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Bounding energetic growth of gyrokinetic instabilities is a complementary approach to
linear instability analyses involving normal eigenmodes. Previous work has focused on
upper bounds which are valid linearly and nonlinearly. However, if an upper bound on
linear instability growth is desired, these nonlinearly valid bounds may be a poor predic-
tor of the growth of the most unstable eigenmode. This is most evident for the simplest
of instabilities: the ion-temperature-gradient (ITG) mode in a slab geometry. In this
work, we derive energetic upper bounds specifically for linear instability growth, focus-
ing on the slab ITG. We show that there is no fundamental limitation on how tightly
linear growth can be bounded by an energetic norm, with the tightest possible bound
being given by a special energy comprising projection coefficients of the linear eigen-
mode basis. Additionally, we consider ‘constrained optimal modes’ that maximise energy
growth subject to constraints that are also obeyed by the linear eigenmodes. This yields
computationally efficient upper bounds that closely resemble the linear growth rate, cap-
turing effects connected to the real frequency of instabilities, which have been absent in
the energetic bounds considered thus far.
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1. Introduction

Most studies of gyrokinetic microinstabilities are concerned with linear eigen-
modes of the gyrokinetic equation, solutions that evolve in time as exp(—iwt), where
w=w;+1y is a complex frequency. If y > 0, these modes grow exponentially as
t — o0 in the absence of any nonlinear interaction. The linear eigenmodes of the
gyrokinetic equation are famously diverse and contribute to the richness of gyroki-
netic theory but also complicate the computation of instability growth rates. For
instance, it can be difficult to distinguish modes of different types (Kammerer, Merz
& Jenko 2008), which react differently to changing plasma parameters. Recently, a
new approach for studying microinstabilities has been developed in a series of papers
(Helander & Plunk 2021, 2022; Plunk & Helander 2023), in which instability growth
is instead bounded from above by the growth of optimal modes. These modes are
distinct from linear eigenmodes and are derived by choosing an energetic quadratic
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norm of the gyrokinetic system, say E, and seeking the distribution functions that
maximise the normalised instantaneous growth of this energy, A= (2E) 'dE/dt.
The growth of the fastest growing optimal mode, A, provides an upper bound
on the allowable instantaneous growth of the system, and if the energetic norm
considered is chosen carefully (such that it is invariant over the sum of nonlinear
interactions) this bounds the growth of the linear system at each scale and bounds
the nonlinear growth of the system when all scales are accounted for. The growth of
the most unstable linear eigenmode at each scale necessarily satisfies

y < Amax- (1'1)

Although turbulence is a fundamentally nonlinear phenomenon, linear eigenmode
analyses is often an informative endeavour, perhaps more than one would expect.
This is evidenced by extensive gyrokinetic simulation work (Dannert & Jenko 2005;
Pueschel er al. 2016; Hatch et al. 2011, 2016) that shows that linear eigenmodes
often survive nonlinearly. This observation forms the basis for quasilinear theory,
which has proven to be a useful tool in modelling turbulent transport (Bourdelle
et al. 2007; Giacomin et al. 2025).

Until now, the gyrokinetic optimal modes have been computed with both linear
and nonlinear growth in mind, often leading to large differences when the upper
bound is compared with linear growth rates (Podavini et al. 2025). This is most
evident for the classic case of instability driven by an ion-temperature gradient (ITG)
in a uniform magnetic field (i.e. the slab ITG mode), for which Plunk & Helander
(2023) found that even a resonance-informed upper bound exhibited vastly different
qualitative behaviour to the linear growth rate at small values of the temperature
gradient. In this work, we explore ways to specialise the optimal mode analysis for
the purpose of bounding linear instability growth, focusing specifically on the slab
ITG mode, which exemplifies the shortcomings of the upper bounds considered thus
far for the purpose of bounding linear instabilities.

Our work consists of two main parts. Firstly, we pose the question ‘how tightly
can linear eigenmode growth be bounded by optimal modes’ and find that the opti-
mal mode growth spectrum can be made to correspond exactly to the growth rate
spectrum of linear eigenmodes, giving a one-to-one correspondence between linear
eigenmodes and optimal modes for this special energetic norm, which we refer to as
the Case-Van Kampen energy.

With this theoretical result underfoot, we then seek simpler upper bounds on lin-
ear instability growth by considering what we refer to as constrained optimal modes.
This approach results in a low-dimensional, linear system of gyrofluid-like moment
equations. The growth of these constrained optimal modes exhibits a dependence on
key instability parameters that is qualitatively very similar to the linear eigenmodes
in the slab ITG case, even exhibiting a critical gradient which arises due to reso-
nant stabilisation, despite the low-dimensionality of the system. Unlike traditional
gyrofluid theories, which often involve an ad hoc closure to capture these effects,
the constrained optimal modes make no such approximation, providing a rigorous
bound on fully kinetic linear instability growth.

2. Linear gyrokinetic equation

Here, we concern ourselves with the electrostatic limit of the gyrokinetic equation
in a flux tube geometry, where the fluctuations are periodic in the directions perpen-
dicular to the magnetic field, which is given by B = Vi - V. In these coordinates,
Y acts as a ‘radial’ coordinate (in the sense that the plasma gradients will be in the
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coordinate 1), and « is binormal to the magnetic field and the gradient direction.
The coordinate along the magnetic field lines is denoted by /. Because we wish to test
the limits of the optimal modes’ ability to bound the growth of linear instabilities,
we must consider a scenario where the linear eigenmodes are well understood.’ To
this end, we consider the case of a uniform magnetic geometry (henceforth called
the ‘slab’ geometry), in which a single Fourier mode along the magnetic field line
can be considered, such that d/0] — ik.

Moreover, we consider only a single kinetic species, focusing on the familiar
limit of kinetic ions with adiabatic electrons (Kadomtsev & Pogutse 1970; Biglari,
Diamond & Rosenbluth 1989; Plunk et al. 2014). In this scenario, the gyrokinetic
equation becomes

ad eFy (0
a—f-l—iv”k”g:Tio (E—i-iwf) . @.1)
Here, g =g(u, E, k., k) 1s the (Fourier transformed) non-adiabatic part of the per-
turbed ion distribution function. The phase space variables are the particle energy
E =mv*/2 and the magnetic moment u =mv?/(2B), where v> =v} 4 v}, m =m,
is the ion mass, v, and v are the components of the particle velocity in the plane
perpendicular to, and parallel to B, respectively. The ions are assumed to have a
Maxwellian background distribution Fy =n(¥)/(vim/?) exp(—v*/v2) with a num-
ber density n(yr), where the ion temperature 7; enters via the thermal speed vy =
2T;/m and T; = T; (). The plasma gradients enter via the energy-dependent dia-
magnetic frequency o! = w,(1 + n[v?/v: —3/2]) where w, = (k,T;/e)(dInn/dy)
and n =dInT;/dInn, with e the ion charge. The Bessel function of the first kind
Jo, which arises due to the gyro-average, has the argument J, = Jy(k v, /£2) where
2 =eB/m. The system is closed by quasi-neutrality

2 o0 o0 00
%(1 +r)¢=e/ dv”f dvlvl2ngJo=e/ gdvy, (2.2)
i —00 0 —00
where ¢ is the Fourier transformed electrostatic potential and t is the ion-electron
temperature ratio T = T;/T,. Additionally, we have defined the reduced distribution
function g(v)) =27 [, vigJodv,.
Because the wave—particle resonance is one-dimensional in phase space in a slab
geometry, we may integrate (2.1) over v, to express the gyrokinetic equation in
terms of g. This yields

g . _ eF, . s .

— tivkig=— |G| - tio.(1+nlx —3/2) ) +ionG ¢, (2.3)
ot T ot

where F, =n/(vTﬁ)e7”ﬁ/”% and x; =v;/vr. The functions G, and G, can be
written in terms of the familiar I, (b) = I,(b)e~® functions of gyrokinetic theory
where 1, is a modified Bessel function and b = k? p? with p = vy/ (£2+/2) (see Plunk
& Helander (2023) for specifics)

G1o(b) =Ty (D), (2.4)

G12(b) =TIy (D) — b[Iy (D) — I'(b)]. (2.5)

n fact, as we will see later, we actually require complete knowledge of the infinite set of linear modes to
achieve our tightest bound on linear growth.
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The linear eigenmodes of (2.3) have been well studied (Kadomtsev & Pogutse 1970;
Plunk et al. 2014) allowing clear comparison between the linear growth rates and
the bounds derived here.

3. Tightest possible energetic bounds

Before attempting to tailor the optimal mode analysis to bounding the growth of
linear instabilities, we will determine whether there is a fundamental limitation of the
optimal modes when it comes to bounding linear eigenmode growth. In other words,
how tightly can the growth of the linear modes be bounded by the instantaneous
growth of an energetic norm? To answer this question, we will leverage techniques
that are seldom used in gyrokinetics (Heninger & Morrison 2018; Plunk 2013, 2015).
We begin by defining f =g — eFyG 100/ T;, allowing us to write (2.3) as

8f . . / /
EJrlvukuf:—lkS(U»kab)/f(v”)dv”, 3.1
where we have used quasi-neutrality to close the system in terms of an intergo-
differential equation and defined

Fy
I’l(1+T—GJ_0)

Wy

S(U”) = kH

|:UGJ_0 - (GJ_O(I + U(xﬁ —3/2))+n Gu)] . (32

where we have suppressed the dependence on other parameters e.g. k; and k.
Equation (3.1) is equivalent to the linear system studied by Plunk (2013) with the
additional inclusion of finite-Larmor-radius effects.

3.1. Case—Van Kampen energy
The linear eigenmodes of this equation satisfy

(a’—Uuk)f=k||S(Un)/f(v|’|)dv,’,, (3.3)

where w =w, +iy is the eigenvalue. We may also set the normalisation of the
solutions to

f f(l)“)dl)“ =1. (34)

Equation (3.3) admits, depending on the choice of parameters (i.e. k, w,, n , b and
7), a discrete set of damped and unstable modes (see Appendix A) which come in
conjugate symmetric pairs (due to the time reversal symmetry of the kinetic equation
without collisions) which we denote as

Sa=Sp/(w,/ky —vy), (3.5)
and a continuum of singular undamped ‘Van Kampen’ modes with y = 0 which we
denote as

Jo=PLS()/(@/ky —v)]+ L@)8(w/ k) —v)), (3.6)

where P symbolically indicates that the Cauchy principal value should be taken upon
integration. Integrating (3.3) for a discrete mode yields the linear dispersion relation
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for the slab ITG mode

1-— /Oo Mdv“ =0. (37)

00 Wn — VK|

In the case of the continuum modes, integrating (3.3) does not constitute a dispersion
relation, due to the singularity at vy = w/k, and instead sets the normalisation of
the singular modes that determines A(w) (see van Kampen & Felderhof 1967)

A(w):l—P/mdv (3.8)

I-
w — vk

This system is directly analogous to the system studied by Case and Van Kampen,
where it was shown by Case (1959) that this set of linear eigenmodes, comprising
the discrete and continuum modes, is complete, in the sense that any distribution
function f (v, t) can be written as

P00 = a0 )+ [ Aw.0 k) do, (3.9)

The coefficients of this eigenmode decomposition can be computed by exploiting the
orthogonality of eigenmodes with respect to the eigenmodes of the adjoint equation
of (3.3) (given in Appendix B), which we denote as f, and f, for the discrete and
continuum branches, respectively.

We now wish to use these features of the kinetic equation to construct an energetic
norm which is ‘aware’ of the linear eigenmodes in which we are interested. To do
this, we first project (3.1) onto the basis of discrete eigenmodes by applying

| Y
C / S (. )dvy, (3.10)
and noting that w, must satisfy (3.7). This yields the simple relation
da,
o7 iw,a (3.11)

which implies that

d
EZlanP:zZynlanF» (312)

where we have summed over all the discrete modes. Equation (3.12) states that
the amplitudes of the projection coefficients all grow in time according to their
growth rate y,. Next, we turn our attention to the continuum modes. Performing the
projection in a similar manner as for the discrete spectrum and recognising the nor-
malisation condition of the Van Kampen modes gives dA(w, t)/0t = —iwA(w, t).
Because w is purely real for these modes, we have

%f |A(w, 1)]*dw = 0. (3.13)
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Now by combining (3.12) and (3.13) we can construct what we will refer to as the
Case-Van Kampen energy, which we define as

E:Z]%@V+/M@JW®L (3.14)
The energy balance equation for E is now simply
dE 5

EZz;ynlanl . (315)

The energy E constitutes a positive definite norm of any distribution function f(v;)
due to the completeness of the eigenmodes. For a given f, E grows (or damps) at a
rate determined by the magnitude of its projection onto the discrete eigenmodes.

3.2. Optimal modes and tightest possible bounds

The Case-Van Kampen energy is a natural choice as a norm for bounding the
growth of linear instabilities as it is simply a sum of eigenmode amplitudes, thus
it exhibits no ‘non-normal’ or ‘transient growth’ in the absence of linear instability
(i.e. it is explicitly aware that the Van Kampen modes cannot sustain linear growth,
whereas other norms may be made to grow transiently by a superposition of these
modes). While such transient growth is important for understanding nonlinear insta-
bility growth e.g. in scenarios where subcritical turbulence is of interest (Krommes
1997; Barnes et al. 2011; Landreman, Plunk & Dorland 2015; van Wyk et al. 2016),
it seems relatively unimportant in scenarios in which the relevant parameters are
well above the linear instability threshold where robustly growing instabilities can be
expected.

We can now derive the optimal modes of E by writing the energy balance (3.15)
as dE/dt = 2K and defining the instantaneous growth rate of £ as A= K/E. The
optimal modes are the solutions f which extremise A, and can be constructed by
writing £ = (f, £f), and K = (f, K f) with the familiar inner product

(f1, f2>=f f;fzdvu- (3.16)
0

The optimal modes then satisfy the generalised eigenvalue problem
A€ fF=Kf, (3.17

where the operators £ and K are given in Appendix B. To solve the optimal
mode problem, we now consider the projection of (3.17) with a discrete eigen-
mode of the linear problem f,, with the inner product A(f,,, £f) = (fu, Lf). Due
to the orthogonality of the eigenmodes with the adjoint eigenmodes, we find (see
Appendix B)

A=y, (3.18)

Similarly, considering the projection with a continuum mode, A(f,,Ef)=
(fs, K f), yields A =0. Thus there is a one-to-one correspondence between the lin-
ear growth spectrum and the optimal A solutions. Moreover, the optimal modes
maximising E~'dE/dt are exactly the linear eigenmodes.
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This may feel like a somewhat trivial consequence of the diagonalisation of the
linear operator by the linear eigenmodes, but there are several takeaways from this
result. Firstly, the growth of linear eigenmodes can be bounded with arbitrary tight-
ness by the optimal modes of an energetic norm, with the tightest possible bound
(i.e. equality of (1.1)) being given by the Case-Van Kampen energy. We note that
this tightest bound may not be given uniquely by this energy norm. For instance, E
can be defined with arbitrary weights on each of the amplitude coefficients.

Secondly, any kinetic system for which the Case-Van Kampen energy is a nonlin-
ear invariant is nonlinearly stable if it is linearly stable because A will be identically
zero for all k., i.e. subcritical turbulence is impossible. An example of such a sys-
tem is the two-dimensional drift-kinetic toroidal ITG discussed by Plunk (2015).
Moreover, as presented in DelSole (2004), Landreman et al. (2015) and Plunk &
Helander (2022), for statistically steady turbulence to exist in these systems where
E is a nonlinear invariant when summed over all wavenumbers, it must be the case
that ), (dE,/dr) =0, where (...) denotes a time average over the turbulent time
scale, and the index k has been added. In this case Zn_ . Yus(la,x|?) =0, such that,
in the turbulent phase, the distribution function must project equally on to growing
and damped eigenmodes on average.

4. Constrained optimal modes

We have demonstrated that linear instability growth may be bounded with arbi-
trary tightness by the instantaneous optimals of an energetic norm. However, these
tightest bounds require complete knowledge of the linear spectrum. In this section,
we demonstrate that we can construct energetic bounds that have the same qual-
itative dependence on key parameters as the linear growth rate by including only
some features of the linear eigenmodes in the analysis. This avoids the requirement
of prior knowledge of the solution to the linear problem.

A key feature of the linear eigenmodes, which has been absent from the opti-
mal mode analyses involving simple energetic norms, is the real frequency w,. This
oscillation frequency determines the relative phases of the different degrees of free-
dom of the eigenmode (e.g. the various fluid moments) and is associated with some
of the stabilising ‘resonant’ effects that are not captured by the instantaneous upper
bounds, which do not have an associated real frequency. As such, the optimal modes
considered thus far, with the exception of the Case-Van Kampen optimals discussed
in the previous section, are largely unconstrained in the allowable phase relations
between their different degrees of freedom.

Here, we seek a means to include phase information into the optimal mode analy-
sis of a simple, positive definite energy norm — the Helmholtz free energy (Helander
& Plunk 2022). For the reduced-dimensionality kinetic equation (2.3), the Helmholtz
free-energy balance is

dH
— =2D, 4.1
m 4.1
where ) )
1 en >
H=T | =—dvyy——1+1)G , 4.2
/FO = U+ DG 2)
and
D =Re {ia)*n Gloeqb/g*xz dv}. (4.3)
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To include the frequency information, we constrain the optimal mode analysis, such
that the allowed distribution functions are those that share some key features with
the linear modes. Thus, we seek distribution functions that maximise dH /dr subject
to a set of constraint equations that are also satisfied by the linear eigenmodes.

Because the free-energy extraction D depends only on two ‘fluid” moments of
g, natural choices for these constraints are the linear moment equations. To keep
the analysis relatively simple, we consider only the two lowest-order moments as
constraints. We denote these moments of g by

1 _
Ky = —/gdv, (44)
n

@:lf(i)gmw 4.5)
n Ur

(%) za 4.6
Ks—;/ E g avy. (4.6)

The moment equations for the density, «;, and the parallel flow, «,, obtained by
taking the respective moments of (2.3), are given by

0K 1 d
8_2‘1 +ivrkjky = T+ |:G¢0 (5 +iw, (1 — 77)) + iw*nGu] K1, (4.7)
and
0
K2 + iUTk\\K3 =0. (48)

ot

We now require that these moments evolve in time like linear eigenmodes (i.e.
they satisfy the same phase relation as the moments of a linear eigenmode), such

that dk,,/dt = —iw'k, ,, where o =w/ +iy’. The linear moment equations then
become

aky — vrkyky; =0, (4.9)
and

w'ky — vrkyk; =0, (4.10)

where we have defined

=0 — ——(Gio [ — 0,1 — )] — 01 G, (.11)
1+
In addition to these phase relations between moments, linear eigenmodes have the
property that free energy increases at exactly twice the growth rate of the mode,
which can be expressed in terms of the free-energy balance (4.1) as an additional
constraint

D=y'H. (4.12)
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The distribution functions that satisfy (4.9), (4.10) and (4.12) make up a subspace
of the larger space of all possible g and, importantly, the linear eigenmodes are
themselves included in that subspace. In other words, ' need not be an eigenvalue
of (2.3), but the true eigenmodes also satisfy (4.9), (4.10) and (4.12) with o’ — w.

Therefore, distribution functions which extremise free-energy growth, while satis-
fying the constraints (4.9), (4.10) and (4.12) place a rigorous upper bound on the
growth rate of true eigenmodes. To state this problem formally, we consider the
Lagrangian

L=D— A(H — Hy) — 7, (y'H — D)
— k;(a*xl* — UTkHK;) — )\2(0[/(1 — kaHK2)
— A;(w/*K; — UTkHK;) — )\.3(6()/162 — UTk||IC3). (413)

Here, to extremise L is to extremise the free-energy drive D, subject to several
constraints, which are enforced by Lagrange multipliers denoted by A (which will
become the optimal growth) and A,. Here, A keeps the free energy fixed to some nor-
malising value H,, the complex multipliers A, and A3 enforce the moment constraints
and X, ensures that the value of y’ from these moment constraints is consistent with
free-energy balance. Each of these constraints are enforced at the extrema of L, as
is evident from taking §L/6A =0 and §L/§A, =0.
Computing the optimal modes via §L/6g =0 and making use of the inner
product
(31, 8) =T, / 8182 4y, (4.14)
Fy

we arrive at the following kinetic problem for the optimal g

, _ FOGJ_O iw*flﬁoGlo )
A—yYA — =(1-— _ —
( Y'A1) (g (1—|—‘L’)K1> ( 1) 21 +1) (XHKl K3)
MFy, MVF,
_ nz]_; (O{ —XHUTk”) — n3Tl (a) X” —Xﬁvrku).

(4.15)

This problem must be solved subject to constraint (4.9), (4.10) and (4.12).

Upon enforcing the constraint y'H = D in the above expression, we find the
expected result that A =y’, such that the Lagrange multiplier once again has the
physical interpretation of the linear growth rate. We see that after enforcing this,
the A, Lagrange multiplier is arbitrary (as long as it is non-zero and not unity)
such that it amounts to a renormalisation of the other multipliers. The remaining
unknowns can be eliminated by noting that the system is closed by projecting onto
the k, moments. The system of moment equations which results from this projection
is given in Appendix C. After reducing the system of equations, we arrive at a quintic
polynomial for A = A/(w,n), for which A =0 is a solution (corresponding to the
null-space of D). The remaining solutions are given by the quartic equation

PA*+ QA*+ R=0, (4.16)

where the coefficients P, Q and R are given in Appendix D. We note that only
solutions to (4.16) that yield a real value of A are valid. Complex solutions, which
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are inconsistent with (4.12), are discarded. Solving this equation yields and optimal
mode growth rate A, with an explicit dependence on the parameter /. The upper
bound on linear growth is given by

Amax =max A. 4.17)
The maximising value of @/ can, in principle, be found analytically. However, it
is generally more convenient to evaluate numerically or with a computer algebra
program such as Mathematica. The largest real solution to (4.16) at the optimal
w, gives a rigorous upper bound on the growth of the unstable eigenmodes of the
slab ITG system. The bound is guaranteed to be at least as good as the unconstrained
bound given by Helmholtz free-energy balance and the constraints serve to tighten
this bound to the linear growth rate. Although the gyrofluid moment equations are
an incomplete description of the linear eigenmodes, especially in the resonant limit,
we emphasise that they are always valid constraints because they are always satisfied
by the linear eigenmodes regardless of the specific parameters. While we have only
considered the lowest-order moments here, the bound could be further tightened by
considering a larger number of constraints, capturing more features of the linear
modes.

4.1. Features of the constrained bound

To gain insight into the behaviour of the solutions of (4.16), we now consider
some simple limits and explore the general features of the constrained optimal mode
growth.

4.1.1. Resonant stabilisation

Firstly, to facilitate comparison with the results of Plunk & Helander (2023) we
consider the long-wavelength limit where b — 0 and consider a scenario without a
density gradient where n — oo. In this limit, we have G 9, — 1.

In figure 1, we show the behaviour of the upper bound alongside the solution of the
linear dispersion relation as a function of the instability parameter x|, = w.n/(vrk)).
As one would expect, the bound agrees well with the linear growth rates for large «,
where the linear eigenmodes become more fluid-like as the lowest moments dominate
the fluid hierarchy. In contrast to previous bounds (Plunk & Helander 2023), the
constrained bound for the slab ITG exhibits a maximum growth rate at a finite «,
as is the case for linear eigenmodes. This also in contrast to the simple non-resonant
dispersion relation for the slab ITG mode shown in figure 1, which actually diverges
in this limit (Plunk et al. 2014)

= (2t 5. (4.18)

Wy

Remarkably, the constrained bound also exhibits a critical gradient, a value of
below which only A =0 is a valid solution. The criterion for this critical value of
k), can be found by setting R =0, such that A =0 is a repeated root of (4.16) and
seeking the lowest positive value of « for which this can occur. In this limit, we
have k| - = +/27(1 + 1), which is precisely the critical gradient which can be derived
from the linear slab ITG dispersion relation (Kadomtsev & Pogutse 1970; Plunk
et al. 2014). Indeed, we see agreement between the critical gradient of the linear
eigenmode and the bound in figure 1. This agreement in the ‘resonant’ limit of low-
Kk is notable given that the most unstable linear eigenmode becomes increasingly
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FIGURE 1. Upper bound on linear growth (blue) alongside the linear growth rate (dashed black)
from the linear dispersion relation (A.1), plotted as a function of the instability parameter x| in
the low-k limit with n — oo and t = 1. Also shown is the fluid-limit dispersion relation (dot-
dashed red) (Plunk et al. 2014), which diverges as k| — 0. The vertical light-grey dashed line is
the critical gradient of Kadomtsev & Pogutse (1970).

singular as the critical « is approached. As a result, one might not expect to capture
this behaviour with a finite-dimensional system of moment equations. On the other
hand, the critical gradient expression derived by Kadomtsev & Pogutse (1970), which
amounts to solving a two-dimensional system of equations, gives some indication that
the resonant stabilisation of the slab ITG is not as complicated as one may expect
and can be captured with relatively few degrees of freedom. The constrained optimal
modes are, evidently, successful in capturing this resonant stabilisation due to the
inclusion of information about the real frequency via !, which is responsible for the
effect in the linear dispersion relation.

4.1.2. Density gradient stabilisation

We now consider a finite value of 5, such that the density gradient is non-zero.
This is known to have a significant stabilising effect on linear ITG instabilities. The
previous, nonlinear bounds of Helander & Plunk (2022) and Plunk & Helander
(2023) do not capture this effect because the adiabaticity of the electrons precludes
the density gradient from being a source of free energy. In figure 2, we show that
the constrained optimal growth rate has the same qualitative dependence on 5 as
the linear instability growth. Once again, we see that the critical value of n agrees
with that of the linear dispersion relation. In the linear theory, this stabilisation by
the density gradient is connected with the real frequency of the ITG, hence why the
constrained upper bound captures this effect.

4.1.3. Finite-Larmor-radius effects

Finally, we consider how the upper bound from the constrained optimal modes
depends on the normalised perpendicular wavenumber k) p. In the case of the slab
ITG, because the resonance does not involve the perpendicular velocity, the finite-
Larmor-radius (FLR) effects manifest via the velocity-space-independent functions
G.1,. As a result, the most consequential step for capturing the FLR dependence
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FIGURE 2. Upper bound on linear growth (blue) alongside the linear growth rate (dashed black)
from the linear dispersion relation (A.1l), plotted as a function of 1/7 in the low-k limit with
7 = 1. Here, both the upper bound and the linear growth rate have been maximised over k.

A

wsn

kip

FIGURE 3. Upper bound on linear growth (blue) alongside the linear growth rate (dashed black)
from the linear dispersion relation (A.1) and the nonlinear bound of Helander & Plunk (2022)
and Plunk & Helander (2023) (dashed grey), plotted as a function of k) p in the limit of n —
oo for T =1, where both the constrained upper bound and the linear growth rate have been
maximised over k.

of the slab ITG is the integration over the v, coordinate when going from (2.1)
to (2.3). In figure 3, we see that the constrained optimal growth has a very similar
qualitative dependence on k, p to the linear growth rate, and is significantly lower
than the pervious bound of Plunk & Helander (2023).

5. Conclusions

Two pieces of theoretical progress towards tighter energetic bounds on linear insta-
bilities have been made in this work. The first is the development of the Case-Van
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Kampen energy, which provides proof that linear energetic bounds can be made
arbitrarily tight to the growth rate of linear eigenmodes. This special energy is of
largely theoretical interest, requiring complete knowledge of the linear eigenspec-
trum to construct. Nevertheless, it provides a solid foundation for the endeavour
of tightening linear bounds, as well as some indication of how such tighter bounds
can be constructed, namely by including information from the linear spectrum. It
remains to be seen if such an energy can be constructed in non-trivial magnetic
geometry.

The second theoretical development made here was to consider the constrained
optimal modes. These modes extremise the growth of the Helmholtz free energy
subject to linear moment constraints and capture the key parametric dependencies
of the linear growth rate. They are derived from a simple, thermodynamic energy
norm without requiring an explicit solution to the linear problem, in keeping with
the spirit of the original nonlinear bounds of Helander and Plunk. To compute
the upper bound from these modes in the slab ITG limit requires solving a simple
polynomial and optimising over a free parameter w/, much like the generalised free-
energy bounds (Plunk & Helander 2023; Costello & Plunk 2025). The inclusion
of this real frequency in the optimal mode analysis introduces some key ‘resonant’
features of the linear slab ITG; a critical gradient below which eigenmode growth is
impossible, and density gradient stabilisation. The constrained optimals are similar
to work by Kotschenreuther et al. (2024), where free-energy growth of linear modes
is dynamically constrained.

The constrained optimal mode theory developed here warrants comparison with
traditional linear gyrofluid theory, wherein the infinite hierarchy of fluid moments
(discussed in terms of a projection onto a Hermite-Laguerre basis in more modern
work) is truncated to give an approximation of the linear eigenvalue problem. Such
theories involve choosing a closure in the truncation of the moment system. This
closure can be chosen in a myriad of ways but is often selected to capture reso-
nant effects that are beyond the typical regimes of validity of a truncation based
on the smallness of higher-order moments due to some asymptotic argument, e.g.
collisional (Braginskii 1965) or strongly driven closures (Plunk ef al. 2014). An opti-
mal choice for the closure model is an open, and active, research problem, with
proposed closures ranging from ad-hoc (but effective) closures (Hammett & Perkins
1990) to recently developed machine learning approaches (Huang, Dong & Wang
2025; Barbour et al. 2025). In contrast, the constrained optimal modes capture the
qualitative behaviour of the linear growth rate in the resonant limit despite consist-
ing of only a few low-order moments of the distribution function, which close as a
natural consequence of the variational form of the problem. Thus, the upper bound
is equally valid (but not necessary as close to the linear growth rate) at all plasma
parameters.

We note that the constrained optimal modes considered here were only con-
strained by two fluid moments equations but, in principle, any number can be
included, for instance by projection onto the Hermite-Laguerre basis (see Mandell,
Dorland & Landreman (2018) for details). The infinite set of linear constraints
that would result from this projection would yield a constrained optimal mode
with A = p.c Where Y., 18 the largest linear growth rate because the optimisation
subspace would be exactly the set of linear eigenmodes, which are the only dis-
tribution functions that simultaneously satisfy the infinite hierarchy of constraints.
Thus, one would expect a bound that may be made progressively tighter to the lin-
ear eigenmode growth rate by adding more of these fluid constraints, although it is
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unclear how rapidly such a bound would converge to the true linear growth rate.
This observation could form the basis of a numerical implementation of constrained
optimal modes with an arbitrary number of fluid constraints, similar to the recently
developed pseudo-spectral gyrokinetic codes (Frei et al. 2023; Mandell et al. 2024).

The success of the constrained optimal modes in giving a computationally efficient
upper bound of linear eigenmode growth warrants further investigation. Namely,
this calculation should be extended to treat general magnetic geometry. In an arbi-
trary magnetic geometry, the gyrofluid constraint equations will be differential along
the magnetic field line, resulting in a system of ordinary differential equations to be
solved for the upper bound. In addition to this, crucially, the gyrokinetic equation in
general geometry cannot be integrated over a specific ignorable coordinate in veloc-
ity space (as was done for v, here) due to the dependence of the curvature and VB
drifts on both v, and v. In this scenario the system has more degrees of freedom,
thus it remains to be seen how one should choose the set of constraint equations. If
the performance of these bounds in the slab geometry are in fact indicative of their
performance in more general scenarios, they could be a powerful tool for applica-
tions like stellarator optimisation. The manifestation of a critical ITG is of particular
interest, as optimisation schemes based on this principle have been demonstrated to
be effective (Roberg-Clark et al. 2023).
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Appendix A. Linear dispersion relation
The dispersion relation for the discrete eigenmodes of (3.17) is given by

3 1
1+7+G (SZ(S) + K |:<§ - —> Z(§)—& +§§Z(é§)i|) —kG12Z(§) =0,

n
(A.1)
where £ = w/(vrk)) and Z is the plasma dispersion function
ze=— [ " (A2)
B ﬁ —oo b —f ’ '
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which is defined for Im(£) > 0. The roots of (A.1) can be found numerically.

Appendix B. Details for § 3
B.1. Adjoint equation

The adjoint of (3.3) can be found by computing the adjoint of the linear operator
associated with (3.3) under the L*-inner product in v, and is given by

(@ —vik) f =k / S f (v))dvy. (B.1)

The eigenmodes of the adjoint problem we denote as £, for the continuum branch
and f, for the discrete branch. For the discrete spectrum, the adjoint modes have
velocity-space dependence f, =1/(w,/ ky —v;) and the continuum modes are of
the form £, = P[1/(w/k; — v|)] + A(@)8(w/ky — v)), which satisfy the normalisa-
tion A(w) =A(@)/S(w/ky). As shown in Case (1959), the eigenmodes of (3.3) and
the adjoint problem satisfy the orthogonality relations

[ o0 st v =5 (82)
and
/Z for @) fo(vp) dvy =8(@ = 0)C,, (B.3)
for the discrete and continuum branches, respectively.

B.2. Case—Van Kampen optimal modes

The operators which appear in the optimal mode (3.17) are given by

Ef=F ( |C,1|2/ff dv—i—/dw'C |2/ff dv) (B.4)

,Cf FOZVn

and

z |2/ff (B.5)

The projection of (3.17) with a discrete eigenmode f,, and noting the orthogonality
of the eigenmodes with respect to the adjoint eigenmodes yields

(SnmC nm
ICHI2 /ff "7C, 12 /ffd U (B.6)

giving A = y,,. Projecting with a mode from the continuum annihilates the right-hand
side of (3.17) by orthogonality with all the discrete modes, yielding A = 0.

Appendix C. System of moment equations
By noting the following integrals:

1 -
- / Fydv =1, (C.1)
n
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! / vﬁ Fodv, = ! (C.2)
n v% o 2’ '
: / vﬁ Fodv, = 3 (C.3)
n v4T o 4’ '

equation (4.15) can be closed in terms of the x, moments. The system of equations
1s as follows:

A1) =i (o) e g o
A <K3 - 2(?—%/(1) = % 1G_:OT <% - %) - 5»3&?* + %5@/(“_1, (C.5)
24K, =Mk, = M@, (C.6)

aKy, — /<“_1K2 =0, (C.7)

@'y — k3 =0, (C.8)

where we have repeated the constraint equations for clarity. We have defined x|, =
w*ﬁ/(vrku), a=a/(wn), d =w/(wn) = 5); +iy'and Ay 3 =Xy 3/(nT;(1 — Ay)).

Appendix D. Coefficients
The coefficients of (4.16) are given by

P=4nk/(1+ 1 — G L)’ (D.1)

Q=471+ 7 = G1) 2+ 1) — G1o) + 4} (G ro(1 — 1) + G 1o7)’
+2n(1+7 = G1)(G1o(l =) + G omd, + 2n°(1 + 7 — GJ_O)ZCT)E)’ (D.2)

R =4k} (GLo(1 —n(1 + &) + (G o+ (1 + 1)@,))*
+ 1, (4G o0 (G L+ @,(1 + 1)) — 4G .on(1 + D)o, (2 + @,) — 1)
+2G 110G 1on(Ad, — 1) +51) +2G7, (2 + n(n(3 + 20,3+ @,)) — 5 — 4@,)))
+ 71+ 1)3(1 + 1) —2G ). (D.3)
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