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Abstract

Background: Whole-genome sequencing (WGS) has traditionally been used in infection prevention to confirm or refute the presence of an
outbreak after it has occurred. Due to decreasing costs of WGS, an increasing number of institutions have been utilizing WGS-based sur-
veillance. Additionally, machine learning or statistical modeling to supplement infection prevention practice have also been used. We sys-
tematically reviewed the use of WGS surveillance and machine learning to detect and investigate outbreaks in healthcare settings.

Methods: We performed a PubMed search using separate terms for WGS surveillance and/or machine-learning technologies for infection
prevention through March 15, 2021.

Results: Of 767 studies returned using theWGS search terms, 42 articles were included for review. Only 2 studies (4.8%) were performed in real
time, and 39 (92.9%) studied only 1 pathogen. Nearly all studies (n = 41, 97.6%) found genetic relatedness between some isolates collected.
Across all studies, 525 outbreaks were detected among 2,837 related isolates (average, 5.4 isolates per outbreak). Also, 35 studies (83.3%) only
utilized geotemporal clustering to identify outbreak transmission routes. Of 21 studies identified using the machine-learning search terms, 4
were included for review. In each study, machine learning aided outbreak investigations by complementing methods to gather epidemiologic
data and automating identification of transmission pathways.

Conclusions: WGS surveillance is an emerging method that can enhance outbreak detection. Machine learning has the potential to identify
novel routes of pathogen transmission. Broader incorporation of WGS surveillance into infection prevention practice has the potential to
transform the detection and control of healthcare outbreaks.

(Received 28 October 2021; accepted 4 November 2021)

Whole-genome sequencing (WGS) for infection prevention has
traditionally been used in reaction to a suspected outbreak, usually
at the end of an investigation to confirm or to refute the presence of
an outbreak. In contrast, WGS surveillance of selected healthcare-
associated pathogens regardless of whether an outbreak is sus-
pected can be used to identify outbreaks that are not detected
by traditional hospital epidemiologic methods. High costs and

needed infrastructure for implementation have been historic bar-
riers to widespread use of WGS surveillance. However, the cost of
WGS has fallen, and the expansion of genomic surveillance due to
coronavirus disease 2019 (COVID-19) may enable healthcare
institutions to establish WGS surveillance programs for other
pathogens. Additionally, our work and studies from Australia have
identified cost benefits to implementing a WGS surveillance pro-
gram with effective intervention.1

AlthoughWGS surveillance is effective in identifying transmis-
sion, it does not provide information on the responsible transmis-
sion route, which is crucial for interrupting an outbreak.
Traditional epidemiologic methods for identifying where trans-
mission occurs have relied on geotemporal clustering within the
hospital, which is inadequate for identifying more complex pat-
terns of transmission.2,3 Automated analysis of electronic health
records (EHRs) creates an opportunity to use machine learning
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or statistical modeling approaches for determining the outbreak
transmission routes identified byWGS surveillance.4–8 These auto-
mated approaches would assist hospital infection prevention
departments by providing systematic methods to investigate out-
breaks and identify transmission routes.

In this systematic review, we provide a summary of prior studies
utilizing WGS surveillance in healthcare settings for outbreak
detection, as well as the use of machine learning and statistical
modeling technologies to identify transmission routes. The pur-
poses of this review were to summarize the current literature in this
field, to identify barriers to widespread implementation, and to
synthesize current knowledge on this topic to help guide decision
making about implementation of WGS surveillance.

Methods

Two search terms were utilized in PubMed from inception until
March 15, 2021 (Figs. 1 and 2). The WGS surveillance terms
“(whole genome sequenc*) AND (surveillance OR routine)
AND (healthcare OR hospital) AND transmission” returned 767
results. Article abstracts were screened to exclude studies that were
solely community based, non–infection related, utilized non-WGS
methods (eg, older molecular subtyping methods such as pulsed-
field gel electrophoresis), or only utilized reactiveWGS in response
to suspected outbreaks. Genomic and epidemiologic data on
organisms, number of isolates sequenced, percentage of isolates
that were related, number of outbreaks, and epidemiological links

were extracted and summarized. Articles were excluded if the data
were not sufficiently detailed for extraction.

The machine-learning search terms utilized were “(“electronic
health record” OR “electronic medical record” OR “artificial intel-
ligence” OR “AI” OR “ML” OR “model”) AND (outbreak OR
transmission) AND (“data mining” OR “machine learning”)
AND (infection OR infectious) AND (“healthcare-associated”
OR “hospital-associated” OR “healthcare-acquired” OR “hospi-
tal-acquired”)” and returned 21 results. Article abstracts were
screened to exclude infection prediction and outcome studies.
Data on the methodology and findings of outbreak and transmis-
sion detection models were extracted and summarized.

Results

In total, 42 articles on WGS surveillance were included in the final
review.3–5,9–47 Among these studies, only 2 employed machine
learning or statistical modeling to investigate transmission, which
were also captured in the machine learning search. From 2013 to
2016, there was only one article per year, with a substantial increase
thereafter (Fig. 3). Moreover, 12 studies were from the United
States; 10 were from the United Kingdom; 5 were from
Australia; 4 were from Germany; 2 were from Japan; and 1 study
came per country came from China, Denmark, Finland, France,
India, Italy, Netherlands, Spain, Sweden, and Thailand.

The duration ofWGS surveillance varied substantially by study,
with a median of 12 months and a range of 1–73 months

Fig. 1. Search terms in PubMed for whole-genome sequencing surveillance.
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(Supplementary Table S1). Only 2 (4.8%) studies were performed
in real time; all other studies were performed retrospectively.
Moreover, 39 studies included a single pathogen and 3 studies
included multiple pathogens (Table 1). Staphylococcus aureus
was the most commonly studied organism (12 studies, 28.6%),

with 4 additional organisms present in >2 studies: 2 Klebsiella
pneumoniae, 7 Clostridioides difficile, 6 Enterococcus faecium,
and 3 Pseudomonas aeruginosa. Organisms selected for sequencing
(eg, by anatomic site of infection, multilocus sequence type, and
antibiotic resistance phenotype) were diverse across studies.

Fig. 2. Search terms in PubMed for machine learning and modeling.

Fig. 3. Summary by year of 42 whole-
genome sequencing (WGS) surveillance
studies in PubMed through March 15,
2021. *Through March 15, 2021.
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Table 1. Studies by Date, Organism, and Outbreaks Detected Utilizing WGS Surveillance

Year First Author Organism(s) Type
Unique
Isolates

Related, No.
(%)

Outbreaks
Detected

Epi Link, No.
(%)

2021 Meredith34 SARS-CoV-2 : : : 299 159 (53.2) 35 35 (22)

2021 Miles-Jay35 Escherichia coli ST131, H30 126 17 (13.5) 8 9 (52.9)

2021 Rose39 Staphylococcus aureus Methicillin-resistant 56 15 (26.8) 7 7 (46.7)

2020 Berbel Caban10 S. aureus Methicillin-resistant 224 33 (14.7) 8 : : :

2020 Cremers12 S. aureus Methicillin-sensitive 84 40 (47.6) 14 0 (0)

2020 Gona20 Klebsiella pneumoniae : : : 80 39 (48.8) 10 14 (35.9)

2020 Hammerum23 K. pneumoniae : : : 103 36 (35) 13 11 (30.6)

2020 Marmor31 Enterobacter cloacae : : : 63 7 (11.1) 1 0 (0)

Citrobacter freundii : : : 10 (15.9) 1 0 (0)

2020 Neumann36 E. faecium Vancomycin-resistant 111 : : : : : : : : :

2020 Sundermann5 P. aeruginosa ST27 882 31 (3.5) 10 1 (3.2)

2020 Sundermann4 Enterococcus faecium Vancomycin-resistant, ST1471 439 10 (2.3) : : : 1 (10)

2020 Tsujiwaki44 S. aureus Methicillin-resistant 57 19 (33.3) 5 0 (0)

2019 Eigenbrod14 Acinetobacter baumannii : : : 39 15 (38.5) 4 5 (33.3)

2019 Eyre18 Clostridioides difficile : : : 299 43 (14.4) 6 20 (46.5)

2019 García-
Fernández19

C. difficile : : : 367 41 (11.2) 6 34 (82.9)

2019 Hall22 S. aureus Methicillin-resistant 55 27 (49.1) 12 8 (29.6)

2019 Harada24 K. pneumoniae Bloodstream infections 140 2 (1.4) 1 2 (100)

2019 Jakharia26 C. difficile . 45 4 (8.9) 2 4 (100)

2019 Kossow27 S. aureus Methicillin-resistant . 8 1 0 (0)

2019 Mathur33 K. pneumoniae Colistin-resistant 21 8 (38.1) 4 0 (0)

2019 Roy40 Influenza A H1N1 36 5 (13.9) 2 2 (40)

2019 Sherry41 Enterobacteriaceae Carbapenemase-producing 291 53 (18.2) 12 8 (15.1)

2019 Stenmark42 S. capitis Bloodstream infections 46 12 (26.1) 6 12 (100)

2019 Sullivan43 S. aureus Methicillin-resistant 141 28 (19.9) 4 2 (7.1)

2019 van Beek45 K. pneumoniae Carbapenemase-producing,
ST512

: : : 20 2 4 (20)

2019 Wang46 Corynebacterium striatum : : : 91 18 (19.8) 6 3 (16.7)

2019 Ward3 S. aureus : : : 953 85 (8.9) 28 65 (76.5)

E. faecium : : : 86 13 (15.1) 5 9 (69.2)

Psuedomonas aeruginosa : : : 118 2 (1.7) 1 2 (100)

K. pneumoniae : : : 100 0 (0) 0 0 (0)

2018 Auguet9 S. aureus Methicillin-resistant 610 261 (42.8) 90 13 (5)

2018 Donskey13 C. difficile : : : 66 12 (18.2) 4 4 (33.3)

2018 Houldcroft25 Adenovirus : : : 43 6 (14) 2 0 (0)

2018 Kwong28 K. pneumoniae Carbapenemase-producing 86 53 (61.6) 4 10 (18.9)

2018 Leong29 E. faecium Vancomycin-resistant 80 10 (12.5) 2 3 (30)

2018 Martin32 C. difficile : : : 640 227 (35.5) . 69 (30.4)

2018 Wendel47 A. baumannii : : : 36 20 (55.6) 2 2 (10)

2017 Coll11 S. aureus Methicillin-resistant 1465 785 (53.6) 173 187 (23.8)

2017 Eyre17 C. difficile : : : 652 128 (19.6) : : : : : :

2017 Gorrie21 K. pneumoniae : : : 106 17 (16) 5 0 (0)

2017 Raven37 E. faecium Bloodstream infections 293 93 (31.7) 6 .

2016 Elbadawi15 K. pneumoniae Carbapenemase-producing 46 4 (8.7) 1 0 (0)

(Continued)
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Criteria for defining genetic relatedness were also highly vari-
able between studies and were generally based on the number of
single-nucleotide polymorphism (SNP) differences between
genomes (Supplementary Table S1 online). Among organisms
present in >2 studies, C. difficile had the most consistent SNP cut-
off at 2 SNPs, and 1 study used 10 SNPs to identify related isolates
(Fig. 4). Furthermore, S. aureus had the widest distribution of SNP
cutoffs, ranging from 7 to 50 SNPs.

An analysis of the proportion of sequenced isolates that were
determined to be genetically related to one another in each study
revealed an average of 23.8% of isolates (range, 0%–61%). There
were 525 outbreaks detected among 2,837 related isolates (average
5.4 isolates per outbreak). In addition, 41 studies (97.6%) found
some level of genetic relatedness between the sequenced isolates.

We examined the methods employed to identify the respon-
sible transmission routes for outbreaks that were detected by
WGS. Overall, 35 studies (83.3%) restricted attempts to identify
transmission routes to the same hospital unit during a defined
period.9,11–27,29–38,40–42,44–47 Only 7 studies (16.7%) examined
other possible routes such as medical procedures or healthcare
workers.3–5,10,28,39,43

Several studies were notable for uncovering otherwise uniden-
tified transmissions, which is the main goal of WGS surveillance.

Sullivan et al43 were prompted by an outbreak in a neonatal inten-
sive care unit (NICU) to retrospectively investigate all MRSA
bloodstream infections for 16 months. Their investigation uncov-
ered isolates related to the NICU outbreak from adult patients in a
separate tower. Further investigation revealed shared ventilators
between the adult unit and the NICU, which was believed to have
caused transmission. Separately, Roy et al40 performed sequencing
of influenza A H1N1for 6 months and found that traditional infec-
tion prevention practice falsely identified outbreaks, andWGS sur-
veillance data were able to connect cases that were previously not
believed to be epidemiologically related. Lastly, Berbel Caban et al10

utilized WGS surveillance of MRSA over 2 years and found multi-
ple undetected outbreaks within 2 New York City hospitals. One
cluster of 24 isolates from 16 patients spanned 21 months and 9
different hospital wards with patterns of shared healthcare work-
ers. In this study, the authors emphasized the limitations of inves-
tigating only geotemporal clustering in outbreak detection and
investigation.

Furthermore, 4 articles identified using the machine-learning
search terms included in the final synthesis, 2 of which overlapped
in the WGS surveillance search terms.5,28,48,49 Table 2 lists the
methods and limitations of each study. One study utilized impu-
tation of cultures to model transmission dynamics from

Table 1. (Continued )

Year First Author Organism(s) Type
Unique
Isolates

Related, No.
(%)

Outbreaks
Detected

Epi Link, No.
(%)

2015 Roach38 Staphylococcus epidermidis : : : 178 56 (31.5) 10 : : :

P. aeruginosa : : : 44 7 (15.9) 3 : : :

E. faecium : : : 36 13 (36.1) 3 : : :

S. aureus : : : 118 4 (3.4) 2 : : :

E. faecalis : : : 72 6 (8.3) 3 : : :

Stenotrophomonas
maltophilia

: : : 58 2 (3.4) 1 : : :

2014 Long30 S. aureus : : : 305 0 (0) 0 : : :

2013 Eyre16 C. difficile : : : 957 333 (34.8) . 152 (45.6)

Fig. 4. Distribution of single nucleotide
polymorphisms (SNPs) for defining
genetic relatedness from 42 studies.
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environmental sink contamination, 2 studies used Bayesian meth-
ods to model transmission, and 1 study combined WHONET and
SaTScan tools to detect outbreaks. In all of these studies, tools were
implemented to supplement outbreak detection or investigation,
yet the importance of manual or expert input to further investigate
the transmissions or outbreaks detected was noted in each of these
studies. In the study by Satchel et al,49 45 outbreaks were identified,
but only 6 were confirmed by an IP investigation. However, these
researchers stated that the tool helped to streamline investigation
efforts, which reduced time spent by the IP team.

Discussion

In this systematic review, we synthesized studies that demonstrate
the utility of WGS surveillance in finding cryptic outbreaks in
healthcare settings. Nearly all studies (97.6%) identified outbreaks,
but few (4.8%) utilized machine learning or statistical modeling
methods to investigate transmission routes. WGS surveillance,
while uncommon but increasingly utilized, aided infection preven-
tion practice in these studies by uncovering outbreaks and enabling
intervention.

Studies utilizing WGS surveillance have primarily relied on geo-
temporal linkage to identify transmission routes. Restricting inves-
tigations to geotemporal linkage fails to identify potential
transmission by procedures that are performed in areas of the hos-
pital other than patient nursing units or healthcare workers, as
shown in some of the studies in this review. Some studies stated
the limitations of relying solely on geotemporal parameters for iden-
tifying the transmission route for related isolates. Regardless, WGS
surveillance enabled many of these studies to uncover substantial
and significant previously undetected outbreaks that likely affected
patient outcomes and associated healthcare costs.

Almost all of the studies reviewed were retrospective in nature,
which limits the potential impact of WGS surveillance on health-
care epidemiology and infection prevention. If performed in real
time, IP teams have an opportunity to perform an investigation
(eg, audit practices, collect environmental cultures, and interview
staff), which is not possible in retrospective studies. Furthermore,
many studies focused on 1 pathogen, which is less sensitive for
detecting outbreaks than WGS surveillance of multiple pathogens.
For example, a single transmission route can lead to the spread of
multiple pathogens.

Substantial investment and infrastructure are needed to estab-
lish real-timeWGS surveillance. Healthcare institutions must have

appropriate laboratory capacity, bioinformaticians, and genomic epi-
demiologists to interpret the data. A recent paper by Parcell et al50

discussed barriers to instituting aWGS surveillance program for out-
break detection from an economic and systemwide perspective.
Indeed, it is often difficult to prove estimates of cost-effectiveness
when considering prevention interventions, but 2 studies have dem-
onstrated the cost-effectiveness of WGS surveillance programs.1,7

We identified very few studies on the utility of machine learn-
ing or statistical modeling methods for identification of outbreak
transmission routes by WGS surveillance. In our experience,
machine learning adds value in detecting transmission routes that
do not involve geotemporal clustering such as invasive proce-
dures, healthcare workers, outbreaks separated by unit, and out-
breaks of longer duration.5,6,8 The use of machine learning in
combination with WGS surveillance is clearly an understudied
area of healthcare epidemiology and infection prevention.
Barriers such as interoperability of electronic health records
and adoption of WGS surveillance prevent the implementation
of such programs. However, adoption of public health WGS sur-
veillance for COVID-19 may expedite the use of this technology
by healthcare institutions.

The combination of prospective WGS surveillance, EHR data,
and machine learning has the potential to dramatically transform
the paradigm of outbreak detection and investigation for infection
prevention and control by identifying outbreaks quicker and ena-
bling early intervention to halt transmission. This approach will
both improve patient safety and reduce healthcare costs.
However, healthcare institutional investment into establishing
WGS surveillance programs will be key to expansion and imple-
mentation of this approach.
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