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§1. Introduction.

In the previous paper [3], the author generalized the uniqueness
theorems of meromorphic functions given by G. Pélya in [5] and R.
Nevanlinna in [4] to the case of meromorphic maps of C* into the N-
dimensional complex projective space P¥(C). He studied two meromorphic
maps f and g of C* into P¥(C) such that, for ¢ hyperplanes H; in P¥(C)
with f(C* & H;, g(C") & H, located in general position, the pull-backs
v(f,H) and v(g,H,) of divisors (H;) on P¥(C) by f and g are equal to
each other. Under some additional assumptions, he revealed the existence
of some special types of relations between f and g. For example, he
showed that, if f or g is non-degenerate, namely, the image is not in-
cluded in any hyperplane in P¥(C) and q¢ = 3N + 2, then f=g.

We consider in this paper meromorphic maps into P¥(C) which are
algebraically non-degenerate, namely, whose images are not included in
any proper subvariety of P¥(C). We give the following theorem.

THEOREM. Let f,g9 be meromorphic maps of C* into P¥(C) such
that v(f,H,;) = v(9,H,) for 2N + 3 hyperplanes H,; located in general
position. If f or g is algebraically mon-degenerate, then f = g.

To show this, after giving some preliminaries (§2), we provide in §3
some combinatorial lemmas which act essential roles in this paper. A
main one of them is proved in §4. And, in §5, the smallest algebraic
set V,, in P¥(C) which includes the set (f X 9)(C*) is studied in the
case that 2N + 2 hyperplanes H; with v(f, H,) = v(g, H,) are given. It
is shown that V,, is an at most N-dimensional irreducible algebraic set.
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After these preparations, we prove the above theorem in §6. We show
also the existence of some special types of relations between algebraically
non-degenerate meromorphic maps f and g such that »(f, H,) = v(g,H,)
for 2N + 2 hyperplanes H,; in general position. In the last section, we
study meromorphic maps into P*C) or P3(C) more precisely. For the
above meromorphic maps f and g, it is shown that they are related as
L.g = f with a special type of projective linear transformation L of
PY¥(C) in the case N =2 and the algebraic set V,, is included in an
algebraic set defined by some special types of equations of degree at
most two in the case N = 3,

§2. Preliminaries.

2.1. We shall recall some notations and results in the previous
paper [3].

Let f be a meromorphic map of C* into P¥(C). For arbitrarily fixed
homogeneous coordinates w,: w,: ---: wy,, on P¥(C), we can find holo-
morphic functions f,(2), - - -, fx.1(?) on C* such that the analytic set

2.1 I(f): ={2eC; fi(® = -+ = fr.(?) = 0}
is of codimension at least two and f is represented as
J@ =fi@:fLD): - fru®)  (eC* = I())) .

In the following, we shall call such a representation an admissible re-
presentation of f on C*. As is easily seen, for two admissible repre-
sentations

S=hetet oo i S =f1:f2: :an
of £, fi/fi (=F:/fi <1< N + 1)) is a nowhere zero holomorphic func-
tion on C*. For a given hyperplane

H:aw, + 6w, + -+ + a7 'wy,, =0
in P¥(C) with f(C™) & H, we define a holomorphic function
2.2) Ff:=afi + - + 0" fyn

with an admissible representation f = f,: f,: -++: fy,, on C* and denote
by v(f, H)(@¢) the zero multiplicity of F¥ at a point @ e C”, which is
uniquely determined independently of any choices of homogeneous co-
ordinates and admissible representations.
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Now, let us consider two non-constant meromorphic maps f and ¢
of C* into P¥(C) and q (= 2N + 2) hyperplanes

2.3) H;:aow, + ajw, + -+ + af'wy,, =0 (1=i=0)

in P¥(C) located in general position. We shall study these maps under
the assumption that f(C®) & H;, 9(C" & H; and v(f,H, = v(g9,H,) for
any i. We define functions

2.4) hy: = F%:|FHe

with holomorphic functions F¥: and F¢ defined as (2.2) for arbitrarily
fixed admissible representations of f and ¢g. By the assumption, each
h; is a nowhere zero holomorphic function on C" and the ratios h;/h;
are uniquely determined independently of any choices of homogeneous
coordinates, representations (2.3) of H, and admissible representations of
f and g¢.

For the case g = 2N + 2, by eliminating fi, -, fxvi 90 s 9nn
from the identities

afi+ -+ ey = hi(aig + -0+ @)
we obtain a relation
2.5) det (@i, -+ -, al "L hal, - -, Ra¥ ;1 <1 <2N +2)=0.
Then, by the Laplace’ expansion formula, we can show easily

(2.6) Among holomorphic functions h; satisfying the relation (2.5) there
18 a relation of the type

Ail--~i1\r+1hi1hi2 e hil\H—l =0 ’

1<61< - <iy+152N +2

where A,,....,,, are non-zero constants (cf., [3], Proposition 3.5).

2.2. Let H* be the multiplicative group of all nowhere zero holo-
morphic functions on C*. We may regard the set C* =C — {0} as a
subgroup of H*. Then, the factor group G: = H*/C* is a torsionfree
abelian group. We denote by [h] the class in G containing an element
h in H*. For two elements h, h* ¢ H*, by the notation » ~ h* we mean
[R] = [R*] in G. '

As an easy consequence of the classical theorem of E. Borel, we
know the following fact ([1], [2] and [3], Remark to Corollary 4.2).
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2.7 Let hyy -+, h,c H* satisfy the relation
ahy, + a*hy 4+ -+ + aPh, =0
for some ate C*. Then, for any h;, there exists some h; (i # j)
such that h; ~ h,.
By (2.6) and (2.7), we can conclude

2.8) Let aj,ay -+ -say,, be elements in H*|/C*. Assume that (2.5) holds
for suitable h, ¢ H* with a; = [h;] and @ @N + 2) X (N + 1) matrix
A = (af) whose minors of degree N + 1 do not vanish. Then, for
oY Gy ccrsiyy A6 <00 <iy,y Z2N + 2), there exist some
Jis v vsdys with 15, <o <jya<2N + 2 and {i - iy} #
{d1s -+ Tws1} such that

Ay Qg * 0 * Ry = O30y~ Ky -
And, we have also
2.9 Let hyyhy ---,h, be elements in H* such that hi*h ... hite C* for
any integers (by, + -+, 4,) (O, ---,0)). Then, for any not identically

zero polynomial PX,--.,X,), P(h,:.-+,h) does mnot wvanish
identically.

For the proof, see Proposition 4.5 in [3].

§3. Combinatorial lemmas.

3.1. Let G be a torsionfree abelian group. Take a ¢-tuple A = (a,,
-+ +,a,) of elements «; in G. We denote by {{a, ---,a,)}, or simply A,
the subgroup of G generated by «, - - -, 2, and t(A) the rank of A, where

t(A) =0 means @, = .-+ = a, = 1 (=the unit elements of G). It has a
basis B, ---,8: (t = t(4)) and each «; is uniquely represented as
(3-1) o = ‘Bitlﬁéﬂ e ﬁf{g

with suitable integers 4,.. We may regard G as a subgroup of G Q;, Q,
where Z and @ denote the additive groups of all integers and of all
rational numbers respectively. Then, we can choose some a,---,a;
among a,, ---,a, as a basis of the subgroup of G ®,; Q generated by
@, -+, as a @Q-module.

(3.2) There exists a basis {8, -+, B} of {{as, - - -, a}} in G such that, for
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suitable i, - - -, 4, and non-zero integers 4., p = a;,, namely, 4;, =0
(¢ # 7) in the representation (3.1).

In the followings, we shall call a basis of A with the property as
in (8.2) to be an adequate basis for A.

For convenience’ sake, we introduce some notations. For the set
I,:={1,2,..-,7}, we mean by a combination ((%, ---,%,)) in I, the set
of integers 4, ---,%, with 1 <4, < ... <¢, <r. And, we indicate by 3,
the set of all combinations of s elements in I,. For an arbitrarily fixed
r-tuple A = (a,, - -+, @,) of elements in G, we use an abbreviated notation

A= Q@ Wy * 0 Ay,

when I = ((il, iz, Tty is)) € '(\\.Sr.x'

DEFINITION 3.3. Let gq=r>s=1. A g-tuple 4 = (o, @,, - -+, ) of
elements in G is called to have the property (P,,) if any chosen r-tuple
A =gy oyay,) Ak <. <k =q, put A’: =(af, -, a7) = (@,
---,a), satisfies the condition that for any I in J, , there exists some
J in §, . with I+ J such that

A=A,

Let A =(ay, -+, be a g-tuple of elements in G with the property
(P,,. To study relations among «;, we choose a basis §,---,p, for
which each «; is represented as (3.1). Then, we can find integers p,,
...,p, such that, when we put

byt =4uDy + ey + - + bupy  A1=i1=0q),
4; = ¢; holds only if
Bary iy -+ 1 8e) = (Byiy Loy 5 £30)
(ct., [3], (2.2)).

LEMMA 3.4. In the above situation, if the indices i of a, are chosen
so that

then

gs = Zs+1 = = eq+s-r+l
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and so
Oy = Ugyy =+ = Qgys_r41 -

For the proof, see Lemma 2.6 in [3].
Since ¢ + s —r+1=s4+1=2 in any case, we have

LEMMA 3.5. For any g-tuple A = (a,, - - -, ), if A has the property
P,,) A =s<rxq)), there exist two distinct indices 1, j such that a; = a;.

3.2, Let us introduce another notation. For elements a;, a, - - -, a,,
af,af, ---,a¥ in G, by the notation

oy cectag=afraf . ra¥

we mean that o; = paf (1 <7< q) for some geG.
Now, we give the following main lemma.

LEMMA 3.6. Let 1<s<q¢=<2s and A= (a, --,a,) be a q-tuple
elements in G with the property (P,,) and assume o, =1 for some 1.
Then,

(i) the rank t(A) of {{ay, - --,a}} is not larger than s — 1,

(i) if A =s8—1, ¢q=2s and a basis B, -+, Bs_y of {{a, -+ -, z}}
can be chosen so that, after suitable changes of indices, a,, ---,a, are
represented as one of the following two types;

(A) s is odd and

eyttt et =111 Bt B Bt Bat vt Beoyt Bsa

B) ayiay: - ay
=1: ...;1:‘81; ...;ﬂs_l;(ﬁl "'ﬁa;)_l:(ﬁaﬁ.l ...ﬂaz)‘lz
...:(ﬁak_”l .Ba;,)_l ,

where 0Sk<s—1, a,—a,_,<s—k (put a,=0) for any t and the
unit element 1 appears s — k + 1 times in the right hand side.

The proof of Lemma 3.6 will be given in the next section.

3.3. We shall show here that A = («, - -+, ;) of the type (A) or
(B) of Lemma 3.6 satisfies actually the condition (P,,,).

Let us consider first A = (o, -+, ) of the type (A). Since s is
odd, for any given combination I = ((i;, - -+, %)) € s, We can find some
a, with 1 <7, <s such that one of «a,, and a,,,, equals some a; and
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the other does not equal any e, «;,, - - -, @;,. Exchanging indices if neces-
sary, we may assume 2z, =14 and 27, + 1 +#14, ---,%,. Then, if we put
J:=((y - +58eyy 279 + 1,000 -+ 45 8) (€Jns,s), it satisfies the conditions
I+J and A; = A,;. This shows that A has the property (P.,,).
We sfudy next A = (ay, - - -, ;) of the type (B). Take an arbitrary
combinations I = ((¢,, ---,%)) € Jps,s» Firstly, we consider the case {7,
et N{,2, s —k+1}#=g. If {1,2,-.,8—k+ 1} & {8, -0
for example, 4, =1, 4, = 2, then a combination J = ((2,4,, - - -, %)) satisfies
the conditions I = J and A; = A;. We assume now {1,2,..-.,8s — k + 1}
C {4, ---,%. Let

ilzl"“yis-—kH:s_k"'1<is—k+2<”
e <y 28— k<, <<, Z2s.

Then, there exists some «;, (4, = 2s — k + 1) with the expression

Ay = (ﬁa5+1ﬂa,+2 ttt ﬂa‘“)“l

for some ¢ (0 <t <k —1) such that a; #a;,,,, -+, ;, and B, # a;,_,,.
-+ +,ay, for any ¢ (@, + 1 = 0 < a,,). In fact, if not, at least one 8, among
®iyprpr = * *» %, 1S used to express each «o; (i=2s — k + 1) with a; # a;,,,,
<oy, as (3.1) and so at least k — (s — 4) elements in {a;,_,,,, -, s}
are necessary. But, the number of elements «;, ,,,, - -,a;, is only &k —
s + ¢ — 1. Therefore, we can choose a suitable «;, satisfying the desired
condition. Then, since a,,, —a, <s — k,

a’ilaia e ai; = @y ¢ as—k+1ai3_k+n N4}

£

=0 as—k—ax+1+a:aio‘8a:+l e ﬁas+1ais—k+a tet Qe
If we define a combination J = ((4,, « - -, 75) € Jzs,s SO that
{ay s Qo aprrram @igs Basrts ** s Bagsw Fig_ynr =+ 9 A} = (@0 Qgay =+ g}

it satisfies the conditions I = J and A; = A,.
It remains to examine the case {1,2,.--,8 — k + 1} N {3}, - -+, %} = ¢.
Let us assume

s—k+1<< 0 . < f28 — k<4, <. <4, 28
Then, there exists some a;,, (4 +1=7,<3) such that

airo = (18‘1«:"("[ vt 18‘1:'4-1)-1
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for a suitable # (0 <+« <k — 1) and each g, (e, + 1 <o < a,.,,) coincides
with a;, A <t <4). In fact, if not, for each «; of «a;,,, -+, a; some
B, with B, e{a;, ---,a;} appears in the expression of «; as (3.1). But,
there are only s — £ —1 B, with 8, # e, - -,a;. So, a suitable a;
has the desired property. Then, if we define a combination J = ((5%,
sy ) € pe,s SO that

{Cfu s g gap 1y Ky 0 0y “i,} - {aio’ Bagsrs * s ﬁa:t'-i-l} = {“ji’ Rgr ** % “ji} ’

we get the desired conclusions I+ J and A; = A,.

§4. The proof of the main lemma.

4.1. This section is devoted to the proof of Lemma 3.6. Let A =
(ay, ---,a) 1=8<q=2s) be a g-tuple of elements in G with the pro-
perty (P,,) and «; =1 for some i. We note here we may assume «;, = 1
for an arbitrarily preassigned 4,, Indeed, we may study a new g¢-tuple
A = (egty - - v, ;) instead of the original A. For, by the assump-
tion, {{ay, - - -, ag}} = {{amai!, - - -, @2} and so ¢(A%) = t(A).

Lemma 3.6 will be proved by the induction on s. For the case
s =1, we have necessarily ¢ =2 and a, = a, (=1), which gives the
desired conclusion. Consider next the case s =2. Then ¢q =3 or ¢ =4
and, after suitable changes of indices, we may assume o, = a, =1 by
Lemma 3.5 and the above remark. If q = 8, taking a combination I =
(1,2) e3,,,, we choose some ((4, 1) € s, With (G, 7)) # ((1,2)) and aye; =
aye, = 1. Then, necessarily, ¢; =1 or o; =1. In any case, @, = o, = @,
=1, whence t(a,a,, @) = 0. For the case s =2 and q = 4, we choose
again a combination ((3, 7)) with (¢, 7)) # ((1,2)) and a;0; = wyer,. If @; =1
or «; =1, we may write

ataptagta,=1:1:1:8
with some feG by a suitable change of indices. And, if «;# 1 and
a; + 1, it may be written
atapiagia,=1:1:p: 871,

where g+ 1. In any case, t(a;, - -,a) <1 and, if e, ---,2) =1, (ay,
.+ +,a,) is of the type (B).

In the following, we assume s =3 and Lemma 3.6 is valid if s is
replaced by a number smaller than s. And, we consider the case t: =
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t(A) > s — 1 only, because, if otherwise, we have nothing to prove. Let
M,: = {i;a; =1} and m,: = $M,, where M denotes the number of ele-
ments in a set M. Since A may be replaced by {wea;}, -, @'} for
any i, we may assume m, = #{i; @, = ;} for any 7 1 <7 =<q). Then,
my, =2 by Lemma 3.5. Now, we take an adequate base f,--:,5;, of
{{ay, -+, 2}} as in (3.2) and express each «; as (3.1) with integers ¢,..
The proof of Lemma 3.6 are given separately for each of the following
two cases;

Case a. For each r 1Y), 4, -+, 4, are all non-negative or
all non-positive.

Case B. For some r, there exist distinct indices 4,7 with ¢,,>0
and ¢, <0.

4.2. The proof of Lemma 3.6 for the case «. For each 7, after a
replacement of B, by p;' if necessary, it may be assumed that ¢,,=0
for any 4. Put

M:={;4,.%+0,80y="---=4;, =0}

and m,: = M, for each A <z £ ¢).
We shall show first the following fact.

4.1) For any subset {c, ---,7,} of the set {1,2,---,t} of indices, m,, +
My + -+ + m,, * 8.

Proof. Assume that m, + ... + m, = s for some z,, ---, 7, and put
M*: = M‘t] U M‘ra U et U Mfu, = {il!im * "7is} ’

wherel <7, < ... <7, Ztand 14, <4,<...<%,<¢q. By the assump-
tion, there exists some J = ((5,, - - -, 7)) € Jg,s such that I = J and
“4.2) O 0y v Oy == Oy Q5+ ++ O

s °

If M,N M* =g, by expressing the both sides of (4.2) with g, ---, 5,
and observing the exponents of g, we see

;51,5=§em=0,

whence 4;, =0 (1<c<s) because ¢, =0 for any ¢ So, M,N{j,
<o, 4 =¢. And, if M, N M* = ¢, then M, C M*. In this case,
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whence M, C {j;,j» -+ +,7:}. In any case, we have
Mt n {iu . "is} = Mt N {jx; "'sjs} .

Cancel «; with 7 ¢ M, in the both sides of (4.2) and observe the exponents
of B;.; of the obtained relation. Then, we can conclude that, if
M t—1 ﬂ M * = ¢,

My D A{ay st = Moy OV {1y -5 G = ¢
and, if M,_, N M* # ¢,
M,,C{g, iy 0 {7, 7.
Therefore,
Mo, UM) O {iy, -yt =M, UM) N {Gy,y 575}
Repeating this process, we get finally
My UM, U -« UMY Uiy, i} =@M U - UM) N{fy, -+, 74

This contradicts the assumption I-=+J. Thus, we have the conclusion
“.1).
We shall prove next

(4.3) Under the above assumption, we hove always t <s — 1. And, if
t =8 —1, then q = 2s and one of the following two cases occurs;
@ my=s—1,m=my=--- =m;_, =1,
b)) my=m;, = -+ =m,_, = 2.

Proof. We define the number ¢, ---,0, so that
malzmagg e gma;'
Since m, = 2 and m, =1 for any o,

2=zq=my+ (m,, + --- +m,)
=24+ m, +{—-1

g m01 + S
and so m,, <s. Take the largest number %, such that

71 =

m*:i=m,+m,+ - +m, <5.

Tug
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By (4.1), m* <s. Assume wu, =t. Then,
s—1=tsm, +m,,+ -+ +m, <s.

So’t:s_l’mﬂz...=mn=1andmo=q—(ml+...+m5)=q_
s+ 1. If q=2s, my=s+ 1 and so the case (a) of (4.3) occurs. For
the case ¢ <2s — 1, we have m; <s. We may put

ot ety =110 010 B et By,

where {8, -+, B;_i} is a basis of {{«;, ---,,}} and 1 is repeated at most
s times. For a combination I = ((1,2, - .-, s)), it is easily seen that there
is no combination J e, with I = J and A; = A;. The case u, =t and
q <28 — 1 does not occur.

Now, let us consider the case w,<t. Then, m* + m,, > s and
m =2. Let v:=4{r:m =1} By @41, m*+v=m*+m,,_,,, +

dug+1 =

coe 4+ m,, <s. So,
vEs—m*—-1=m*+m,, ,,—1)—-—m*-1=m, —2=m,—2.
On the other hand, since m,, = ---=m,,_, =2,
2s = q=my+ m, + (Mg, + -+ +m,,_) + My_ppy + -+ + M)

=24+m,+20—v—-D+v

=m, —v+2t.
Thus, we conclude t <s — 1. Let t =s — 1. Then,

M, =v+28—-26—1=v+2=m,=m,.

We have necessarily #%:=m,, = ... =m,,,, =v + 2. Moreover, we

can show M = m,_ for any ¢ with r <t — v. In fact, if m, < for some
7z with - £ ¢ — v, putting v': =s — m* —m,, we see 0 < v < v and

m* +m, + My s+ 0 M, =38,
which contradicts (4.1). From these facts, it follows that

2s=q=my+ (m, + -+ +m,,_) + My_,, + -+ +m,)
=24+ mE—-—m+2)+m—2
= (s — m + 2)

and so m? — (s + 2)m + 28 =0. Then, M =s or m < 2. We know m < s
and the case m = s contradicts the assumption (4.1). Therefore m = 2.
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This implies that v = 0 and m; = m, = ... = m, = 2. In this case, since
C@)my=q—(m + - +m)<2s—@2s—2) =2,

the case (b) of (4.3) occurs. The proof of (4.3) is completed.

We go back to the proof of Lemma 3.6 for the case (). The con-
clusion (i) of Lemma 3.6 was already shown in (4.3). We shall prove
(ii) under the assumption t =s — 1.

If the case (a) of (4.3) occurs, ¢ = 2s and we may write

iyt et =11 .21 Br 00 By,

where {B,, -+, B} is a basis of {{a), - --,a;}} and 1 is repeated s + 1
times in the right-hand side. This is a special case of the type (B) of
Lemma 3.6.

We assume now the case (b) of (4.3) occurs. Then, changing indices,
we may put

M,:={1,2}y, M,:=1{3,4},---, M, ,={2s—1,2s}
and
g=0=1, ap,= ﬂf’ y Qpepp = i"ﬂém s .35" ’

where 1<7<s~—1 and 4,4, are integers with £,>0, ¢.>0, ¢,.=0
for any o¢,z. Here, we can show that

A*t = (ay,ay - -y y)

satisfies the condition (Py_,,,). In fact, for any given combination
I* = (@, ---,%._,)) of elements in {1,2, ...,2s — 4}, if we take a combina-
tion J: = (G, 7)) €Jps,s With J=T: = (4, -++,%,_,,28 — 1,258)) and
A; = A,;, we see easily

1<, <0. <J, €28 -4<7,,, =28 -1<j,=2s

by observing the exponents of §,_, and §,_, in the expression of the both
sides of the relation 4; = A; with g, 1 =<t < s —1). Therefore, J*: =
((F1s +++575-2)) € Js-4,5—» satisfies the conditions I* = J* and A*,. = A*..
By the induction hypothesis, A* = (a;, -+ -, @y_,) is of the type (A) or
(B). But, there is no possibility of the type (B), because ¢; = 0 for any
t,r and M, =2 0 <o<s—1). So, A* is of the type (A), namely, s
is odd and a,,, = a5, if 1 <7 <s— 3. Now, for a combination I: =
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((3’ 4’ s 2r 4+ 1,27 + 2,28 — 2,25 — 1: 28)) € %23.3 take some J = ((jl? . 'js))

with I # J and A; = A; according to the assumption, where r = § ; 3 .

By expressing A; = A; with g, ---, B,_; and observing the exponents of
Bs—1, we have necessarily j, ,<2s—4, j,_,=2s—1, j,=2s and j,_, =
28 — 3 or =28 — 2. If j,_, = 2s — 2, then there is a non-trivial algebraic
relation among B, - - -, B,_,, which is a contradiction. So, j,_, =2s — 3.
Moreover, if we observe the exponents of B, ---,B,_; it is easily seen
that 7, =3, j,=4,--+,7,_,=2r +2. The relation A; = A; implies
Qg = Ctye_5. For I': = (1,2, ---,2r + 1,2r 4+ 2,2s)) taking a combination
J’ with J’ =1’ and A; = A;,, we can show also a,,_, = a,, in the same
manner as the above. Therefore, A is of the type (A), which completes
the proof of Lemma 3.6 for the case «.

4.3. The proof of Lemma 3.6 for the case 3. Changing indices, for
the exponents ¢,, of g, in the expression (3.1) of «; (1 <7< ¢) we may
assume that

Zu = = Zn++” = = gn++not =0> gn++no+1t = 2&1& ’

where n, =1 and n_: = ¢ — (n, + 1) =1 by the assumption. Moreover,
after a replacement of g, by ;' if necessary, we may assume n, < n_.
We shall show first

4.4) Under the above assumptions, 1<s—n, <n, < 2(s —n,) and
A* = (@py i1y ** * 9 Uy yne) has the property (P, s n.)-

Proof. Since {8, ---,p;} is an adequate basis, a; = g (¢, % 0) for
suitable 4, ---,4,, whence ¢, , =0 for r =1,2,...,t — 1. Therefore,

m=my+E—-—D=z2+C-1D=s.
We have then
N >8s—n,>s—Mm, +n)=8s—(@—n)=n—s=0.
And, since n, <n_,
28 —n)z2s— (M, +n)2q—(@—n) =7

Now, let us take an arbitrary combination I*: = ((¢,,.1, - --,%,)) of ele-
ments in {n, +1,--.,n, + n,}. By the assumption of A = (a,, - -+, ),
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for a combination I: = (1,2, --+,%,,%, 41, * * *»%,) there is some J = ((5,,
<oy 7)) €q,s With J =1 and A; = A;. Observe the exponents of g, of
A; and A,;. As is eagily seen,

j1:1:"',jn+='n+y‘ n++1§jn++1<“'<js§n++/n0'

This concludes A*;. = A*,. for a combination J*: = ((Jj,, i1, * < » 7)) (FI%).
The assertion (4.4) is proved.

Obviously, the system {8, -« -, 8,_,} is a basis of {{ot,, 1» * s ¥y snol}
We can conclude from the induction hypothesis

t—1<s~n, —1=s8—2

and so t<s — 1. This completes the proof of (i) of Lemma 3.6. Let
t =s— 1. Then, by the above inequalities, n, =1 and A* = (@,, .1,
<oy Oy, 4n) 1S Of the type (A) or of the type (B). In any case, n,=
2(s —n,) =2s — 2 and

n.=q—mM+n)s2s—-02s—-2+1) =1,
whence n_ =1 and ¢ = 2s. In this situation, we shall show
4.5) A* cannot be of the type (A).
Proof. Let A* be of the type (A). Then, we may put
oyt ety = 11 Bl Bl ey Bl Bl Byt B .. BT

by a suitable change of indices, where s — 1 is odd and £4,, ¢, are integers
with 4,>0 (1£c<s—1) and /4., <0. Congider first the case that
some /¢, with 1<+t <s— 2, say 4, is positive. Putting r = s/2, for
It =(8,4, -+,2r —1,2r,28 — 1,29)) € Jus,s We take J = (G, * * 5 75) € os.s
such that J #1 and A; = A;. By comparing the exponents of g, of A;
and A,;, we see easily j, = 2s. And, by observing the exponents of B,_,
of them, we have also j,_, =2s — 1. Then, since I #J, we get a non-
trivial relation among 8, ---, fs-,, which is impossible. Consider next
the case ¢, <0 for any z. Take in this case a combination J’ € J,,,, such
that J’# I and A, =A; for I': =(1,2,---,2r — 1,2r) € Jy,. By
comparing the exponents of 5, - - -, ;,_; of the both sides of 4, = 4;., we
have necessarily a non-trivial relation among g, ---,8,_,. This is a con-
tradiction. Thus, (4.5) holds.
To complete the proof, it suffices to show
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(4.6) In the case A* is of the type (B), (@, ---, ) is also of the type
(B).

Proof. Changing indices, we assume A* = (a, -+, a5_,). We may
put by the assumption

Qs 0,s v Dy
=1:eeile B Bt (B Ba) T e (Bpger ot P ) T ey T g
and fl=p A<7t<s—2), ay, = B3, ay = e ... g3 for a basis

{Bis * - +» Bs_i} of {{ay, -+ -, ase}}, Where 1 appears s — k + 1 times repeatedly
and 1<k<s—~1, a,—a..,<s—Fk and 4, --+,4,_y, 4,---,4,_, are in-
tegers with ¢, >0, 4,_,<0. Then, £,=0if 1<r=<a,_,. In fact, for
example, if 4; <0, we have a non-trivial relation among g, - -, 8;, by
observing a combination J € 3, with J =1, A; = A; for I: = ((s — k + 3,
«ee,28 — k,25s —1,28)). Now,forl':=(s—k+2,---,28 -k —1,25 —
1,2s)) let us take a combination J/': = ((4,, - -+, 75) with J' £ 1I', A; = A,.
If 2> 0 for some 7 (1 <7< s —2), then we have easily j, =2s and a
non-trivial relation among g, ---,8;.;. Therefore, 4. <0 for any r (1 <
r < s — 1) and, particularly, 4. =0if 1 <7 < a,;_,. Moreover, as is easily
seen, none of «; (1 <t < s) are equal to ay_x, * * +, A5y 3. If We cancel
out some Of @y .z ***s@pg -1y Xy, i the both sides of the relation
A; = A,;, we obtain

2. _— J—
ﬁﬁ;x “ee 187;11.-11“23 =, 0, (R, = 1 .

where 1<b=s—k+1, a;, <<+ <7,,8s—1 and 1, <
... <g,<s—k+ 1. Changing notations and indices suitably, we may
put

oy = (Blmaft o B
If we replace each p% by B., we get the conclusion that A is of the type
(B). We have thus Lemma 3.6.

§5. The smallest algebraic set including the image of f X g.

5.1. Let f,g be meromorphic maps of C* into P¥(C). Assume that,
for 2N + 2 hyperplanes H,, ---, H,y,, in P¥(C) located in general posi-
tion, f(C" & H,, 9(C» & H; and »(f,Hy) =v(g,H) 1 S <2N + 2).

DEFINITION 5.1. We define the set V;, to be the smallest algebraic
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set in P¥(C) X P¥(C) which contains points (f X 9)(@) = (f(2), 9(z)) for
any zeC" — (I(f) U I(9)), where I(f) and I(g) are sets defined as (2.1)
for the maps f and g.

(5.2) V,, is an irreducible algebraic set.

Indeed, if V,;, =V, UV, for two algebraic sets V,, V, with V, 2V, ,
then 4;: = (f X 9)"'(V,) (¢ = 1,2) are analytic sets in C* and C" = A, U
A,. Since C" is irreducible, C* = A, or C* = A,. Therefore, V,, =7V,
or V,, =17V, which contradicts the assumption.

As in §2, taking admissible representations of f and g, we define
holomorphic functions FZ7, F¥ by (2.2) for each H; 1 <¢ < 2N + 2) and
h; = F¥:/F%, where at least one h; is assumed to be constant by a
suitable choice of admissible representations.

We shall prove now the following theorem.

THEOREM 5.3. Suppose that among the functions hy, - - -, hyy., there
exist 2s functions hy, - -+, hy,, such that the canonical images a,: = [hy],
ceey 0t = [Ry,] of Ry into the factor group H*[C* do mot satisfy the
condition (P,,,). Then, for the number t = t([h], - - -, [Ayy,.))

dimV,, <N —s+t.
Before the proof of Theorem 5.3, we shall give

COROLLARY 5.4. (i) V,, is always of dimension < N.
() If dimV,, = N, the system ([h,], - - -, [hyn,,]) ©n H*/C* has the
property (Py,se.) for the number t = t([h], - - -, Ry al).

Proof of Corollary 5.4. We choose hy, ---,h;, among hy, -+, hyy,,
suitably such that t = t([A,], ---,[hs)). Then, ([],---,[Rk;]) do not
satisfy the condition (P,,. For, if not, t(lh,],---,[h,D<t—1 by
Lemma 3.6, (i). Putting s = ¢, we can apply Theorem 5.3. So, under
the assumption that Theorem 5.8 is valid, we obtain

dimV,, <(N—-8)+s=N.

On the other hand, if some (2¢ + 2)-tuple ([A,], - - -, [hy,,,) A<, <. <
a2 < 2N + 2) do not satisfy the condition (P,,,;.,), we can conclude

dimV,,sN—(¢+1D)+t=N—-1

from Theorem 5.3, which shows the conclusion (ii) of Corollary 5.4.
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5.2. The proof of Theorem 5.3. Suppose that for 2s functions of #,,
ey h2N+2’ say hl’ ] hs) hN-n-z’ ] h'N+s+1, ([h1]7 Tty [ha]» [hN+z], Tty [hzv+s+1])
do not satisfy the condition (P,,). Since functions h; are not changed
by a change of homogeneous coordinates on P¥(C) the hyperplanes H,
may be written as

Hi:ow, + -+ +a/ " wy,, =0 (1=:<2N + 2)
such that o/ =6 1 <4, <N+ 1), where 6] =0 if ¢+ j and =1 if
1 =j. Then, any minor of a matrix (a%,,;.1;1=<1,7=<N + 1) does not
vanish. Let us take functions », - - -, 5, € H* such that {[], - - -, [5.]} gives

a basis for {{[n], - -, [Rw,.)}} in H*/C*. Then each h; A1 <1< 2N + 2)
can be written uniquely as

(5.5) hy = cqpfigy -« - pive (c,€C*, 4;.cZ)

and yipf ... pit e C* for any ¢,e Z with (4,4, -+, 4¢;) = (0,0, ---,0). Put
bypp = —(by + --+ + £;) and define rational functions

H,(u) = cuius™ -+ - ugttyr (1=t =<2N + 2)

of t 4 1 variables u = (u,, --+,%,,,). BEach H,(w) is written as H,(u) =
H;i(u)/H;(uw) with homogeneous polynomials H;(u) = ¢, [[¢1u% and
H;(u) = T[tt1u% of the same degree, where /4 = max({,,0), ¢;. =

—min (4,,,0). Now, we consider the space X: = P(C) X P¥(C) x P¥(C)
and an algebraic set V* consisting of all points

Uy U, W) = (U2 oo 2 Upyyy Dyt v v sV Wyt o e 2 Wy ) EX

satisfying the equations

.6), (;VZII agv,)H;(u) = co(l;j: agw,)H; )

(1=1<2N + 2) for some non-zero constant ¢,, Let n, (: =1,2,3) be
the canonical projections defined as =,(u,v,w) = u, =,(u,v,w) =2 and
o (U, v, W) = w ((u,v,w)e V*¥). We define an algebraic set V** as the
union of all irreducible components V* of V* satisfying the conditions

5.7 M =V =P,
@ w5 UH ad n0H& U H.

And, we put V: = (z, X 7)(V**), which is a subvariety of P¥(C). Then,
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(5.8) V,,cV.

To see this, we recall the definition of %; and the relation (5.5).
For admissible representations f=fi:---:fy,, and g=¢,: -+ :9x.1»
it holds that

N+1

N+1
Y aify = (3 alo) B e ASiS2N+2),
J= =

where 7,,,=1. This shows that, for a holomorphic map 7 = »:7:
-1y, of C* into PYC),

(X fFXPR: = @xR),f(2),9(%)eV* (zeC* — () U () .

Then, by the same argument as in the proof of (5.2) we see easily
(g X f X g)(C™ C V% for an irreducible component V¥ of V*. On the
other hand, by the assumption, f(C*) C z(V¥), g(C") C =V}, f(C" &
U H, and g(C") & UP* H;. Therefore, Vi satisfies the condition (2)
of (6.7). Moreover, by the property of the functions », and the conclu-
sion (2.9), »(C*) does mnot included in any proper subvariety of P:(C).
So, »(C") C n,(V¥) implies =,(V¥) = P*(C). By definition, V} c V**. And,
we see
(f X 9)(C) C (m X 7)(V*H) =V .

We have thus (5.8) by the definition of V, .
Now, consider the equations

N+1

(5.9) JZI; o{(Hw) — Hw)w; = —jglaf(ﬂi(u) — H,(w)w;
WN+2=5j=N+s+1

obtained by substitutions of v, = ¢,H,(w)w; 1 <1 < N + 1) into the rela-
tions (5.6); for t =N +2,..-.,N + s+ 1. We can prove here the fol-
lowing fact, which will be shown later.

(5.10) T(u): = det (@f.iiHyroiw) — H;w);1 54,7 8) %0
By virtue of (5.10), the equations (5.9) can be resolved as
w, = @r(uu ey UppryWsyp1y =00y wN+1) (1 g T= S)

with rational functions @, whose denominators y. may be chosen as
functions of uy, ---;u,,, only. This implies that for any point (u,v,w)
= Uy o T Uy Vit et LV Wit s L W) 1D VER .-, are uniquely
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determined by the values u,, «+ -, %1 Wepry +*y Wy i () #0 A Z 7 L 9).
On the other hand, each v; A <7< N + 1) is determined by u,, « -, %1,
Wy + s Wy,, in view of (5.6); for 1 =1,2,-.-,N + 1 if wu, --- %, # 0.
From these facts, we can conclude the map =n* of V** into C® x CV-¢
defined as

TR(Ups o DUy V1l Uy, Wl e D Whyyy)
—<( ul o ut ) ( ws+1 o w-N ))
- ’ ’ ’ b ’

U 41 Ug 1 Wy 41 Wn 41

is injective if the definition domain is restricted to the range

Uy »+* Uper =0, VW, oo VyF0, WW, - Wy, 0,

(5.11)
x-(u) =0 1=s7r=9).

By definition, any irreducible component of V** intersects with the range
(5.11) in X. It follows

dimV,,<dimV <dimV** <t + (N —s) .

Because, in general, in the case there exists a holomorphic map f of an
irreducible complex space X, into X,, we can conclude dim X, < dim X,
if f is injective on some non-empty open set, and dim X, < dim X, if f
is surjective.

To complete the proof of Theorem 5.8, it remains to prove the
assertion (5.10). To this end, we rewrite ¥'(») as

U(u) = det (I” Ié)
u) = y
A, A’

where I, is the unit matrix of order s and 4 = (@¥***;1<14,5 < 9),
IT=@H,w;1<47<s) and A’ = (0§.i:Hysia@ ;1 =14,§<98). Then,
we see

I, I/
U@): =Ty -+ +,7:, 1) = det ,
(p (7]1 e ) € (A A")

where I;, = (6{}%; 1 = 7/,.7 = s) and A" = (afzjv+1:+1hN+i+1; 1 = 7"3 = 3)- On
the other hand, it is easily seen that any minor of a 2s x s matrix (fi)

of order s does not vanish. If ¥(p) =0, then ([A], .-, [k, [hy.sl,
ooy [hy,s.1]) satisfies the condition (P,,,) by (2.8), which contradicts the
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assumption. Therefore, ¥'(y) 0. We can conclude the assertion (5.10).

§6. Algebraically non-degenerate meromorphic maps.
6.1. We give first

DEFINITION 6.1. Let f be a meromorphic map of C* into P¥(C).
We shall call f to be algebraically non-degenerate if f(C™) is not in-
cluded in any proper subvariety of P¥(C).

As in the previous sections, consider meromorphic maps f,g of C*
into P¥(C) such that for hyperplanes H,, ..., H,y,, in general position
J(CY & Hy, 9(C") & H; and »(f, H;) =v(9,H;) 1 =i=<2N + 2).

6.2) If f or g is algebraically non-degenerate, then the algebraic set
V,,, defined as in Definition 5.1 is of dimension N.

Proof. It may be assumed that f is algebraically non-degenerate.
Obviously, f(C"®) C z(V,,. By the assumption, z(V,, cannot be a
proper subvariety of P¥(C). Therefore

dimV,,=dimz(V,,) =N .
Corollary 5.4 yields dim V,, = N. q.e.d.

Let h; 1 <1< 2N + 2) be functions defined as (2.4) and assume that
at least one of them is constant.

PROPOSITION 6.3. In the above situation, if f or g is algebraically
non-degenerate, there exist elements By, -+, ; in H*/C* such that

(6.4) AR HERR 15T i
:1;1:...:1:‘31;...;pt;(ﬁl...‘gal) ‘;...:(‘Bak_”l...ﬁt)—l,

where 1 appears 2N — k — t + 2 times repeatedly in the right hand side
and t =t(h], -+, [howsdD)s @, — @,y £t —k 4+ 1 (let ¢, =0 and a, = 1).

To prove this, we need the following
LEMMA 6.5. Assume that h, 1 £1 < 2N + 2) are represented as
hy = eqiogss - - pit (¢, € C*, 4y, e Z)

with functions u,, ---,7,€ H*, where t = t([h,], - - -, [hyy,.)). Then, there
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18 no possibility that, for some z, exactly one of integers £y, Ly s bonrro
28 not zero and the others vanish.

Proof. Without loss of generality, we may assume
by =4y =+ =by,, =0, oy = 1.
Ag is stated in § 2, there is a relation (2.5) among #,, - -+, fiuy,,. Therefore
det (a}, - -+, 0, aiH (p), -+, 0¥ V"' Hy(p); 11 <2N +2) =0,
where H;(y) are given by substitutions of u, = 5, into
H,(w) = cufulps - - - ufee .
According to (2.9), we have then
det (@}, - - -, 0¥ alH,(u), -+, i "H,(u); 1 St <2N +2)=0

as a rational function of u,, ---,u%,. Substitute #, = 0 into this identity.
We get by the assumption

a'}’ tt a/f”l: G,}Hl(’l,L), ct %y a:llv+1H1(u)
det o =0.
1 1 1 1
Qawsrs ** > Oanens Gy (W), « « +y A H oy 1 (W)
a%l\mzy Ct aﬁvj;-lz’ 0’ tt 0

It then follows

1 N+l 1 N+1
Qs a7, aih,, ce 0ty
det =0.
1 N+1 1 N+1
Conans ** > Oanrs  Gaweallowsts © 0 oy Qo Ray 1
1 N+1
Oiyigs =5 Ooyees 0, ey 0

In this situation, by the well-known argument any solutions (@, «+ -, Zx 11,
Yy *+»Yn,1) Oof the linear equations

N+1

S iz, = 3 alh@)y, (A <i<2N+1)
Jj=1 J=1

satisfy simultaneously an equation

N+l
> Wiy sy = 0
j=1

for any fixed z. In particularly, the identities
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N+1

Salf ) =3 alh@g, )  (1SEi<2N + 1)

j= j=
yield

N+1

3 alval 1= 0.

This shows f(C*) C H,y,,, which contradicts the assumption. We have
thus Lemma 6.5. q.e.d.

6.2. Proof of Proposition 6.3. By the assumption and (6.2), dim V, ,
=N and, by virtue of Corollary 5.4, (ii), the system ([2], - - -, [fx,.])
satisfies the condition (P,,,;,). In Lemma 3.4 considering the case

=2N + 2, r =2t + 2 and s =t 4+ 1, we can conclude that 2N — 2t 4+ 2
elements of [#,], - --, [h,uy,,] are equal to each others. By suitable choices
of an admissible representation of f and indices, we may assume

Ry ~hy~Rypys ~ oo ~Ryyyy~1.

Then, A: = ([k], - - -, [hy,.]) satisfies the condition (Py,,,..,) and t = t(A).
According to Lemma 3.6, ([&], -- -, [Ay,.]) is represented as one of the
types (A) and (B) of Lemma 3.6, (ii) if we put s =¢ 4+ 1 and «; = [h].
For the case of the type (B), we may put by a suitable change of indices

[Ad:Thy]: - [h2N+2]
=1:1:"':1:181:"':ﬁt:(ﬁl"'ﬂal)—lz"':(.Ba.k_l-fl"'ﬂak—l’

where 1 appears 2N +2 —(t + k) times and a, —a,_, <t 4+ 1— k.
Moreover, by Lemma 6.5 there is no possibility a, <t. We have the
conclusion of Proposition 6.3.

Let us consider the case A is of the type (A). We may put then

(6.6) [Rd:lhy): - by d =11 Bt By ev s BByl -l

with suitable 8, - .-, 5; in H*/C*, where ¢ is an even number. We shall
show here ¢ = N. Suppose ¢t < N. As was already seen, any chosen
2t 4+ 2 elements among [h], - - -, [h,x,.], Darticularly, a;: = [k, -, a1
= [Ry1], @yt = [hy,,] satisfies the condition (P,,,,.,). For a combina-
tion I = (1,2, ---,%2t + 2)) € Fotvrcer Observe J = (7, +++5 Teu1)) € Sasazeen
such that J 1 and

Uy * 00 Wy = O &gy 00 Rgpyy o

https://doi.org/10.1017/5002776300001758X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001758X

MEROMORPHIC MAPS 139

Then, we have necessarily a relation among g, - - -, 8, because ¢ is even.
This is a contradition. Thus, { = N.

To complete the proof of Proposition 6.3, we shall prove that (6.6)
cannot occur for ¢t = N. Assume the contrary. Changing indices, we
may put hy,, =1 and hy,; = ch; A <t<N + 1) for some constants
¢, € C*, where [h], - - -, [hy] give a basis of {{[i], - -, [Aw,.1}}. Moreover,
for these choices of indices, given hyperplanes

H;:aw, + a2w, + -+ + a¥'wy,;, =0 AZi1<2N + 2)
may be assumed to satisfy the condition that a/ =6/ A <14, <N + 1.
Then, by substituting f, = h;9; A <1< N + 1) into the identities
N+1 N+1 . .
6.7, Z:l rinnS; = c:hy (Z:l a1]V+i+1gj> 1<i=N+2),
Jj= Jj=

we have relations
ah, + athy, + -+« + alhy + a1 =0 1=5i=N+1D,

where

N+1

ol t = Qfy1419; — 0] (Z‘; alj;r+i+lgj) .
=
Eliminate #%,, - --, hy from these equations. We obtain
x5 - 9 =det (@154, /S N+1)=0.

By the assumption, we may consider g to be algebraically non-degenerate.

So, there is no non-trivial algebraic relation among ¢, -+, 9y, This
implies that y vanishes identically as a polynomial of independent vari-
ables ¢,, -+, gy.:. In particular, for any ¢, if weput 9, =1, 9, = --- =
gir1 =91 = ' =9yu=0,

X(07 "':0’1’0, "'70)

= (=D%¢, -+ c;.i(1 —€)Cipy v+ Cyy 1O - - Giyyy =0

Therefore, ¢, =¢, = --- = cy,; =1, because a}+# 0 by the assumption
that H,, ..., H,y,, are located in general position. Since

det(@/; 1<%,/ <N)=0

by the algebraically non-degeneracy of g, we can solve the functions #;,
from N equations (6.7); 1 < ¢ < N) by the well-known Cramer’s formula.
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For example, we get h, = 1. This contradicts the fact that ([h], - - -, [hy])
is a basis of {{[r,], ---,[hw..]}}. We have thus the desired conclusion.
Proposition 6.3 is completely proved. q.e.d.

Remark 6.8. We cannot assert that all cases of the conclusion of
Proposition 6.3 occur. In fact, for example, in the case N = 3, the only
case t =3, k=3, a, = a, = a, = 1 is possible (cf., §7.2).

Proposition 6.3 can be restated in a form not including the functions
h; explicitly. In the same situation as in Proposition 6.3, we consider
holomorphic functions F% = 3 7*aif, and FZ =Y alg, Q<
2N 4 2) defined as (2.2), where

H:ajw, + -+« + o wy,; =0

and f,g have admissible representations f = fi: fo: -+« fyr, 9 =01 9,:
-+ gn, respectively.

THEOREM 6.9. If either f or g is algebraically non-degenerate,
there are relations between f and g such that, after a suitable change
of indices,

Fo = oF, ... F = o Fi

FA}UH e F?u-a,Fl}ewn — 04+1Ff‘“ e Ff‘+a1F{IIIl+t+l
F?H%H cee F?H%F?HH’ = cHzFf’fﬂaln e Ff‘*“iFf‘““
Flf‘“k—l“ e F?u—sF?m-n — chFgua,,_lﬂ e Ff“"‘Ff’”"" ,

where ¢;eC*, 0 Z<tEN, 254N+ 1L,k=2N—-4—-t+2,0, —a,_, <
t—k +1 (put a, =0, a, = t).

The proof is evident by Proposition 6.3 except the assertion £ <
N + 1. This is due to the fact that, if /=N 4 2, f is (linearly) de-
generate as was shown in the proof of Theorem II in [3], p. 12.

6.3. Now, we give the uniqueness theorem of meromorphic maps
stated in §1.

THEOREM 6.10. Let f,9 be meromorphic maps of C™ into P¥(C)
such that f(C") & H;,, g(C") & H; and v(f,H,) =v(g,H,) for 2N + 3
hyperplanes H,; in general position. If f or g is algebraically non-de-
generate, then f=g.
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Proof. Assume that f == ¢ and consider the functions h;, - -+, hyy,s
defined as (2.4). By (2.8) and Lemma 3.4, there are at least three
mutually distinet indices, say 1,2,8, such that h, ~ h, ~ h;. Apply Pro-
position 6.3 to maps f,g and 2N + 2 hyperplanes H,, ---, H,y,,. After
a suitable change of indices, we may put

[R]: et [Rywys]
=1:1: ...;1;‘31; ...;ﬁ&;(‘gl...‘gal)‘lz .":(ﬁak—l'l‘l.‘.ﬁt)_l’

where B, -, 8, € H*/C*, t =1t(h], -+ +,[hw,s]) (Z21), 1S, < -0 <oy,
<t and 1 is repeated 2N + 2 — t — k times. Then, if we take functions
ns with [p] =8 (1 =<i<1?) and represent functions »; 1 <¢<2N + 2)
as

hy = e -« ppt (c;eC*, 4y;e2),

loweo-re =1 and ¢, = 0 for any other ¢ because h,y,, is omitted. This
contradicts Lemma 6.5. Thus, we can conlcude f=g. q.e.d.

In Theorem 6.3, the number 2N + 3 of given hyperplanes cannot be
replaced by 2N + 2. In fact, we can construct two distinct algebraically
non-degenerate moromorphic maps f and g of C® into P¥(C) such that
vw(f, H;) = v(g,H;) for 2N + 2 hyperplanes H, in general position. Put
N = 2M in the case N is even and N = 2M 4 1 in the case N is odd.
Take 2N + 2 hyperplanes H,, ---,H,y,, defined as (2.3) which are located
in general position and satisfies the conditions;

(i) ef=9¢ (A=4,/=N+1D,

(1) Ofrareier = QX1 O 101 = Qrrinn Q=47 M),

(i) a¥iii=aiy,, =1 1=<t1<N+1) in the case N is even and
OF st = ANiters ONTirair: = ONairy Ohyer = Oanhay Giyee = —03hs IS0
M), a.. = adFl, a¥y., = —adyl in the case N is odd.

And, choosing algebraically independent functions 7z, --:,7» in H*, we
put

(7];k,7];k’ . ",v;klv-n): = (7)1, . ":vM,nl—lf "',771_4‘1:1,77M+1, o ',7]2M’ﬂ;{1+1, . ')ﬂi?)j:l)

in the case N is even and

(vik,’?;k’ "”0§V+2)

= (7717 . ',77M’77f1: .. "?Ill’vNﬁ?;llﬂ?MH’ b "772M’77;ll+1, . ’9772-1}, 1, _'1)

in the case N is odd. We define meromorphic maps f = fi: fo: -+ - : faon
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and g = ¢,:9,: +--: gyy, 0f C* into PY¥(C) by the condition
N+1

(6.11) 2. Blg; =0 (@A=Zi<N)
i=1

and
Ji =19, 1<i=N+1,
where
Bt = drisi@Frins — 77) -
As is easily seen,
det(8)) =0.

Therefore, in addition to (6.11), we have
N+1 N+1
2. 0lf;=qf (Z} afgj) 1<i<2N +2)
Jj=1 j=1

and so f and g satisfy the desired conditions u(f, H,) = v(g, H),)
1<1<2N + 2).

§7. Meromorphic maps into P*C) or P*(C).

7.1. In the last section of the previous paper [3], the author in-
vestigated the possible types of relations between two meromorphic maps
f and g of C" into P¥C) satisfying the condition v(f, H,) = v(g, H;) for
six hyperplanes H, (1 <7< 6) in general position. In this place, we
shall study them for the possible cases more precisely under the assump-
tion that f or g is algebraically non-degenerate. In the following, we
shall exclude the trivial case f=g.

According to Proposition 6.3, the functions ;: = F¥/F% (1 <7 < 6)
defined as (2.4) may be assumed to be written as (6.4) with some g,
-+, B, in H*/C* after a suitable change of indices, where t = t([A,],
<.+, [h:)). Here, 1 appears at most three times by the assumption f = g.
So, ¢ = 2 and there are only two possible cases;

(a) [hl]:"':[hﬁ]=1:1:1:ﬁ1:182:(181ﬁ2)_1’
B [kd:---:lhd =1:1:8:8,: 67" Bt
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Let us study first the case (@).*’ By suitable choices of homogeneous
coordinates on P*C) and admissible representations f =f,:f,:f; and
9=29::9.:9; We may put

H:w,=0 t*=1,2,3)
a.D H,:ow, + bw, + w; =0
H;: cw, + dw, + w; =0
Hy:w, +w,+w, =0
and
(7.2) fl = xlgl?fz = ngzyfa = U3

F?‘ = %Ff‘, FI;S = 772F£h’ F?“ = x3(771772)_1F{,1“ s

where a,b,c¢,d, @, %, %€ C*, n,9,€ H* with ([y], [y]) =2 and F%, F%
are holomorphic functions defined as (2.2) for the above H,, f and g.
We have then

FEFoF = g FHFasFis

Here, the left hand side can be rewritten with g, 9,, ¢,. Since g may
be assumed to be algebraically non-degenerate, this is regarded as an
identity of polynomials of independent variables g¢,,9, 9.. By the
uniqueness of factorization of a polynomial each factor in one side of
this identity coincides with some factor in the other side. From this
fact, we can conclude easily

=0, =0, =1

and

after a suitable change of indices, where » denotes a primitive third
root of unity. Then, by eliminating f,,f,, f; from the relations (7.2) and
resolving ¢,, 9,, 9. we obtain

9=0110,:9,=1+ wzﬂl + wny,: o + 7+ w’)ﬁz:a)(l + o+ 771772) ’

*) In [3], pp.21 ~22, some statements should be corrected. By corrected calcula-
tions given in this paper the relation (7.4) in [3], p.21 has a system of solutions with
the desired properties as an equation with unknowns ¢t and a’}. The type

(hla %y h6) = (1 »C2,C3, h, h* ) G4(hh*)_l)
should be called to be of the type (VIII).
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which is algebraically non-degenerate. And, if we consider a trans-
formation

Li: W w,: Wy — oW, : 0*W,: W,

of P¥C), f and g are related as L,-g = f. We note here that L, is a
projective linear transformation of P%C) onto itself which maps hyper-
planes H,,H,, ---,H; onto H,, H,, H,, H,, H;, H, respectively.

Let us consider next the case (f). For the given hyperplanes (7.1)
and the above functions f;, g;, F'7* and F}¢, we may put

Si=n0, =m0, fi=40

(7.3)
Fiv=ymi'g,, FP=yp'Ff, F¥ =yl

after a change of indices, where ¥,, ¥, y;€ C*, 5,79, € H* and t([5], [7.])
= 2. By eliminating f;, g; from these relations, we get

a("ﬁ —Y) b(’?x")z — %) mn—U

0(7717]2 — Yy d(77§ - yz) N — Yo| = 0,

n — Y, N — Y3 1-—’!/3
which may be regarded as an identity with independent variables 7,,7,.
By elementary calculations we see

hW=Y=Y=1, b+c=2a, a=4d.
On the other hand, we have by (7.3)
Ji= 0,
Silefy + bf, + 1) = gi(ag, + by, + g5

Jlefy + afy + 1) = g.cg, + dg, + g5)
H+Te=0+ 09,

ag, + b9, + 95
b—a
case f=g¢. For the latter case, we obtain

which implies f; = g, or f, = The former is the excluded

9=01:9:9:=1—npip —1:(@— by +ap, —ap, + b —a

and maps f and ¢ are related as L,-g = f with a projective linear
transformation

aw, + bw, + w, , cw, + dw, + w,
b—a ) c—d

L,: w:w,: wy,— LW,
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of P¥C) which maps H,,H,, ---,H; onto H,,H,, H,, H,, H,, H,, respectively.

7.2. We shall study next algebraically non-degenerate meromorphic
maps f and g of C® into P} C) such that f=%g and v(f,H, = (g, H;)
for eight hyperplanes H; (1 <1 < 8) in general position. For the func-
tions #; (1 <7 < 8) defined as (2.6), since we have only to consider the
case t = t([h,], ---,[Rh]) <4, the possible cases of Proposition 6.3 are
reduced to the following four types;

(T) [h1]:"':[hs]=1:1:1:1:,31:.32:.83:(.31,32[33)—1,
@ [hd:---:lhl =1:1:1:1: B Bt B Bt

) [hq]:"'3[hs]=1:1:1:.31:,82:(,31.32)_1:I93: A
© [de---:lh] =11 B Bt Bot Bt Bet Bt

We can choose homogeneous coordinates on P*C) so that

Hi:w;,=0 t=1,23,9

7.4 .
@9 H;,,:adw + dw, + ddw, + abw, =0 (7 =1,2,3,4),

where we may assume af = 1 whenever ¢ =4 or j = 4.
For the case (y) or (§), meromorphic maps f=f,:f;:fs:/f, and
g =0.:9,: 9,9, are related as

(7.5) Si=20, [o=2:0:, [s=%9;, [i=0,

with some z,,x, x,€ C*. Let us consider the functions F% and F¥:
defined as (2.2). We obtain a relation

FIsFEppes = g FsFHe i pHe

in the case (y) and

FIsFEs = g5

F#F% = s F,
in the case (9), where =z, x;, 25 C*. By (7.5), the left hand sides of
these relations can be rewritten with ¢, ---,9, By the assumption, g,,
--+,9, may be considered as independent variables in the obtained rela-
tions. In both cases (y) and (5), by comparing the factors of the both
sides of these identities as in the consideration of the case (@), we can
conclude that all possible choices of constants af with the desired pro-

perty contradict the assumption that any minor of the matrix (af) does
not vanish. The cases (y) and (6) are both impossible.
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Next, we shall study the case (¢). We may put then
fi=o0, Jo=20:, Js=2a0m)7'95, Ji= 25’0,
4 4
Siaif, =7 (5ate) G=1234
J= J=

after a change of indices, where x,, - - -, z,€ C*, 7,1, 7, € H*, t(y.], [.],
[7]) = 8 and, for convenience’ sake, 7, = 1. Eliminating f,, -,/ 9
-++, 9, from these relations, we get

det (ai(p; — @), 0i(n; — %), G}y, — Ty s — 31 21 <4) =0,

which may be regarded as an identity with independent variables 7, 7,, ;.
Substitute », =5, = 9, = 1. By the assumption for of, we obtain z, =1,
2,=1, ;=1 or 2,=1. Let 2, =1. If we put 5 =7 =1, we see
2, =1or 2,=1. For the case z, = 2, =1, we get by substituting », =1
an absurd identity

(@205 — agaz)(@i — D0y, — D(ps — D, — @) — ) =0 .

And, the case , = z, = 1 is reduced to the case z, = 2, = 1 by substituting
n; = 1. Thus, the case , = 1 does not occur. By the same argument,
we can show that the case z, = 1 is also impossible. Moreover, the case
2, =1 and the case z, =1 are reduced to the case #, =1 or z, =1 by
substituting 5, =, =1 and 7, = 5, = 1 respectively. Concludingly, there
is no possibility of the case (¢).

As was shown above, the case (¢) only is possible. In this case
f=fitfeifoifiand 9 =9;,:9,: 95 9, may be considered to be related as

Ji= w9,

4 4
Siatsy = (3 ale))
=1 =1

(7.6) I=si<4

after changing indices, where x,, ---,z,€ C*, 5,9, 7;€ H*, ([, [p.], [ps))
=3 and 5, =1. As in the case (¢), we have an identity

1.0 det (a{(pim; —2); 154,749 =0,
with independent variables 7,,7,,7, and we can conclude that
x1=x2=x3=1, x4=—1

by substituting suitable particular values of 7,7, %, into (7.7). Here, we
can find constants a/ such that (7.7) holds identically regarding 7,7, 7,

https://doi.org/10.1017/5002776300001758X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001758X

MEROMORPHIC MAPS 147

as independent variables and any minor of the matrix (af) does not
vanish. And, for hyperplanes H,; defined as (7.4) with these constants
o we can take two distinct algebraically non-degenerate meromorphic
maps f and ¢ such that u(f,H, =v(g,H,) 1=<1<8). We note here
the example for the particular case N =8 given in §6.3 is a special
type of the case stated here. As is easily seen by (7.6), the set V,,
given in Definition 5.1 is included in an algebraic set

2 (24] a{z,) = w;, <Z4] a{w,) t=1,2,3)
j=1 Jj=1

V, zi+a+z+2.=w +w+ w + w,
2y = —W,,

where (2,:2,: 255 2, w;: w,: w;: w,) is a system of homogeneous coordinates
on PXC) X PXC). The author does not know geometric meanings of the
condition (7.7) for constants a/ and the algebric set V. Further studies
in this direction are expected.

Added in proof: Recently, the author found a gap in the proof of
Lemma 6.5. This is filled by the more precise study of possible types
of h’s. The details are to be published elsewhere.
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