London Mathematical Society ISSN 1461-1570

A FORMALISATION OF WEAK NORMALISATION
(WITH RESPECT TO PERMUTATIONS)
OF SEQUENT CALCULUS PROOFS

A. A. ADAMS

Abstract

Dyckhoff and Pinto present a weakly normalising system of reduc-
tions on derivations in the cut-free intuitionistic sequent calculus,
where the normal derivations are characterised as the fixed points
of the composition of the Prawitz translations into natural deduction
and back. This paper presents a formalisation of the system, includ-
ing a proof of the weak normalisation property for the formalisation.
More details can be found in earlier work by the author. The formal-
isation has been kept as close as possible to the original presentation
to allow an evaluation of the state of proof assistance for such meth-
ods, and to ensure similarity of methods, and not merely similarity of
results. The formalisation is restricted to the implicational fragment
of intuitionistic logic.

1. Introduction

Research into the properties of logics (meta-theory) is a rich and diverse field. Despi
the tools for implementing object logics in logical frameworR8,[29] developed over
the last twenty years, little has been done in the area of machine assistance for me
theory. Investigations of the propertiesiotalculi [8,27, 2] and typechecking Pure Type
Systems [49] have been carried out, but the combination of these approaches into systt
for performing general meta-theoretic proofs about sequent-style calculi with proof tern
has not been investigated. Work on meta-theory has usually concentrated on a single the
and on developing object logic-specific formalisations; for example4¢]. The work
presented here has coalesced into another specific formalisation. The lack of work ol
general framework for such investigations pushes individual attempts at formal meta-thec
into such single tracks. The approach describedti,[using ELF, lacks the automated
production of induction schemes and relies for its correctness on the schema-checking t
takes place outside the formal meta-system.

Meta-theoretic proofs are just the sort of complex proofs for which machine-assistance
most needed. Until recently, the capabilities of proof assistants and logical frameworks we
unequal to the task of useful assistance for general meta-theory. While it may have be
possible, the amount of work involved in encoding each logic was prohibitive in relatiot
to the assistance gained. Performing formal proofs by hand would have been easier tl
attempting to formalise the systems within a machine-assisted framework.

This paper presents the main points of aformalisation of meta-theory for the implication
fragments of three sequent-style (or ‘logistic’ style [47]) systems: the sequent calcujus (LJ

Received 18 May 1999, revised 19 November 138®lished 7th February 2000
2000 Mathematics Subject Classification 03F03
© 2000, A. A. Adams

https://doi.org/10.1112/51461157000000188 Publistedoroey Cariletiye ¥ (ROGCH-F2Es

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/3
https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

a variant of the sequent calculdd) and a sequent-style presentation of natural deduction
(NJ). Using this formalisation, proofs of properties of the systems and of relationship
between the systems have been performed. Most of this work has involved formalising a
checking existing informal proofd p, 17], but there have been some forays into areas left
unexplored in the informal development. A more detailed description and discussion of th
work can be found in [1].

In addition to demonstrating the capabilities of modern theorem-proving software i
respect of formalising meta-theory, the formalisation described in this paper demonstra
a number of the core problems that must be addressed when considering tools for forr
meta-theory. In particular, the problem of converting non-primitive recursive functions usin
named variables to primitive recursive form using de Bruijn indices is an interesting one

Supporting this paper is the full development, compatible @il Version 6.1. Most of
the examples of the formalisation are taken directly from this supporting code, the excepti
being functions defined by mutual recursion (see Sed@idrfior details). This material is
to be found inAppendix A.

1.1. Notation

When discussing the meta-theory of logical systems, ‘proof’ can easily become ove
loaded with too many meanings. To avoid this, the following nomenclature has been adopit
in this paper: ‘proof’ is reserved for the proof of a meta-theoretic result; ‘derivation’ will be
used to indicate a proof at the object level within the sequent caldwndMJ ; ‘deduction’
will be used to indicate a proof at the object level within the natural deduction caldudlus
All three systems are term calculi, and the proof terms will be referred to as ‘derivatio
terms’ or ‘deduction terms’ as appropriate.

1.2. Overview

The paper is set out as follows. Sect®imcludes an overview of the informal theory.
Section3 gives a quick introduction to th€oq proof assistant and its type theory. Next,
Section4 presents the interesting highlights of the formalisation. Sedigives some
pointers to related work, and how this formalisation fits within the field; finally, Se&ion
draws conclusions about the current and future directions of such work.

2. The informal theory

This section contains a brief overview of the theory being formalised. A more complet
version of the original proofs can be found ih7]. Note that for brevity universal quan-
tification has been elided from all the theorems stated. All variables and meta-variables
the stated theorems should be assumed to be universally quantified at the appropriate |
unless otherwise quantified. In addition, a fairly obvious naming system for variables |
used throughout, with the following type assignmentdvl, msMs, a:A, n:N, [:L (also
holding for subscripted versions of the variable names).

2.1. Overview

It has long been a piece of logic folklore that two cut-free sequent calculus derivations a
really the same if and only if they correspond to the same normal natural deduction. Klee
[30] discusses permutability of inferences in sequent calculus without reference to tl
corresponding natural deductions. The relationships between individual sequent calcu
derivations can be described using a set of permutations, such that two cut-free sequ

https://doi.org/10.1112/51461157000000188 Published online by Car@bridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

calculus derivations are inter-permutable if and only if they correspond to the same norrr
natural deduction. An obvious extension of this idea is to try to produce a set of reductiol
which replace the bi-directional permutations, and indeed to try and find a confluent set
reductions, which lead to a ‘nornmidbrm for sequent calculus derivations.

But what is ‘normal’ in this sense? I1T] ‘normal’ is defined syntactically (see Table
7) in such a way that the normal derivations are immutable under the composition of tt
Prawitz translations into natural deduction and back. The translation from natural deducti
to sequent calculus, unlike the reverse translatiti) 18], has not been formally defined
in the early literature 43] describes the general form of this translation (here caljdalit
does not give a full syntactic definition. It is also described in [48]. In fact, the translatior
is naturally formed as the composition of the translations via an intermediate calculu
due to Herbelin in [26] and refined by Dyckhoff and Pinto asghemutation-free sequent
calculusin [15]. Note that this new calculus is call&l) in [15] to avoid confusion between
Herbelin’'s name.JT and Dyckhoff’s different calculugJT in [14]. There are therefore
two distinct parts to this workMJ must be shown to be isomorphic to natural deduction
[15], and the reductions must be shown to be normalising with respect to the retraction
LJ into itself viaMJ. Note that similar ideas to those of Dyckhoff and Pinto 17T may
also be found in work by Mints [3&7].

We will next present an overview of the three calculi, as presented in [15], followec
by the relationships between them, the permutation reduction and brief descriptions of t
informal proofs from [L5]. Figurel will show as an example the proof of the S combinator
in standard inutitionistic logic and each bfJ, MJ andLJ. We also include an example
of a permutation of a proof of the S combinatorLid to a different proof inLJ (which of
course are both equivalent to the same proofddrandMJ).

2.2. Three sequent-style calculi

To present a coherent picture of the three systems, a single approach is taken for
three. The systems are defined using a sequent-style notation, althougd amgMJ are
sequent calculi in the sense of Gentzen'’s original versi@h, while NJ is a sequent-style
calculus equivalent to natural deduction with assumption clagsAll three systems
are cut-free. Normalisation fdiJ and cut-elimination folLd *CU are well-known, and
cut-elimination forMJ *¢Ut has been shown irRp]; see also16]. NJ also differs from a
standard presentation of the simply-typedalculus in its splitting of terms intaormal
(N) andapplicative(A) terms.Normalterms (N) have the form:

Ax1.o.o X0 (G- (X 1) o by—1) By)

where the; arenormal. The sets of proof terms of these systemsfaesdN for NJ, M
andMs for MJ, andL for LJ, defined as follows:

N = AV.N | an(A) M = (V; Ms) | AV.M
A :=ap(A,N) | varV) Ms:=[]|M ::Ms
L z=vr(V) |app(V,L, V.L) |AV.L
whereV isthe setofvariables (x, y, .)and ‘.’ isabinding operator. The term app(x, ¥./2)
is the term ofL representing an occurrence of thaplies Leftrule: the translation into nat-
ural deduction satisfies
lapp(x, &, y.Il2)| = [ap(x,|l1])/y]il2].

https://doi.org/10.1112/51461157000000188 Published online by Car@oridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

where[N1/x] N2 is the usual substitution @f1 for x in N». TakingP, Q, Ras meta-variables
for formulae andl" for contexts (a context is a function from a finite set of variables to
formulae), the rules for the three systems are shown in Table

For those unfamiliar with such presentations of logics, Figushows proofs of the
S-Combinator in standard natural deduction, standard simply tyjedculus and irLJ,
MJ andNJ. The commonly occurring conteXt=x : A,y : AD B,z: AD(BDC(C)is
used for brevity in the proof trees, and the abstraction steps creating this context have b
omitted.

2.3. Relationships between the calculi

The firstrequirement s to establish the translations between the systems, and to prove
admissibility of these translations. That is, it must be established that a translated proofte
proves the same formula, given the same context. The translation functions are showr
Tables? and3. The theorems establishing the relationships between the calculi and showil
admissibility of the translations are shown in Table

2.4. Permutations irL.J

Once the basic definition of each system has been formalised, and the required relati
ships between the systems have been proved to hold (in particular the isomorphism betw:
MJ andNJ), the next task is to formally define the system of reductions on untyped term
of L, shown as the relation-" in Table 5. The reflexive transitive closure of this relation
(>*) is defined in the usual way.

To show how permutations affect proofslid we show in Figure? two proofs taken
from [15], the first of which is also shown in Figute

Next, we must prove that subject reduction holdsfgsee Tabl®): Theorem L_Admis_
Perm1 shows subject reduction for one step-odnd theorem L_Admis_Permn for the
closure>*. Subject reduction is the property, of a reduction relation on terms in a type
theory, that a term reduced (in this casesbyretains the type of the original term. When
thinking in terms of logic rather than type theory, subject reduction means that a reduc
proof (term) still proves the same formulae (type) as the original. Finally, weak normalisatio
of the set of reductions follows from three theorems, Norm_Imperm_L, Norm dnd
Norm_Red (also in Tablé), as per the specification of weak normalisationdbstract
reduction systenia [31, Definition 2.0.3(2)]. The normal form to which terms are rewritten
is defined informally in Tabl&, the formal definition being very similar. Norm_Imperm_L
asserts that a terfivin L in normal form cannot be further reduced byNorm_L p states
that any term irL which is the image vig of a term inM is normal (and therefore by
Norm_Imperm_L is irreducible). Finally, Norm_Red asserts that there exists a (possib
empty) path of reductions* from any tern? in L to its image via a translation intd and
back toL. Since there is no simple way of directly stating weak normalisation, the mair
result that is formalised here consists of these three lemmas.

2.5. Informal proofs

Most of the theorems in Tablesand6 are provable by straightforward structural in-
duction — mutual inductions for theorems involvib@d or NJ. The proof of theorem
App_Red_M (see Table) requires a stronger induction principle, however. The definition
of p also requires some justification of its termination property. The height of teriis in

https://doi.org/10.1112/51461157000000188 Published online by Caroridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Natural Deduction

AD(BDC) A ADB A

(B>0) B
C
NJ
I > varz) : Fovar):4 o) A58 T ;Z:?vr;ﬁjf A
A> (B> [=anvar):A I > ap(valy), an(vax))) : B
I > ap(vakz), an(vatx))) : (B 5 C) T > an(ap(vafy), an(varx)))) : B

I > ap(ap(vafz), an(valx))), an(ap(vafy), an(vaxx))))) : €
I' > an(ap(ap(vak), an(valx))), an(ap(vafy), an(varx)))))) : C

Simply Typedi-Calculus
F'z:ADBD>C) T'kx:A I'ky:ADB Thkx:A
Lk (zx):(BDC) ' (x):(BD>C)

' ((zx)(yx)) : C

LJ
w:(BD>C),v:B,T u:C,w:(B>C),v:B,T
— vr(v) : B — Vr(u) : C

w:(BD>C),v:B, I >
app(vr(w),vr(v), u.vr(u)) : C
' >vr(x):A v:B, T - appvr(z),vr(x), w.appvr(w)vr(v), uvr(u))) : C
I' — app(vr(y),vr(x), v.appvr(z),vr(x), w.appvr(w),vr(v), u.vr(u)))) : C

v:B, I >x:A

MJ
r—[1:A
'=s o [D:A T3 []:B
MG Ds[]:B

r—[l:A ' ;& [D:[D:B r—-I[1:c
= ;[D:A Fase s s [Ds[Dall:C

U ySmse s D (s s [D =MD l]:C
=@ [D:@;&ID=[D=[D:C

Figure 1: Proofs of the S-combinator in various systems

https://doi.org/10.1112/51461157000000188 Published online by Carfbridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Table 1: Proof rules foNJ, MJ andLJ

NJ

x:P,I'>n:Q0

I's>ix.n:(PDQO) > |

'>a:P

I'>an(a): P AN

'sa:(P>Q) I'sn:P
I'>ap@n): Q

DOE

x:Pel I>varx): P A-Axiom

MJ

7 ms: R

x:Pel F=>(x;ms):RChoose

x:P,I'=>m:Q0
' = ix.m: (P D>Q)

Abstract

——F Meet
r—--I[Jj:p
F'=m:P F?mS:R

F@m::ms: R

DS

LJ

x:Pel > vrx): P L-Axiom

F->h:P x:0,"'=>12:R
z:(PD>Q)eTl ' — app(z,l1, x.12) : R

DL

x: P, —=1:0
F—))\x.I:PDQD

R

https://doi.org/10.1112/51461157000000188 Published online by Car@oridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Using permutation (app_appl), we have the following single-step term reduction:
app(vr(y),vr(x), v.app(vr(z),vr(x), w.app(vr(w),vr(v), u.vr(u))))
- ZFv
app(vr(z),app(vr(y),vr(x), v.vr(x)), w.app(vr(y),vr(x),
v.appvr(w),vr(v), u.vr(u))))
which gives us the following single step of reduction of proof trees:

w:(BD>C),v:B,T u:C,w:(B>C),v:B,T
— vr(v) : B — Vr(u) : C

w:(BDC),v:B, T —
app(vr(w),vr(v), u.vr(u)) : C
' > ovrx):A v:B, ' = app(vr(z),vr(x), w.app(vr(w),vr(v), u.vr(u))) : C
I' — app(vr(y),vr(x), v.app(vr(z),vr(x), w.appvr(w)vr(v), u.vr(u)))) : C

v:B,I'—>x:A

p

I's—vr(v): B T'g—vr(u):C
I's —>
app(vr(w),vr(v), u.vr(u)) : C

I'p—>vr(x): A

F—>vrx):A T'1>vrx): A
' — app(vr(y),vr(x), v.vr(x)) : A

'y —»>
app(vr(y),vr(x), v.app(vr(w),vr(v), u.vr(u))) : C

I' — app(vr(z),app(vr(y),vr(x), v.vr(x)), w.appvr(y),vr(x),
v.appvr(w),vr(v), u.vr(u)))) : C

where
''=x:A,y:ADB,z:AD(BDC(C)
I't=v:B,T
'b=w:BD>C,T
I's=v:B,w:BD>C,T’
l'g=u:C,v:B,w:B>C, I’

Figure 2: Permutation of proofs of the S-combinatokin

https://doi.org/10.1112/51461157000000188 Published online by Cangbridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Table 2: Translation functions for proof terms (A)

6:M—> N

6(x ; ms) =yef 0’ (var(x), ms)
O(Ax.m) =def Ax.(0(m))

9 :AxMs—N

60'(a,[1) =gef an(a)
60'(a, m ::ms) =yef 6'(@p(a, #(m)),ms)

v :N—>M

¥(@n(@) =qef ¥'(@. 1))
Y(xn) =def Ax.((1))

¥ A xMs—> M

¥’ (var(x), ms) =gef (x: ms)
V' (@p(a, n),ms) =qef ¥'(a, (¥(n)) :: ms)

p:M—L
p(x; [=dgef Vrx)
p(x ; m::mMS) =4ef APp(x,p(m), z.p(z ; MS)) z new

o(Ax.m) =def Ax.p(m)

p:L—>M
p(Vr(x)) =gef ([

$@pp(x, b, y.l2)) =gef SUb(x.¢(1), y, (1))
d(x.D) =gef rx.¢(1)

sub:VxMxVxM-—-M

sub(x, m, y, (y; ms)) =qef (x; m :: subs(x, m, yms))
sub(x, m, y, (z; Ms)) =qef (z: subs(x, m, yms)) ZFYy
sub(x,m, y, Az.mt) =qef Az.SUb(x,m, y, nt)

subs:V xM xV x Ms - Ms

subs(x,m, y[1) =gef [1
subs(x, m, y, ni::MS) =qgef SUD(x, m, y, nf) :: subs(x, m, yms)

https://doi.org/10.1112/51461157000000188 Published online by Carforidge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Table 3: Translation functions for proof terms (B)

o:N—>L
p(n) =dgef P(¥(n))

¢:L >N

¢ (vr(x)) =gef an(valx))
d(@pp(x, 4, y.12)) =def [ap(x, ¢ (h))/y1d(l2)
PpOx.l) =gef Ax.d(0)

andMs is defined thus:

height(Ax.m) =gef 1+ height(m)
height(m:: ms) =q4ef 1+ max(height(m)height(ms)).

This function can be used as a measure to prove the terminatjpritaf also useful as a
well-founded measure for the required strong induction principle.

3. The proof assistantoq

The system chosen for this formalisation vz [4], a proof assistant for th€alculus
of Inductive Construction&CIC) [9, 39]. The syntax o€oqis quite readable, provided that
the reader is aware of the conventions used to represent non-ASCIl symbols in ASCII te
and the basics of the type theory that underlies the system. The main points of the notat
used in this paper are noted below.

3.1. Types, sorts, etc.

CIC has two basic sort®rop andSet. Each of these is actually the base of a hierarchy
of universes Type andTypeset respectively) as in Martin-L6f Type Theor3]. The
hierarchy can be ignored by the user, since the system automatically keeps track of univer
above the base cases.

3.2. Definitions

Two basic definition mechanisms are uskdtuctive (for defining objects and fam-
ilies of sortsProp andSet) and Recursive Definition (for functions). Thus the
definition of natural numbersét) in Coqis as follows. (The numbéYis a reserved token
in Coq, so the letteDis used.)

Inductive
nat:Set :=
O : nat |
S : nat->nat.

https://doi.org/10.1112/51461157000000188 Published online by Carf@bridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Table 4: Relationships between the calculi

v_eql: Yy (0(m)) =m

y_eq2: ¢ (0'(a, ms))=y’'(a, ms)
6_eql: 6y (n) =n

0_eq2: O (a, ms))=06'(a, Ms)

I' > m:R
N_Admis_6: I >0(m):R

I'>a:P T',”msR
N_Admis_4 : > 0'(a, ms:R

I'>n:R
M_Admis_¥: T = ¥(n):R

I'>a:P I',”msR
M_Admis_v/ : ' = ¥/'(a, msyR

$_eql:p(p(m)) =m p_eql: p(6(m)) = p(m)
$_eq2 0(d() =¢() p_eq2 ¢(p(n) =n

I = m:R I' > I:R
L Admisp: I — p(m):R M_Admis ¢: I = ¢():R

I' > [I:R I'>n:R
N_Admis_¢: I'>¢(():R L_ Admis_p: I — p(n):R

https://doi.org/10.1112/51461157000000188 Published online by Cajp¥ridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Table 5: Permutations of proofs irJ

1 > Db

(Im) Axdy = Ax.o
1 > Db

(appl) app(x, &, y.Is) > app(x, b, y.I3)
lo = I3

(app2) app(x, &, y.lz) > app(x,4, y.l3)

(app_wkn) app(x, &, y.lo) > Iz y €l

app(x, &, z.app(y, &, w.l3))
(app_appl) >~ y#z
app(y,app(x, 4, z.l2), w.app(x, 4, z.13))

app(x, &, y.app(y, b, z.13))
(app_app2 > y'new
app(x, &, y.app(y, app(x, &, y.I2), z.app(x, &, y.[3)))

(app_im) app(x, 4, y.Az.lp) = Az.app(x, 4, y.lo)

Mutual Inductive definitions are allowed usingMutual...with... construct.
The addition function may be defined thus:

Recursive Definition
plus:nat->nat->nat :=

o i= |
(Si)yj=>(S (plus i j)).
Function definition using thRecursive Definition syntaxis restricted i@oqV6.1,

the version used for this formalisation, to (higher-order) primitive recursion for single func
tions. There have been two minor releases since then whose capabilities may have char
in this respect. A more complex definition mechanism allows definition of recursive func
tions using a fixpoint operato2B] which also allows mutual recursive definitions. All
the definitions in this paper can be expressed using the natural syntactic generalisat
of Recursive Definition to mutual recursion: definitions in this paper will be ex-
pressed in this way to enhance readability.

3.3. The minimality principle and inversion of predicates

Inductive definitions inCoq are interpreted under minimality principle. That is,
when arinductive definition is made, the object being defined is taken to be the smalles
object satisfying the rules as stated in the definition. Thus, if the less-than relation on natu
numbers is defined as the propositional function:

https://doi.org/10.1112/51461157000000188 Published online by Cafpfbridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Table 6: Subject reduction and weak normalisation

I1 1o T'—>1I1:R

L_Admis_Perml ' > I2:R
I1 >* I T = I11:R
L_Admis_Permn I' - Io:R
1 >* I
L_Permn_Im Ax.dp >* Ax.o
1 >* I
L_Permn_appl app(x, &, y.I3) >=* app(x, b, y.I3)
Ip >~* I3

L_Permn_app2 app(x,4,y.l2) »* app(x,4, y.l3)

Norm_Ilmperm_L: Normall) =~ 3lo.1 > Iy
Norm_L o: Normako(m))

App_Red_M: app(x,o(my), y.p(m2))
=* p(sub(x, m,y, m2))

Norm_Red: [>* p(¢())

Table 7: Definition of normality for terms ih

| isnormalifitis
a variable, or
of the formax.l” where!’ is normal, or
of the form app(x,1, y.l2)
where
1 is normal;
I is fully normal with respect to the variable

| is fully normalwith respect tox if it is
equal tox, or
of the formapp(x, &, y.l2)
where
[1is normal;
I is fully normal with respect tg;
x &, 1.

https://doi.org/10.1112/51461157000000188 Published online by CafpBridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Inductive
It : nat->nat->Prop :=
It_ O : (inat)(It O (S i) |
It S : (i, jnat)(t i j)->(It (S i) (S j),

then all the true propositions that are members of this family are built up from a basi
fact(lt O (S n)) and a finite sequence of implications incrementing both argument:
(IL_S).
Similarly, if we have a premigét i j) , then there are only two possibilities for this:
i=O N\ j=(S n) or i=S m) A j=S n) A (It m n).

It would be possible to prove this as Bnversion Lemma, but this is not necessary, as there
is a tactic to perform such a case analysis on a premiss of the current sequent [4, Ch.8]

3.4. Logical notation in ASCII

Lambda abstraction is represented (following AUTOMATH [11]) by square brackets
for example[x:A]Jx is the unnamed identity function on a et

Universal quantification is represented by parentheses; for example, symmetry of equ
ity in a set A would be stategk,y:A)x=y->y=x.

The symbol-> is used both for function typing and to represent logical implication.
Conjunction is represented A%, and disjunction a§/.

4. Formalisation issues

This section deals with the definitions of the parts of a sequent: the formulae, the conte
(represented as a list of formulae) and the derivation/deduction terms, followed by tt
definitions of the families dProps representind.J andMJ derivations andNJ deductions.

4.1. Formulae, contexts, variables and proof terms

The central issue in formalising sequent-style calculi with derivation/deduction terms |
the handling of variable bindings and references. There are two different forms of variab
occurrence in proof terms: bound and free variables. Much of the benefit from using ter
calculiis derived from proving theorems about the terms which may then be used in provir
theorems about derivations or deductions. For instance, the thegreegs 1 and)_eq_2
show a relationship between the derivation term$/df and the deduction terms &J.
These theorems are required in order to prove the more interesting theorems N_Admis
and N_Admis_6®arding derivations iMJ and deductions iNJ.

This problem of variable binding and references is an old one in computer-aided re
soning. The problems of renamingsconversion and substitution have been dealt with in
various ways. The most common way of dealing with bound variablescalculi has been
with nameless dummy variables, also caltexdBruijn indiceq10]. (In fact, Coqitself uses
de Bruijn indices internally, together with a persistent naming mechanism for display ar
interaction.) Another, more recent, idea has been to use a higher-order abstract synta
define equivalence classes of concrete terms to represent the atstmautertible terms
required [1224]. A similar but simpler approach is outlined i84] and more thoroughly
explained in [35].

This paper presents a formalisation using de Bruijn indices for both the bound and fre
variables. Similar formalisations afcalculi appear in [2744]. See Sectiob for a deeper
discussion of the alternative approaches.

https://doi.org/10.1112/51461157000000188 Published online by CafpBridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

So, we define a set of formulae)(f6 contain an infinite set of atomic formulae plus the
implicational formulae:

Inductive
F:Set :=
form : nat->F |
Impl : F->F->F.

The setHyps of contexts is defined as a list B{ormulae) using syntactic constructions
together with the polymorphic list library provided witboq this library provides the
functionlength:(A:Set)(list A)->nat, giving the length of lists, and theorems
for some of its properties. The syntax idyps is equivalent to the inductive definition:

Inductive
Hyps:Set =
MT : Hyps |
Add Hyp : F->Hyps->Hyps.

In_Hyps:nat->F->Hyps->Prop is a predicate that tests whether a particular formula
is present at a particular depth within a specified context, and is the formalisation of t
conceptx: P € T'. The setV of nameless variables is defined as an abbreviation for the
natural numbers.

Decidability of equality foV, F andHypsiis proved, as is the decidability of some other
relations, such as the occurrence or non-occurrence of a variable in a term1]$ae [
details of how and of why this is important to the formalisation.)

Thus, the proof terms of the three systems may be defined in the following way.

Inductive
L:Set =
vr @ V->L |
app : V->L->L->L |
Im : L->L.

Mutual Inductive
M:Set =
sc : V->Ms->M |
lambda : M->M
with
Ms:Set =
nil : Ms |
mcons : M->Ms->Ms.

Mutual Inductive

N:Set =
lam : N->N |
an : A->N
with
A:Set =
ap : A->N->A |
var . V->A.

https://doi.org/10.1112/51461157000000188 Published online by Cafpdridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

From the definitions foM andMs the following induction principle is semi-automatically
generated. (Some simple cut-and-paste and an easy proof are currently required for ind
tion principles derived from mutual inductive definitions.)

(P:M->Prop)
(PO:Ms->Prop)
((v:V)(ms:Ms)(PO ms)->(P (sc v ms)))->
((Mm:M)(P m)->(P (lambda m)))->
(PO mnil)->
((m:M)(P m)->(ms:Ms)(PO ms)->(PO (mcons m ms)))->
((m:M)(P m)) A ((ms:Ms)(PO ms))).

In the more standard logical notation this is the induction scheme:

Vx:V.Yms:Ms.Pop(ms)D P(x ; ms)
Vx:V.Vm:M.P(m) D P(Ax.m)
Po([D
Vm:M.P(m) D Yms:Ms.Po(ms)D Po(m :: msS)
(Vm:M.P(m)) A (Yms:Ms. Po(ms))

whereP and Py are predicates okl andMs respectively.

4.2. Derivations and deductions

We may now define the predicates representing derivations and deductions within t
three calculi. In type theory this is done by defining predicates which map a context, a ter
and a formula to #rop (with an extra formula added for the stouphts derivations for
MJ). Each rule/axiom (as shown in Tallgprovides a constructor clause for these induc-
tively defined predicates. In this way we formalise the requirement that a valid derivation ¢
deduction must be built up only from the primitive rules of the object logic, while allowing
reasoning about the systems at the meta-level. For brevity we show this orjdfdam
Figure3.

As may be seen from those definitions, the de Bruijn indexing flows seamlessly betwe:
terms in sequents which change the context and the binding operators at the head of the t
(Abstract rule). Thisis also the case fotJ andLJ as defined in this formalisation. This
is due to the particular nature of the logics in question, and does not necessarily genera
to other logics. In particular, a formalisation of linear logic would not work in this fashion,
and a more complex variable-referencing mechanism would be required. See dotion
a further discussion of this problem. Other operations, such as substitutions (sub in Tal
2) and weakening, requildt ~ anddrop operations as defined ir27] to ensure the
correctness of the de Bruijn indexing.

Figure 4 shows the induction scheme semi-automatically produced for derivations i
MJ. This complicated scheme is not strictly necessary, although its use does simplify proc
somewhat. The inversion tactic g provides us with a relatively simple way to avoid
using induction schemes based on the derivation/deduction predicate, but only beca
derivation/deduction terms so closely encode the derivation/deduction. The application
this scheme is equivalent to using the mutual induction principle for the tefrasdMs,
and then performing an inversion on the derivation in the antecedent of the current goal, 1
example inverting:

(M_Deriv h (lambda m) (Impl P Q))
to give the premisgqM_Deriv (Add_Hyp P h) m Q).

https://doi.org/10.1112/51461157000000188 Published online by Cafbridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Mutual Inductive
M_Deriv : Hyps -> M -> F -> Prop =
Choose : (h:Hyps)(i:V)(P:F)(ms:Ms)(R:F)
(In_Hyps i P h)->
(Ms_Deriv h P ms R)->
(M_Deriv h (sc i ms) R) |
Abstract :
(h:Hyps)(P:F)(m:M)(Q:F)
(M_Deriv (Add_Hyp P h) m Q)->
(M_Deriv h (lambda m) (Impl P Q))
with
Ms Deriv : Hyps -> F -> Ms -> F -> Prop =
Meet : (h:Hyps)(P:F)
(Ms_Deriv h P mnil P) |
Implies_S :
(h:Hyps)(m:M)(P:F)(Q:F)(ms:Ms)(R:F)
(M_Deriv h m P)->
(Ms_Deriv h Q ms R)->
(Ms_Deriv h (Impl P Q) (mcons m ms) R).

Figure 3: Formal definition of derivations MJ

While it is difficult to see how one might directly define an induction on derivation height,
one may perform such inductions indirectly by using a strong induction on terms, followe
by case analyses and inversions. Machine support for such methods may not seem neces
for the implicational fragment presented in this paper, but the complexity of the inductio
schemes rapidly increases when new connectives are added, and other aspects of the ma
support (such as tracking of case analyses) become ever more useful.

So, while induction schemes of such size are not strictly necessary, consider the forms
sation extended to full propositional logic. The induction scheme for the derivation/deductic
terms will be even larger than that shown in Figdrior derivations, and the use of such
schemes followed by inversions performed on the antecedents would be time-consum
and awkward. So where straightforward structural induction is sufficient, it is useful to b
able to perform this directly on the derivations/deductions, rather than via induction on tf
derivation/deduction terms, followed by inversion of premisses.

4.3. Permutation
Table5 shows the permutations in the usual informal syntax. The formalisation of thes
rules was complex. The exact variable namings and renamings that form an integral p
of the reductions are subtle, and it is only when one looks at the typed case that one ¢
fully decipher the meanings of the reductions and formalise them to capture the corre
translations. Figur& shows the formalised version of two of the actual permutations; that
is, rules that permute proof terms rather than the rules allowing permutation within sul
terms. (See (app_Im) in Tabidor an example of a rule allowing permutation of subterms.)
The formalisation of (app_app2) &perml_app_app2 highlights the complexity
of the process. Figuré shows the informal version of the typed reduction rule. Only the
leaves and root of the relevant proof-tree fragments are shown, since they contain all 1
information necessary for the analysis.

https://doi.org/10.1112/51461157000000188 Published online by Cafnridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

(P:(h:Hyps)(m:M)(f:F)(M_Deriv h m f)->Prop)
(PO:(h:Hyps)(f:F)(ms:Ms)(f0:F)(Ms_Deri v h f ms f0)->Prop)
((h:Hyps)(i:V)(f2:F)(ms:Ms)(R:F)
(i0:(In_Hyps i f2 h))
(ms0:(Ms_Deriv h f2 ms R))
(PO h f2 ms R m)->
(P h (sc i ms) R (Choose h i 2 ms R i0 ms0)))->
((h:Hyps)(f2:F)(m:M)(Q:F)
(m0:(M_Deriv (Add_Hyp f2 h) m Q))
(P (Add_Hyp f2 h) m Q mQ)->
(P h (lambda m) (Impl f2 Q) (Abstract h f2 m Q m0)))->
((h:Hyps)(f2:F)(PO h f2 mnil f2 (Meet h f2)))->
((h:Hyps)(m:M)(f2, Q:F)(ms:Ms)(R:F)
(mO:(M_Deriv h m f2))
(P h m f2 m0)->
(ms0:(Ms_Deriv h Q ms R))
(PO h Q ms R ml1)->
(PO h (Impl f2 Q) (mcons m ms) R
(Implies_S h m f2 Q ms R m0 ms0)))->
((h:Hyps)(m:M)(f:F)(mO:(M_Deriv h m f))(P h m f mO0))A
((h:Hyps)(f:F)(m:Ms)(f0:F)(ms0:(Ms_Deri v h f m f0))
(PO h f m f0O ms0)).

Figure 4: Formal induction scheme for derivationdvd

Each of the leaves of a tree corresponds to a particular occurrence of a named te
(variable ortermoL: x, y, y’, I1, Iz, I3) in the root of that tree. So, for each of the three
different occurrences of the terrhsandx in the root of the second tree there is a leaf with
[1 or x as the principal term. A comparison of the contexts of these leaves with the origin:
leaf in the first tree shows the differences in the de Bruijn indices for the terms. Thus tt
first occurrences of and/; are unchanged in the formalisation of the reduction, the seconc
occurrences are both lifted once, and the third occurrences are lifted twice.

The most complex variations in the contexts occurlfproriginally the bindings for
variables arez : P,y : (P1 D P»), T; that is, de Bruijn index occurrences ig are
dereferenced as < 0; y < 1, and higher numbers reference entries in the coritekt
the permuted derivation the bindings are(Py D P2),z: P2,y : (P1 D P»),T. Sincey’
does not appear i3, but must be accounted for in the referencing to variablés ik must
be lifted by 2 (thatis(S(S 0))). Also, the occurrences ofy andz are switched, so the de
Bruijn references must be exchanged — exchange is defined only for switching referenc
to a binding depth and its successor. This may be done without loss of generality, sin
any general exchange can be expressed in terms of multiple applications of this pairw
exchange. Similar analyses give us the lifting, dropping and exchanging requirements |
each permutation as shown in FigureThe admissibility of various structural rules has
been proved in the formalisation for all three systems. While strengthening, weakening a
exchange are all obviously admissible for all three systems, this has only been forma
proved where required for other results.

https://doi.org/10.1112/51461157000000188 Published online by Cafniridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Inductive
L_Perml : L->L->Prop :=

|_perml1_app_wkn :
x:Vv)(11, 12:L)
"(Occurs_In_L O 12)->
(L_Perml (app x I1 12) (drop_L O 12)) |

|_perml1_app_app2 :
x:V)(11, 12, 13:L)
(L_Perml (app x I1 (app O 12 13))
(app X
11
(app O
(app (lift_V O x)
(lift_L O I1)
(lift_L (S 0O) 12)
(app (lifts_V (S (S O)) O x)
(lits_L (S (S 0)) O 11)
(L_Exchange O
(it_L (S (S O) 13N |

Figure 5: Formalised permutations

4.4. Non-primitive recursive definitions

The definition ofp in Table2 is not primitive recursive when directly translated into the
formal syntax. This is due to the recursive calpgf ; ms)for newz in the third definitional
equation. The argument of this recursive call is not a sub-tergm ofz :: ms), the original
argument. When such definitions are translated into the formal syntax, new non-primitiy
recursive elements may also be added in the form of lifting and/or dropping operations
the terms passed into the recursive calls.

The direct translation gf (from Table2) would be:

Recursive Definition
rhobar : M->L =
(semicolon x nil) => (vr x) |
(semicolon x (mcons m ms)) =>
(app x (rhobar m)
(rhobar (semicolon O
(lit_Ms O ms)))) |
(lambda m) => (Im (rhobar m)).

Sinceapp is a binding operator for its third argume@,represents a new variable, and
ms has been lifted to take this binding into account. The following definition is used, an

https://doi.org/10.1112/51461157000000188 Published online by Cafp8ridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

(z:P2),(y:(PLD P2), > I3:R
(y:(PLD P), Il = 1: P
' —>11: Py
(x:(PyD (PllD Py))) el

T — app(x, 4, y.app(y, b, z.13)) : R
>

(y:P1D P2),(z:P2), (Y : (PLD Pp),Il > I3:R
(z:P2),(y :(PLD P)), [> 11: Py
(x:(PAD(PLD P2))e(z:P2),(y : (PLD P)), T
(y:(PLDP)), ' >b: P
O :(PLD P)), T = 11: Py
(x:(PoD(PLD P2)))e(y:(PLD Pp), T
(' :(PLD P))e(y :(PLD P2),T
I'—>11: Py
(x:(PyD (P1 D P)) el

' — app(x. 4. y'.app(¥. app(x, &, y.I2), z.app(x. k. y.12))) : R

Figure 6: Permutation of proof tree fragments by app_app2

proved equivalent to the above by proving that the three parts of the above definition hol
that is, we prove thaix:V)((semicolon x nil)=(vr x)), and so on.

Recursive Definition
rhobar : M->L =
(semicolon x nil) => (vr x) |
(semicolon x (mcons m ms)) =>
(app x (rhobar m) (rhobar’ (S O) ms)) |
(lambda m) => (Im (rhobar m))
with
rhobar’ : nat->Ms->L =
i nil => (vr O) |
i (mcons m ms) =>
(app O
(lifts_ L i O (rhobar m))
(rhobar’ (S i) ms)).

The operationlifts_L is merely a multiple iteration of the usual lifting operation (as
defined in [27]). In this cas@hobar m) s lifted i times with respect t®. Effectively,

the lifting operations are being pushed up the evaluation tree until they no longer interfe
with the primitive recursive nature of the definition. A similar, but slightly more compli-
cated, procedure is used to produce a primitive recursive version of sub, pushing the act
substitution outside the primitive recursive calls. Note that as mentioned in S8Zitre
Recursive Definition format in Coq V6.1 does not allow mutual recursive def-
initions, so the actual formalisation uses the more primitive (and more difficult to reac
Fixpoint format.

https://doi.org/10.1112/51461157000000188 Published online by Cajp®ridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

4.5. Formal proof ofApp_Red_M

As mentioned in Sectio.5, the proof ofApp_Red_M (amongst others) uses strong
induction on the height of terms i andMs. The formalised strong induction principle
is:

(P:M->Prop)
(PO:Ms->Prop)
((M:M)((m1:M)(It (Height M m1) (Height M m))->

(P ml))
N(ms1l:Ms)(It (Height_ Ms ms1) (Height M m))->
(PO msl))->
(P m))->
((ms:Ms)((ms1:Ms)(It (Height_Ms msl) (Height_Ms ms))->
(PO msl))
AN(m1:M)(It (Height_ M m1) (Height_Ms ms))->
(P ml))->
(PO ms))->

((M:M)(P m))A((ms:Ms)(PO ms)).
In this case, we are trying to prove the theorem:

app(x,p(ma), y.p(mz)) >* p(sub(x, m,y, m2))

which may be proved by strong induction @, without requiring any equivalent property
for an object of typéMs. To allow the use of mutual induction properties generally, a goal of
the appropriate type is required. Such a goal is produced by defining propositional functio
with the correct type. Since, in the case of App_Red_M, the second conjunct is not need
for proof of the first, a trivially true propositional function is defined. The two propositional
functions defined here are:
Definition
app_red_m : M->Prop =
[M:M](x:V)(m1:M)
(L_Permn (app x (rhobar m1) (rhobar m))
(rhobar (MsubstVMV x m1l O m))).

Definition
app_red_ms : Ms->Prop =
[ms:Ms](x,y:V)(m1:M)
(L_Permn (app x (rhobar ml) (rhobar (sc y ms)))
(app x (rhobar ml) (rhobar (sc y ms)))).

The goal(m:M)(app_red_m m))A((ms:Ms)(app_red_ms ms)) is therefore
appropriate for the application of the strong mutual induction principle above, while un
folding the definitions ofipp_red_m andapp_red_ms puts the induction hypotheses
and goals into forms amenable to proof.

Similar procedures are needed for all proofs involving mutual inductions. Often, a proc
about, say, only an object iM is required, and the appropriate second proposition for
objects inMs must be synthesised in order to allow the proof to proceed. Examples c
this can be found in Tabld. The theorems,_eq2 and_eqg2 are not of real interest in
themselves, yet they provide vital induction hypotheses for the proafs ef1 and_eq1l.

https://doi.org/10.1112/51461157000000188 Published online by Cag@ridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

5. Related work

Formalisations of this kind are still rare, and in those that exist there is a wide variet
of approaches to the subject. This formalisation has used nameless dummy variables
functions, as opposed to various schemes for named variables and the use of functio
relations rather than functions.

Recent formalisations such as those of Nazareth and Nipkow [38], Altenkirch [2] an
Barras [3] employ similar methods to the ones highlighted here. Although the methods
[2] are similar to those presented here, only a single logic, System F, was formalised. Syst
F is a more powerful and complicated logic thda etc., so different issues are addressed:
those of formalising a single powerful logic rather than the relationships between multipl
(simpler) logics. The main differences in approach are those dictated by the differenc
between the LEGO system (pre-1993) and@oe|system (in 1997).

Coquand [8] presents another formalisation of a normalisation proof, again using a ¢
Bruijn encoding, although the details of the proof are very dependent on the capabiliti
and style ofAlf, the system used for the formalisation.

Pfenning [41] takes a very different approach to the problem of representing seque
calculus in a form suitable for formal meta-theoretic reasoning, a form of higher-orde
abstract syntax, similar to the methods of Despeyroux, Felty and Hirschd#ifaifing
Coq. For this work, the definitions of proof terms use the variables of the framework or proc
assistant itself (respectively EH(] andCoq) to encode the variables of the logic being
studied. This approach has obviously met with some success, although the underlying id
can be quite difficult to grasp, and must be approached separately for each proof assist
In Coq particularly, there is a definite trade-off to be made in order to use a higher-orde
abstract syntax. In encoding the terms by using the underlying system, one first defin
pseudo-terms and then defines a predicate narrowing the scope to those terms that
wishes to allow. Even these terms are not fully specified, but are equivalence classes of tel
that are indistinguishable in judgements. One cannot define functions over the narrow
terms, but instead must use functional relations; the intensional equality of the system m
be discarded and an extensional equality relation defined and used. A more signific:
problem is that one loses the automatic production of provably correct induction scheme
These added complexities would appear to separate the formalisation from the origir
informal theory quite heavily. So, while one gains confidence in the results, perhaps, o
may not gain confidence in the informal proofs.

There has been an increasing amount of research into higher-order abstract syntax
various application areas in the last few years, some of the most notable work having be
published since the development presented here was completed. In particular, recent worl
Gabbay and Pitt®2D] suggests the use of a non-standard set theory (the Fraenkel-Mostows
permutation model of set theory with atoms) which allows the definition of languages wit
binders. This approach givesconversion of terms involving bound variables ‘for free’,
but does not give substitution ‘for free’. The central theoretical ideas are similar to those
[19]. Current development of this idea is being performeGany.

McKinna and Pollack34] introduce yet another approach to such formalisations. McK-
inna refers to this method disst-order abstract syntafor terms with (restrictedhigher-
order abstract syntafor judgements. McKinna has claimed, in a personal communication
with the author, that it should be possible to use such a syntax for a different formalisatic
in Coqof the theory presented here, using functional relations inste@d@functions to
define the translation and substitution functions, etc., while still allowing use dCdlge

https://doi.org/10.1112/51461157000000188 Published online by Caghbridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

intensional equality for theorems such#seql. This possibility remains unexplored at
present. Certainly the work on algorithms for checking Pure Type Systems has a numt
of similarities with the work presented in this paper (see also [35]).

6. Conclusions and further work

Following the proof of strong normalisation for a system of reductions by Schwichten
berg in @5], weak normalisation was formally proved using the conditional variants fot
which strong normalisation holds. Very little work was required to re-do these proofs witl
the extra conditions, indicating the robustnes€ofjs proof-scripting mechanisms. For-
malisation of Schwichtenberg’s proof, however, would have required the development:
yetanother variant of the logics, still a formidable undertaking despite the experience gain
in formalising the other three systems.

This paper has presented a formalisation of sequent-style calculi using de Bruijn indice
thatis, nameless variables. It has shown that it is possible to follow standard informal pro
techniques in a formal environment using this representation. The areas where the forr
development differs from the informal development is precisely where the informal deve
opment makes use of assumptions about variable renaming. While other formalisations st
as the Coquand—McKinna—Pollack abstract syntax may allow named variables, and con
quently easier human-readable proofs, there is a consequent loss of equivalence betw
informal and formal developments where functions are used. Current implementations
higher-order abstract syntax are difficult to use, and still seldom allow for the automat
production of induction schemes within the restrictions of tools sucbaag In the longer
term, however, this approach could well bear productive fruit, although it is impossible t
judge at this stage how soon tools might become available to allow simple higher-ord
abstract syntax and the automatic production of induction schemes.

The use of de Bruijn indices in the formalisation brings its own problems to the work
notably the problems with primitive recursive definition highlighted in Sectieh and
an increase in the number of intermediate lemmas (in particular, proving relationshiy
between functions and renumbering of nameless variables). There is also the matter of
gap between the informal and formal definitions. This gap may undermine the confiden
in the informal proofs gained from a formalisation of the proofs. The wider gap betwee
informal and formal definitions produced by the current methods of first- or higher-orde
abstract syntax would seem to indicate that de Bruijn nameless variables would be the b
(though not an ideal) choice for a formalisation @b], which extends the proofs to full
propositional logic. An extension of the informal proofs to first-order logic would produce
suchalarge informal proof that confidence in those informal proofs could be quite low. It we
with this in mind that the original formalisation was undertaken. As we have seen, howeve
the effort involved in formalising such proofs is still considerable, although extension o
an existing development to more connectives would hopefully prove less onerous than t
initial task. Should such a task be undertaken, it would be likely that work on automation ¢
routine aspects of the proofs would prove beneficial. For instance, the formal proofs she
similarities to those for whichippling[6] is a successful approach. However, the existing
implementation of rippling is only useful for equational reasoning, although the backgroun
for a more general formrelational rippling [5], does exist.

Similar problems exist in other logics, most notalil{ [on permutations in linear logic.
As mentioned above, the formalisation presented here would not be completely appropri
for work with linear logic. The problems come when dealing with a term calculus and it:

https://doi.org/10.1112/51461157000000188 Published online by CaghBridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

interactions with the context-splitting rules:

'-g1:G1 Al g2:Go
I'AFg:G

where the context in the conclusion of the rule Q) is split into portions ' and A) for

the premisses. References to the free variables of the term (that is, the variables referen
formulae in the context) may be radically altered. Some possible ways of avoiding th
problem involve amending the context in some way, barring certain formulae from use |
a branch of the proof tree, or encoding the variables as binary trees of integers rather tt
simply as integers. It is difficult to judge in advance whether such encodings would justif
their use, as compared with moving to an abstract syntax with the concomitant other chan
mentioned above.

Coqis only one of the systems available, and other systems of similar power and maturi
(for example, HOL[25] andNuPRL[7]) may bring different strengths and weaknesses to
bear on such problems. In particular, it is possible that the extensional equality mechanis
in HOL might bring an abstract syntax closer to the original informal development. On
problem with this idea, however, is that meta-theory of logical systems is usually performe
in an intuitionistic setting (whether the object logic under consideration is intuitionistic ol
classical), so the classical logic of HOL may not be appropriate.

Appendix A. The fullCoq 6.1development

This appendix contains a README fileand a tarred gzipped file containing the ful
formal development described in this paper, and is to be found at

http://www.Ims.ac.uk/jcm/3/Ims1999-009/appendix-a/.

The formal development was performed with Version 6.1 of@bgproof system, and may
not work with more recent releases. Instructions for running the formal proofsGuith
6.1 are included in the README file.

References

1. A. A. Apawms, ‘Tools and Techniques for Machine-Assisted Meta-Theory’, PhD The-
sis, School of Mathematical and Computational Sciences, University of St Andrew:
UK, 1997. 2,14

2. TH. ALTENKIRCH, ‘A formalisation of the strong normalisation proof for System F in
LEGO’, Typed lambda calculus and applicatiophecture Notes in Computer Science
664 (ed. M. Bezem and J. F. Groote, Springer-Verlag, 1993) pp. 133281, 21

3. B. Barras, ‘CogenCoq, Tech. Rep. 3026, INRIA (1996)21

4. B.BARRAS, S.BoUTIN, C. CORNES, J. COURANT, J.C. FILLIATRE, E. GIMENEZ, H. HER-
BELIN, G. HUET, C. MuRoz, C. MURTHY, C. PARENT, C. PAULIN, A. SAiBI and
B. WERNER, ‘The CogProof Assistant Reference Manual (Version 6.1)", Tech. Rep.,
INRIA, 1996. Available on-line with th€oqdistribution fromftp.inria.fr. 9,13

5. A. Bunpy andV. LoMBART, ‘Relational rippling: a general approach’, Proceedings,
14th International Joint Conference on Artificial Intelligence (ed. C. Mellish, IJCAI,
1995) 175-181.22

https://doi.org/10.1112/51461157000000188 Published online by CagBridge University Press

http://www.lms.ac.uk/jcm/3/lms1999-009/appendix-a/
file:ftp.inria
https://doi.org/10.1112/S1461157000000188

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Formalised weak normalisation of permutation reduction in LJ

A. BUNDY, A. STEVENS, F. VAN HARMELEN, A. IRELAND andA. SmAILL, ‘Rippling:
a heuristic for guiding inductive proofsAtrtificial Intelligence(1993) 185-253.22

R.L.ConsTABLE, S. F. ALLEN andoTHERS, Implementing Mathematics with the NuPrl
proof development systeirentice-Hall, 1986).1, 23

C. CoQuanD, From semantics to rules: a machine assisted analyssture Notes in
Computer Science 832 (Springer-Verlag, 1993) 91-10321

TH. CoQuanp andG. Hukert, Constructions: a higher order proof system for mecha-
nizing Mathematics, Lecture Notes in Computer Science 203 (Springer-Verlag, 198
151-184.9

N. G. pE BrunN, ‘A-calculus notation with nameless dummies, a tool for automatic
formula manipulation’Jndag. Math34 (1972) 381-392.13

N. G. pE BRuUnN, A survey of the project AUTOMAT(Academic Press, 1980) 579—
606. 13

J. DESPEYROUX, A. FELTY andA. HirscHowITZ, Higher-order abstract syntax i6oq
Lecture Notes in Computer Science 902 (Springer-Verlag, 1995) 124-1321

P. DYBJER, B. NorDsTROM andJ. SmitH (eds), Types for proofs and programBro-
ceedings, International Workshop TYPES 94, Lecture Notes in Computer Scienc
(Springer-Verlag, 1994).

R. DYcKHOFF, ‘Contraction-free sequent calculi for intuitionistic logicJ, Symbolic
Logic57 (1992) 795-807.3

R. DyckHOFF andL. PiNTo, ‘A permutation-free sequent calculus for intuitionistic
logic’, Tech. Rep. CS/96/9, University of St Andrews, 1996.3, 3, 3, 3, 3,4, 22

R. Dycknorr andL. PiNTo, ‘Cut-elimination and Herbelin’s sequent calculus for
intuitionistic logic’, Studia Logicab60 (1998) 107-118.3

R. DycknorF andL. PinTo, ‘Permutability of proofs in intuitionistic sequent calculi’,
Theoret. Comput. Sc212 (1999) 141-1552,2,3,3

A.FELTY, Alogic program for transforming sequent proofs to natural deduction proofs
Lecture Notes in Artificial Intelligence 475 (Springer-Verlag, 1989) 157-138.

M. Fiorg, G. PLoTKIN andD. Turt, ‘Abstract syntax and variable binding’, Proceed-
ings, 14th Annual Symposium on Logic in Computer Science (ed. G. Longo, IEEE
Computer Society Press, Washington, 1998).

M. J. GaBBAY andA. M. PitTs, ‘A new approach to abstract syntax involving binders’,
Proceedings, 14th Annual Symposium on Logic in Computer Science (ed. G. Long
IEEE Computer Society Press, Washington, 1998).

D. GaLMmIcHE and G. PERRIER, ‘On proof normalisation in linear logic’, Theoret.
Comput. Scil35 (1994) 67-11022

G. GENTZEN, ‘Investigations into logical deductionThe collected papers of Ger-
hard Gentzer{Translated from 1934 original in German), Studies in Logic and the
Foundations of Mathematics (ed. M. E. Szabo, North-Holland, 1969) 68-331.

E. GimINEZ, ‘Codifying guarded definitions with recursive schem@g/pes for proofs
and programs, Proceedings, International Workshop TYPES '94, Lecture Notes i
Computer Science (ed. P. Dybjer, B. Nordstrom and J. Smith, Springer-Verlag, 199
39-59. 11

https://doi.org/10.1112/51461157000000188 Published online by Cagridge University Press

https://doi.org/10.1112/S1461157000000188

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Formalised weak normalisation of permutation reduction in LJ

A. D. GorpoN andT. MELHAM, ‘Five axioms of alpha-conversionT,heorem proving

in higher order logics Proceedings, 9th International Conference, Lecture Notes ir
Computer Science 1125 (ed. J. von Wright, J. Grundy and J. Harrison, Springer-Verla
1996) 173-190.13

M.]J. C. Gorpon andT. F. MELHAM (eds) Introduction to HOL(Cambridge University
Press, 1993).23

H. HErBELIN, A A-calculus structure isomorphic to Gentzen-style sequent calculus
structure, Lecture Notes in Computer Science 933 (Springer-Verlag, 1994) 63:-75.
3

G. Huert, ‘Residual theory irk-calculus: a complete Gallina developmenrdt’' Funct.
Programming3 (1994) 371-394.1, 13,15,19

G. Huet andG. PLoTkIN (eds),Logical frameworkgCambridge University Press,
1991). 1

G. Huet andG. PLoTkIN (eds),Logical environmentéCambridge University Press,
1993). 1

S. C. KLEENE, ‘Permutability of inferences in Gentzen'’s calculi LK and L¥Mem.
Amer. Math. S0q1952) 1-26.2

J. W. Krop, Term rewriting system@xford University Press, 1992) 1-118.

D. LErvanT, ‘Assumption classes in natural deductioZeitschrift fir Math. Logik
25 (1979) 1-4.3

P. MARTIN-LOF, Intuitionistic type theoryBibliopolis, 1984). 9

J.McKinnNa andR. PoLLACK, ‘Pure type systems formalizedlyped lambda calculus
and applications, Lecture Notes in Computer Science 664 (ed. M. Bezem and J.
Groote, Springer-Verlag, 1993) 289-30%3, 21

J. H. McKinNa andR. PoLLACK, ‘Some type theory and lambda calculus formalised’,
J. Automat. Reason., Special Issue on Formal Proof, ed. F. Pfenning, 23 (1999) 37
409. 13,22

G. MinTs, ‘Cut-elimination and normal forms of sequent derivations’, Tech. Rep.
CSLI-94-193, Stanford University, 19948

G. MinTs, Normal forms for sequent derivatiof&. K. Peters, Wellesley, MA, 1996)
469-492.3

D. NazareTH and T. Nipkow, ‘Formal verification of Algorithm W: the monomor-
phic case’, Theorem proving in higher order logic®roceedings, 9th International
Conference, Lecture Notes in Computer Science 1125 (ed. J. von Wright, J. Grun
and J. Harrison, Springer-Verlag, 1996) 331-3443.

C. PAULIN-MOHRING, ‘Inductive definitions in the syste@oq. Rules and properties’,
Typed lambda calculus and applications, Lecture Notes in Computer Science 664 (e
M. Bezem and J. F. Groote, Springer-Verlag, 1993) 328—3415.

F. PFENNING, ‘Logic programming in the LF logical framework'l.ogical environ-
ments(ed. G. Huet and G. Plotkin, Cambridge University Press, 1993) 149-281.

F. PFENNING, ‘A structural proof of cut elimination and its representation in a logical
framework’, Tech. Rep. CMU-CS-94-218, Carnegie Mellon University (1994).

F. PrENNING andE. ROHWEDDER, Implementing the meta-theory of deductive systems
Lecture Notes in Artificial Intelligence 607 (Springer-Verlag, 1992) 537-551.

https://doi.org/10.1112/51461157000000188 Published online by Cagbridge University Press

https://doi.org/10.1112/S1461157000000188

43.

44.

45.

46.

47.

48.

49.

Formalised weak normalisation of permutation reduction in LJ

D. Prawitz, ‘Natural deduction’, Ph.D. thesis, Acta Universitatis Stockholmensis,
1965. 3,3

A. SaiBi, ‘Formalization of ai-calculus with explicit substitutions in CoqTypes

for proofs and programs, Proceedings, International Workshop TYPES 94, Lectur
Notes in Computer Science (ed. P. Dybjer, B. Nordstrém and J. Smith, Springer-Verla
1994) 183-202.13

H. ScHWICHTENBERG, ‘Termination of permutative conversions in intuitionistic
Gentzen calculi’;,Theoretical Comput. Sc212 (1999) 247-26022

N. SHANKAR, Metamathematics, machines, and Godel’s pra@dmbridge Tracts in
Theoretical Computer Science (Cambridge University Press, 1994).

M. E. SzaBo (ed.), The collected papers of Gerhard Gent{@ranslated from 1934
original in German), Studies in Logic and the Foundations of Mathematics (North
Holland, 1969). 1

A.S.TROELSTRA andH. SCHWICHTENBERG, Basic proof theoryCambridge University
Press, 1996).3

L. S. vAN BENTHEM JUTTING, J. McKinNA andPorrack R., ‘Checking algorithms for
pure type systems’, Lecture Notes in Computer Science 806 (Springer-Verlag, 199
19-61. 1

A. A. Adams aaa@dcs.st-and.ac.uk

Division of Computer Science

School of Mathematics and Computer Science
University of St Andrews

North Haugh

St Andrews KY16 9SS

https://doi.org/10.1112/51461157000000188 Published online by Cagridge University Press

mailto:aaa@dcs.st-and.ac.uk
https://doi.org/10.1112/S1461157000000188

	Introduction
	Notation
	Overview

	The informal theory
	Overview
	Three sequent-style calculi
	Relationships between the calculi
	Permutations in LJ
	Informal proofs

	The proof assistant Coq
	Types, sorts, etc.
	Definitions
	The minimality principle and inversion of predicates
	Logical notation in ASCII

	Formalisation issues
	Formulae, contexts, variables and proof terms
	Derivations and deductions
	Permutation
	Non-primitive recursive definitions
	Formal proof of App_Red_M

	Related work
	Conclusions and further work
	The full Coq 6.1 development

