-axis to be in the direction of this parameter
and B is in the (x,z)-plane. For sufficiently large values of b, the deflection (in the direction of the
y-axis) from the trajectory (along the z-axis) will be small enough to be accurately estimated by
the integral

e o b [t dt
AP _ 9eVqm _ Heqm
(5Pl ~ ./—oo dt () = 4r /—oo (b2 +v242)3/2  27b’ (5.114)
so that . ged
(AL); = b(AP), = ;n’“. (5.115)

It remains to conclude — because of the quantum nature of Nature — that the change in the angular
momentum must be an integral multiple of 7. This immediately reproduces equation (5.108).
Finally, let us also mention the fact that the electromagnetic field has a linear momentum
density ¢E x B. For the field near point-like electric and magnetic charges that are separated
by the vector R, it may be shown that the total (integrated) linear momentum of the total field
vanishes, whereby the total (integrated) angular momentum is independent of the choice of the
coordinate origin and has the value [ [296]; this result was published by J. J. Thomson, in 1904]

- Qeqdm R

Lew = ir R (5.116)
The quantization of this angular momentum in (integral) units of /z also indicates a quantization
of the magnetic charge in units that are inversely proportional to the elementary electric charge,
but gives a value that is twice as large as the result (5.108). That is, the previous two arguments
produce a stricter result. One could have obtained this as early as 1904 from equation (5.116),
but only by adopting the quantization of angular momentum in half-integral units of 1 — thus
foreshadowing spin-% particles and systems. At the time, no one thought of it.

5.2.4 Exercises for Section 5.2

% 5.2.1 Using the stated definitions of J;, K; and the ensuing relations (5.45), prove equa-
tion (5.46).

% 5.2.2 Using the relation (5.45) with the choice ¢' = 0, B> = 0 = B3 and B! = B, prove
relation (5.48) by expanding the exponential function, then re-summing the result after
using the relation (5.32).

% 5.2.3 Prove the equivalence of results (5.34) and (5.69), as well as that 7, = YHp Y.

% 5.2.4 Using the relation (5.74)-(5.75) and (3.13b), derive equations (5.77).
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5.3 Quantum electrodynamics with leptons

The description of electrodynamics in the previous section is classical. Quantum computations are
consistently derived from quantum field theory — of photons and leptons — and this derivation
is outside the scope of this book. Instead, following Ref. [243] and the introductory material in
Section 3.3, we will consider several examples of computations with Feynman diagrams that depict
interactions of charged leptons and photons.

5.3.1 Quantum electrodynamics calculation
We have already seen Feynman diagrams that depict electromagnetic processes: O(e*) contri-
butions to the e~ p* scattering are depicted by the diagrams (4.39), and the two-photon e e*
annihilation is depicted by diagram (4.48). Modeled on Section 3.3.4, we first assign a mathe-
matical expression to every graphical element, and by adapting Procedure 3.1 on p. 116, we will
compute the amplitude 9, which we will then insert into the formulae (3.112) and (3.114) for
decays and scattering, respectively.

Although we will not derive the Feynman rules for electrodynamics from the Lagrangian, we
present this Lagrangian density. By combining the results (5.76) and (5.68a), changing

Oy — Dy:=0y+7-A,Q@ sothat D, (e9M¥(x)) = ™) (D, ¥(x)), (5.117)

in accord with the definitions (5.13) and (5.73a), and where QY = g¥ produces the electric
charge of the particle represented by ¥, we have

Loep = F(x) [ilcl — mc?] ¥ (x) — LLF,, FFY
=Y (x) {fy# (hcidy — qeAy) —mcz} ¥ (x)
_ —'1,746() (a},AV—avA},);yP‘P;yW(apAU—BUAP). (5.118)

By construction, this Lagrangian is invariant under the gauge transformation

Ay(x) = Ap(x) —coup(x) and  ¥'(x) = el Py (x), (5.119)

Digression 5.9 The equation of motion for A, (x) is obtained by varying either the La-

grangian density (5.118) or the Hamilton action | d*x Zoep with respect to A (x). Using
so-called functional derivative generalization of partial derivatives:

Mi(y)ﬁ(Ay(x), (04Av(X)),...) = 54 (x—y) aA‘Z(X)y(AV(x), (04Av(X)),...), (5.120a)
(s(apjg(y))‘g(A”(X)’ (0uAV(X)),...) = 5*(x—y) a(ang(y))ﬁmy ®), (QuAv (X)), .. .()5, .
we obtain the general result |
(5Ai(x) / d'y 7 (Au(y), (0uAvy)) = / dy ‘;ﬁpg; . A‘Z(y)u@(fly(y), (0 Av(y)))
= [y )8 527 F (A Pue) = 52755 7 (A, (u ).
(5.120c¢)
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Using

94 (x) = &, L(a Ay(x)) =0 (5.120d)
9A,(x) " w 9Ap(x) ’ ’
0 o)

30,4 0= 35,4,m)

Ay (x)) = 8,67, (5.120e)

where we need not write the arguments “(x),” we obtain

anQED . achED wo_ q‘f =
a”a(ayAv) T 0A, = o P = FG()\P'Y T. (5.1200)
Comparing result (5.120f) with equation (5.78) identifies
. Wy 5192
Je o= g XY (5.120g)

as the 4-vector of the electric current density. The combined Lagrangian density (5.118)
shows that, while the dynamics of photons alone may be described in terms of the F,
field, i.e., E and B, the Lagrangian description of the interaction with charged particles
requires the use of the gauge 4-vector potential A, — although the derived equations of
motion (5.120f) and the obvious (Bianchi) consequence (5.87) may be expressed fully in
terms of the E and B fields.

Digression 5.10 Varying the Lagrangian density Zoep, as in equation (5.118), with re-
spect to Ay, and Y (from the left), we obtain the complementary and coupled system of
Euler-Lagrange equations of motion:

* o , ,
W= _——%9" 19, — mc — 7
9 = FYY, [zhc'y 3, — me ]1] ¥ = gAY (5.121)

The procedure given in Digression 5.9 is equally applicable to interactions of arbitrary
charged particles with photons: for a particle of a spin other than %, the Dirac Lagrangian den-
sity must be replaced by a corresponding Lagrangian density but where the “gauge covariant
derivatives” d, — Dy, (5.117) are used. As an introduction and because of immediate application,
the formulae will be written for a lepton/antilepton, i.e., electron/positron. The computations,
however, are easy to adapt for other charged spin-% particles — one should only substitute the
appropriate charges and masses. Also, it should not be too hard to also adapt the computations
to include charged particles without spin. This is usually called “scalar electrodynamics” in the
literature, but we leave this aside.

Because of the difference in units and numerical simplification, the notation

Qe = V4w, = el (= le|V/4m /e, in Gauss’s units) (5.122)
Vephc

is useful. On one hand, g, gives a dimensionless measure of the interaction strength; on the other,
many electrodynamics computations may then be relatively easily adapted for weak nuclear and
chromodynamics computations by changing g. — gw and g, — g, respectively, and inserting a
few additional factors [= Chapter 6].
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The practical use of most concrete models in quantum field theory reduces to the prescription
(see also Procedure 11.1 on p. 416 and discussion in Section 11.2.4):

Procedure 5.1 Start with a concrete model defined within classical field theory.

1. For any considered process, list the possible sub-processes, as discussed in
Section 3.3.1 and in the form of a sequence of Feynman diagrams partially
ordered:

(a) by the number of closed loops [+ Comment 3.5 on p. 122],
(b) by the powers of a characteristic interaction parametetr,
(c) by the powers of I1.

2. Compute the amplitude 9; for each (sub)process, as described by the specific
Feynman calculus rules of the model; see for example Procedures 5.2 on p. 193
and 6.1 on p. 232, below.

3. Add the amplitudes, with a negative relative sign between sub-processes that
differ only by the exchange of two identical fermions.

4. Compute the corresponding scattering cross-section or decay constant as dis-
cussed in Section 3.3.3, and illustrated there for a simple toy-model.

The specific Feynman calculus rules mentioned in step 2 above are derived from the same classical
action and rely on the correspondences discussed in Section 3.3.1 and in particular the listing on
page 106. As stated there, that task is deferred to proper field-theory texts [64, 63, 48, 257, 307,
221, 159, 422, 423, 538, 250, 389, 243, 45, 580, 238, 241, 239, 240].

For the particular case at hand, the model describing the interaction of electrically charged
spin-% fermions (such as electrons) and the electromagnetic field, the classical model is described
by the Lagrangian (5.118), and the specific Feynman calculus rules are as follows:

Procedure 5.2 The contribution to the amplitude 9 corresponding to a given Feynman di-
agram for an electrodynamics process with electrons and positrons is computed following
the algorithm [v= textbooks [445, 425, 586] for a derivation]:

1. Notation

(a) Energy—momentum: Denote incoming and outgoing 4-momenta by pq, py, - .., and the
spins by s1, sy, ... Denote the “internal” 4-momenta (assigned to lines that connect two
vertices inside the diagram) by qi, qs,. ..

(b) Orientation: For a spin—% particle, orient the line in the 4-momentum direction, oppo-
sitely for antiparticles. Orient external photon lines in the direction of time (herein,
upward). Orient the internal photon lines arbitrarily, but use the so-chosen orientation
consistently:.

(c) Polarization: Assign every external line the polarization factor:

. . incomin > u® s = spin projection =
Spin-% particle & ¥ P proj Tl
outgoing / U
. . . incomin ST ~ spin-i i
Spm-% antiparticle & & s (Espin 5 ;C)Iar.nd?, travels
outgoing / o ackwards in time)
incomin S et etp, =0 and =0
Photon & Pu
outgoing (ﬂ‘r eh*

(5.123)
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2. Vertices To each vertex assign the factor

>WH — —igey. (5.124)

Even without derivation, this factor clearly corresponds to the term —q,YAY in equa-
tion (5.118), and so represents the elementary interaction of the photon with the current
of the charged particle that ¥ represents.

3. Propagators To each internal line with the jth 4-momentum assign the factor:

j ‘+m-c]1
spin—% particle: _)qj_ — 7 —lm-c = 1;{] m2 ol (5.125)
] ] i
photon: W — ZIW (5.126)
Y

As internal lines depict virtual particles, ;% mjc and q% % 0, respectively [w Tables C.7
on p.529 and C.8 on p.529]. Up to multiplicative coefficients, these factors also stem
from (5.118); these are Fourier transforms of the Green functions for the differential opera-
tors [p and DM, in ¥ pY := —¥|ilicd — mc’]¥ and AuDMWA, i~ —%FHVFW, respectively,
where “~” denotes effective equality (equivalence) under the integral, after integration by
parts and “:~” defines the left-hand side by means of such an effective equality.

Digression 5.11 Integration by parts is used rather often, so that, e.g.,
/d4x (9u4A,) (B A”) = /d4x 9, (A, AY) — /d4x Ay (9,01 AY)

—7{ (@), (A,044Y) — [ dix A,(@,0"4"), (5.127a)

where ¥, is a closed 3-dimensional hypersurface that bounds the 4-dimensional space-
time and (d%x), is the volume element of ). As the domain of 4-dimensional
integrals is typically all of spacetime, ¥, is a hypersurface “at infinity” where all fields
are required to vanish, so the integrated term also vanishes. With this in mind, the
relation (5.127a) is written as

/ dix (9,4,) (3" AY) ~ / dix A,(9,0" A7), (5.127b)
which defines the relation “~,” in this context, as “equality under spacetime integral up

to integrated terms that are assumed to vanish,” or “equivalence up to integrals of total
derivatives.”

4. Energy-momentum conservation To each vertex assign a factor (27'()454(2]' k;), where k;
are 4-momenta that enter the Vertex. 4-momenta that leave the vertex have a negative
sign — except for external spmw antiparticles, since they are equivalent to particles that
move backwards in time.

5. Integration over 4-momenta Internal lines correspond to V1'1;tua1 particles and their 4-

momenta are unknown; these variables must be integrated: | (z—q)ﬂl
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6. Reading off the amplitude The foregoing procedure yields the result

—iMm (27)*6* (Y p)), (5.128)
j

where the factor (2n)4(54(2j pj) represents the 4-momentum conservation for the entire
process, and where the amplitude (matrix element) 9 is read off.

7. Fermion loops To each fermion loop (closed line) assign a factor —1. A mathematically
rigorous derivation of this rule follows from Feynman’s approach using path integrals, which
is far beyond the scope of this book. See however Digression 2.4 on p.52 and especially
statement 4a therein; see also the booklet [166] for an intuitive albeit not entirely rigorous
explanation, Ref. [434, Vol. 1, Appendix A] for a serious introduction, and Ref. [165] for
the original reference.

8. Antisymmetrization Since the amplitude of the process must be antisymmetric in pairs of
identical (external) fermions, the partial amplitudes that differ only in the exchange of two
identical external fermions must have the relative sign —1.

As in Section 3.3.4, one draws all Feynman diagrams that contribute at the desired
order in g., and then computes the (partial) amplitudes for each of the diagrams. The
algebraic sum of these contributions yields the total amplitude, which is then inserted in
formulae (3.112) and (3.114) for decays and scatterings, respectively.

In the remaining part of Section 5.3, the contributions of the following 12 Feynman diagrams
will be examined, where we follow the treatment in Refs. [243] [# also Refs. [64, 580, 241]1]:
Each of these diagrams depicts a separate contribution to some O(g2) process and, exceptionally,
O(g?) for the last diagram. Processes are identified by the “external” particles, whereby diagram (a)
in Figure 5.1, all by itself represents one process, while diagrams (b) and (c) in Figure 5.1 represent
two contributions to the same process.

Denote the external lines so that incoming are bottom-left=1 and bottom-right=2, and
outgoing are top-left=3 and top-right=4. So, e.g.,

(5.129)

depicts the elastic scattering of an electron and a muon via the exchange of a photon. In fact,
the incoming (and so also the outgoing) pair of fermions in the diagrams in Figure 5.1 (a)-(d),
p- 196, could be identified as any other pair of different spin-% particles, including the electron—
proton pair in the hydrogen atom. It is, however, important to keep in mind that the relativistic
description in terms of the perturbative expansion in the degree of the interaction constant g, is
appropriate for scatterings and for decays but not for bound states, the description of which is
inherently non-perturbative in this sense.

To see this, note that the bound states of the hydrogen atom are determined by the Coulomb
field, which results from summing over all possible exchange processes including one to infinitely
many photons. The static electromagnetic field, known as the Coulomb field, may be identified with
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(e) (2
® i : (h) i

Figure 5.1 The first 12 Feynman diagrams that depict the quantum-electrodynamical processes be-
tween spin-% particles and the photon. The last diagram depicts one of the corrections for the
process (a).

the (Bose) condensation of infinitely many photons,’” and is a phenomenon that is inherently non-
perturbative in the number of exchanged particles, and so inherently unreachable in the analysis
using elementary processes depicted by Feynman diagrams.

In turn, in scatterings and decays, the exchange of a single photon produces the domi-
nant contribution, while multi-particle exchanges produce ever smaller corrections: scatterings
and decays are inherently perturbative in the number of exchanged particles.

Electron—muon scattering

Scatterings of the type e + y~ — e~ 4+ p~, where the muon is a “target” that is significantly
heavier than the “probe” (here, ™), are called Mott scattering, after Sir Nevill Francis Mott. In the
non-relativistic regime one obtains Rutherford scattering, named after Ernest Rutherford’s experi-
ment of bombarding a foil of gold with a-particles. Reading off of the diagram in Figure 5.1, and
following the Procedure 5.2 on p. 193, we get

+ dq a4 454
| i (27641 — s — ) (27)*6* (b2 s + )

(27)? |

x [154(pa) ige 7)™ (b)) (7 ) [0F%c(pa) ige v o) U2 (p2)]
—8E T 45yt by — o) [ (03) 75 1 (p1)] [TFhe(s) 7,0 UP(p)], (5.130)
Py — ps)2 2 —PsTP1—P3 4P3) 7" "B P1 c\P4)Yu D P2)| .

and comparison with the diagram (5.129) shows that u°1"?(p,) represents the incoming electron,
and Usc(p,) the outgoing muon, etc.

17 And the other way round, photons are the quanta of the electromagnetic field in the sense that they are the smallest
“packet” of a change in the electromagnetic field. These quanta — oscillations in the electromagnetic field — move at the
speed of light; once established, the electrostatic or magnetostatic field does not move at all and extends through the
whole available space.
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From there, using the expression (5.128), we get

2

8762 [us34(p3) 75 ™ (py) | [Ustc(Ps) 7, "0 U7 (py)]- (5.131)
(P1 — P3)

If the spins of the incoming and outgoing particles are known, the polarization spinors u°'2, U%-P,
uss, and Us4c are selected as given in equations (5.40), one computes the components of the
4-vectors [u%3 " u*1] and [Us+ 7, U*?], and then the sum of the products.

When in turn the spins of the interacting particles are not measured, and we are interested in
the inclusive effective cross-section of the scattering, i.e., the inclusive decay constant, summing over
all spins p produces an important simpliﬁcation. Indeed, the formulae (3.112) and (3.114) need
|22 = M. On t