
London Mathematical Society ISSN 1461–1570

A FORMALISATION OF WEAK NORMALISATION
(WITH RESPECT TO PERMUTATIONS)

OF SEQUENT CALCULUS PROOFS

A. A. ADAMS

Abstract

Dyckhoff and Pinto present a weakly normalising system of reduc-
tions on derivations in the cut-free intuitionistic sequent calculus,
where the normal derivations are characterised as the fixed points
of the composition of the Prawitz translations into natural deduction
and back. This paper presents a formalisation of the system, includ-
ing a proof of the weak normalisation property for the formalisation.
More details can be found in earlier work by the author. The formal-
isation has been kept as close as possible to the original presentation
to allow an evaluation of the state of proof assistance for such meth-
ods, and to ensure similarity of methods, and not merely similarity of
results. The formalisation is restricted to the implicational fragment
of intuitionistic logic.

1. Introduction

Research into the properties of logics (meta-theory) is a rich and diverse field. Despite
the tools for implementing object logics in logical frameworks [28, 29] developed over
the last twenty years, little has been done in the area of machine assistance for meta-
theory. Investigations of the properties ofλ-calculi [8,27,2] and typechecking Pure Type
Systems [49] have been carried out, but the combination of these approaches into systems
for performing general meta-theoretic proofs about sequent-style calculi with proof terms
has not been investigated. Work on meta-theory has usually concentrated on a single theory,
and on developing object logic-specific formalisations; for example, [7, 46]. The work
presented here has coalesced into another specific formalisation. The lack of work on a
general framework for such investigations pushes individual attempts at formal meta-theory
into such single tracks. The approach described in [42], using ELF, lacks the automated
production of induction schemes and relies for its correctness on the schema-checking that
takes place outside the formal meta-system.

Meta-theoretic proofs are just the sort of complex proofs for which machine-assistance is
most needed. Until recently, the capabilities of proof assistants and logical frameworks were
unequal to the task of useful assistance for general meta-theory. While it may have been
possible, the amount of work involved in encoding each logic was prohibitive in relation
to the assistance gained. Performing formal proofs by hand would have been easier than
attempting to formalise the systems within a machine-assisted framework.

This paper presents the main points of a formalisation of meta-theory for the implicational
fragments of three sequent-style (or ‘logistic’ style [47]) systems: the sequent calculus (LJ),

Received 18 May 1999, revised 19 November 1999; published 7th February 2000.
2000 Mathematics Subject Classification 03F03
© 2000, A. A. Adams

LMS J. Comput. Math. 3 (2000)1–26https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/3
https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

a variant of the sequent calculus (MJ) and a sequent-style presentation of natural deduction
(NJ). Using this formalisation, proofs of properties of the systems and of relationships
between the systems have been performed. Most of this work has involved formalising and
checking existing informal proofs [15,17], but there have been some forays into areas left
unexplored in the informal development. A more detailed description and discussion of this
work can be found in [1].

In addition to demonstrating the capabilities of modern theorem-proving software in
respect of formalising meta-theory, the formalisation described in this paper demonstrates
a number of the core problems that must be addressed when considering tools for formal
meta-theory. In particular, the problem of converting non-primitive recursive functions using
named variables to primitive recursive form using de Bruijn indices is an interesting one.

Supporting this paper is the full development, compatible withCoqVersion 6.1. Most of
the examples of the formalisation are taken directly from this supporting code, the exception
being functions defined by mutual recursion (see Section3.2 for details). This material is
to be found inAppendix A.

1.1. Notation
When discussing the meta-theory of logical systems, ‘proof’ can easily become over-

loaded with too many meanings. To avoid this, the following nomenclature has been adopted
in this paper: ‘proof’ is reserved for the proof of a meta-theoretic result; ‘derivation’ will be
used to indicate a proof at the object level within the sequent calculiLJ andMJ ; ‘deduction’
will be used to indicate a proof at the object level within the natural deduction calculusNJ.
All three systems are term calculi, and the proof terms will be referred to as ‘derivation
terms’ or ‘deduction terms’ as appropriate.

1.2. Overview
The paper is set out as follows. Section2 includes an overview of the informal theory.

Section3 gives a quick introduction to theCoq proof assistant and its type theory. Next,
Section4 presents the interesting highlights of the formalisation. Section5 gives some
pointers to related work, and how this formalisation fits within the field; finally, Section6
draws conclusions about the current and future directions of such work.

2. The informal theory

This section contains a brief overview of the theory being formalised. A more complete
version of the original proofs can be found in [17]. Note that for brevity universal quan-
tification has been elided from all the theorems stated. All variables and meta-variables in
the stated theorems should be assumed to be universally quantified at the appropriate level
unless otherwise quantified. In addition, a fairly obvious naming system for variables is
used throughout, with the following type assignments:m:M, ms:Ms, a:A, n:N, l:L (also
holding for subscripted versions of the variable names).

2.1. Overview
It has long been a piece of logic folklore that two cut-free sequent calculus derivations are

really the same if and only if they correspond to the same normal natural deduction. Kleene
[30] discusses permutability of inferences in sequent calculus without reference to the
corresponding natural deductions. The relationships between individual sequent calculus
derivations can be described using a set of permutations, such that two cut-free sequent

2https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

calculus derivations are inter-permutable if and only if they correspond to the same normal
natural deduction. An obvious extension of this idea is to try to produce a set of reductions
which replace the bi-directional permutations, and indeed to try and find a confluent set of
reductions, which lead to a ‘normal’ form for sequent calculus derivations.

But what is ‘normal’ in this sense? In [17] ‘normal’ is defined syntactically (see Table
7) in such a way that the normal derivations are immutable under the composition of the
Prawitz translations into natural deduction and back. The translation from natural deduction
to sequent calculus, unlike the reverse translation [43, 18], has not been formally defined
in the early literature. [43] describes the general form of this translation (here calledρ) but
does not give a full syntactic definition. It is also described in [48]. In fact, the translation
is naturally formed as the composition of the translations via an intermediate calculus,
due to Herbelin in [26] and refined by Dyckhoff and Pinto as thepermutation-free sequent
calculusin [15]. Note that this new calculus is calledMJ in [15] to avoid confusion between
Herbelin’s nameLJT and Dyckhoff’s different calculusLJT in [14]. There are therefore
two distinct parts to this work.MJ must be shown to be isomorphic to natural deduction
[15], and the reductions must be shown to be normalising with respect to the retraction of
LJ into itself via MJ. Note that similar ideas to those of Dyckhoff and Pinto in [17] may
also be found in work by Mints [36,37].

We will next present an overview of the three calculi, as presented in [15], followed
by the relationships between them, the permutation reduction and brief descriptions of the
informal proofs from [15]. Figure1 will show as an example the proof of the S combinator
in standard inutitionistic logic and each ofNJ, MJ andLJ. We also include an example
of a permutation of a proof of the S combinator inLJ to a different proof inLJ (which of
course are both equivalent to the same proofs inNJ andMJ).

2.2. Three sequent-style calculi
To present a coherent picture of the three systems, a single approach is taken for all

three. The systems are defined using a sequent-style notation, although onlyLJ andMJ are
sequent calculi in the sense of Gentzen’s original version [22], whileNJ is a sequent-style
calculus equivalent to natural deduction with assumption classes [32]. All three systems
are cut-free. Normalisation forNJ and cut-elimination forLJ+cut are well-known, and
cut-elimination forMJ+cut has been shown in [26]; see also [16]. NJ also differs from a
standard presentation of the simply-typedλ-calculus in its splitting of terms intonormal
(N) andapplicative(A) terms.Normal terms (N) have the form:

λx1 . . . xn.((· · · (x t1) . . . tm−1) tm)

where theti arenormal. The sets of proof terms of these systems areA andN for NJ, M
andMs for MJ, andL for LJ, defined as follows:

N ::= λV.N | an(A)

A ::= ap(A,N) | var(V)

M ::= (V ;Ms) | λV.M

Ms ::= [] |M ::Ms

L ::= vr(V) | app(V,L, V.L) |λV.L

whereV is the set of variables (x, y, . . .) and ‘.’ is a binding operator. The term app(x, l1, y.l2)

is the term ofL representing an occurrence of theImplies Leftrule: the translation into nat-
ural deduction satisfies

|app(x, l1, y.l2)| = [ap(x,|l1|)/y]|l2|,
3https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

where[N1/x]N2 is the usual substitution ofN1 for x inN2. TakingP, Q, Ras meta-variables
for formulae and0 for contexts (a context is a function from a finite set of variables to
formulae), the rules for the three systems are shown in Table1.

For those unfamiliar with such presentations of logics, Figure1 shows proofs of the
S-Combinator in standard natural deduction, standard simply typedλ-calculus and inLJ,
MJ andNJ. The commonly occurring context0 = x : A, y : A ⊃ B, z : A ⊃ (B ⊃ C) is
used for brevity in the proof trees, and the abstraction steps creating this context have been
omitted.

2.3. Relationships between the calculi

The first requirement is to establish the translations between the systems, and to prove the
admissibility of these translations. That is, it must be established that a translated proof term
proves the same formula, given the same context. The translation functions are shown in
Tables2and3. The theorems establishing the relationships between the calculi and showing
admissibility of the translations are shown in Table4.

2.4. Permutations inLJ
Once the basic definition of each system has been formalised, and the required relation-

ships between the systems have been proved to hold (in particular the isomorphism between
MJ andNJ), the next task is to formally define the system of reductions on untyped terms
of L , shown as the relation ‘�’ in Table 5. The reflexive transitive closure of this relation
(�∗) is defined in the usual way.

To show how permutations affect proofs inLJ we show in Figure2 two proofs taken
from [15], the first of which is also shown in Figure1.

Next, we must prove that subject reduction holds for� (see Table6): Theorem L_Admis_
Perm1 shows subject reduction for one step of� and theorem L_Admis_Permn for the
closure�∗. Subject reduction is the property, of a reduction relation on terms in a type
theory, that a term reduced (in this case by�) retains the type of the original term. When
thinking in terms of logic rather than type theory, subject reduction means that a reduced
proof (term) still proves the same formulae (type) as the original. Finally, weak normalisation
of the set of reductions follows from three theorems, Norm_Imperm_L, Norm_L_ρ̄ and
Norm_Red (also in Table6), as per the specification of weak normalisation forabstract
reduction systemsin [31, Definition 2.0.3(2)]. The normal form to which terms are rewritten
is defined informally in Table7, the formal definition being very similar. Norm_Imperm_L
asserts that a terml in L in normal form cannot be further reduced by�. Norm_L_ρ̄ states
that any term inL which is the image viāρ of a term inM is normal (and therefore by
Norm_Imperm_L is irreducible). Finally, Norm_Red asserts that there exists a (possibly
empty) path of reductions�∗ from any terml in L to its image via a translation intoM and
back toL. Since there is no simple way of directly stating weak normalisation, the main
result that is formalised here consists of these three lemmas.

2.5. Informal proofs

Most of the theorems in Tables4 and6 are provable by straightforward structural in-
duction — mutual inductions for theorems involvingMJ or NJ. The proof of theorem
App_Red_M (see Table6) requires a stronger induction principle, however. The definition
of ρ̄ also requires some justification of its termination property. The height of terms inM

4https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Natural Deduction

A ⊃ (B ⊃ C) A

(B ⊃ C)
A ⊃ B A

B

C

NJ

0 � var(z) :
A ⊃ (B ⊃ C)

0 � var(x) : A
0>> an(var(x)) : A

0 � ap(var(z), an(var(x))) : (B ⊃ C)

0 � var(y) : A ⊃ B
0 � var(x) : A

0>> an(var(x)) : A
0 � ap(var(y), an(var(x))) : B

0>> an(ap(var(y), an(var(x)))) : B
0 � ap(ap(var(z), an(var(x))), an(ap(var(y), an(var(x))))) : C

0>> an(ap(ap(var(z), an(var(x))), an(ap(var(y), an(var(x)))))) : C

Simply Typedλ-Calculus

0 ` z : A ⊃ (B ⊃ C) 0 ` x : A
0 ` (zx) : (B ⊃ C)

0 ` y : A ⊃ B 0 ` x : A
0 ` (yx) : (B ⊃ C)

0 ` ((zx)(yx)) : C

LJ

0→ vr(x) : A
v : B,0→ x : A

w : (B ⊃ C), v : B,0 u : C,w : (B ⊃ C), v : B,0
→ vr(v) : B → vr(u) : C
w : (B ⊃ C), v : B,0→

app(vr(w),vr(v), u.vr(u)) : C
v : B,0→ app(vr(z),vr(x), w.app(vr(w),vr(v), u.vr(u))) : C

0→ app(vr(y),vr(x), v.app(vr(z),vr(x), w.app(vr(w),vr(v), u.vr(u)))) : C

MJ

0 −−−→
A
[] : A

0 ⇒ (x; []) : A

0 −−−→
A
[] : A

0 ⇒ (x; []) : A 0 −−−→
B
[] : B

0 −−−→
A⊃B (x; []) :: [] : B

0 ⇒ (y; (x; []) :: []) : B 0 −−−→
C
[] : C

0 −−−→
B⊃C (y; (x; []) :: []) :: [] : C

0 −−−→
A⊃(B⊃C) (x; []) :: (y; (x; []) :: []) :: [] : C

0 ⇒ (z; (x; []) :: (y; (x; []) :: []) :: []) : C

Figure 1: Proofs of the S-combinator in various systems

5https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Table 1: Proof rules forNJ, MJ andLJ

NJ

x : P,0 >> n : Q
0>>λx.n : (P ⊃ Q) ⊃ I

0 � a : P
0>> an(a): P AN

0 � a : (P ⊃ Q) 0>>n : P
0 � ap(a,n) : Q ⊃ E

x : P ∈ 0 0 � var(x) : P A-Axiom

MJ

x : P ∈ 0
0 −−−→

P
ms: R

0 ⇒ (x ;ms): R Choose

x : P,0 ⇒ m : Q
0 ⇒ λx.m : (P ⊃ Q) Abstract

0 −−−→
P
[] : P Meet

0 ⇒ m : P 0 −−−→
Q

ms: R
0 −−−→
P⊃Qm ::ms: R ⊃ S

LJ

x : P ∈ 0 0→ vr(x) : P L-Axiom

z : (P ⊃ Q) ∈ 0
0→ l1 : P x : Q,0→ l2 : R

0→ app(z,l1, x.l2) : R ⊃ L

x : P,0→ l : Q
0→ λx.l : P ⊃ Q ⊃ R

6https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Using permutation (app_app1), we have the following single-step term reduction:

app(vr(y),vr(x), v.app(vr(z),vr(x), w.app(vr(w),vr(v), u.vr(u))))
� z 6= v

app(vr(z),app(vr(y),vr(x), v.vr(x)), w.app(vr(y),vr(x),
v.app(vr(w),vr(v), u.vr(u))))

which gives us the following single step of reduction of proof trees:

0→ vr(x) : A
v : B,0→ x : A

w : (B ⊃ C), v : B,0 u : C,w : (B ⊃ C), v : B,0
→ vr(v) : B → vr(u) : C
w : (B ⊃ C), v : B,0→

app(vr(w),vr(v), u.vr(u)) : C
v : B,0→ app(vr(z),vr(x), w.app(vr(w),vr(v), u.vr(u))) : C

0→ app(vr(y),vr(x), v.app(vr(z),vr(x), w.app(vr(w),vr(v), u.vr(u)))) : C
�

0→ vr(x) : A 01→ vr(x) : A
0→ app(vr(y),vr(x), v.vr(x)) : A

02→ vr(x) : A
03→ vr(v) : B 04→ vr(u) : C
03→

app(vr(w),vr(v), u.vr(u)) : C
02→

app(vr(y),vr(x), v.app(vr(w),vr(v), u.vr(u))) : C
0→ app(vr(z),app(vr(y),vr(x), v.vr(x)), w.app(vr(y),vr(x),

v.app(vr(w),vr(v), u.vr(u)))) : C
where

0 = x : A, y : A ⊃ B, z : A ⊃ (B ⊃ C)
01 = v : B,0

02 = w : B ⊃ C,0
03 = v : B,w : B ⊃ C,0

04 = u : C, v : B,w : B ⊃ C,0

Figure 2: Permutation of proofs of the S-combinator inLJ

7https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Table 2: Translation functions for proof terms (A)

θ : M → N

θ(x ;ms) =def θ
′(var(x),ms)

θ(λx.m) =def λx.(θ(m))

θ ′ : A ×Ms→ N

θ ′(a, []) =def an(a)
θ ′(a,m ::ms) =def θ

′(ap(a, θ(m)),ms)

ψ : N→ M

ψ(an(a)) =def ψ
′(a, [])

ψ(λx.n) =def λx.(ψ(n))

ψ ′ : A ×Ms→ M

ψ ′(var(x),ms) =def (x;ms)
ψ ′(ap(a, n),ms) =def ψ

′(a, (ψ(n)) ::ms)

ρ̄ : M → L

ρ̄(x ; []) =def vr(x)
ρ̄(x ;m ::ms) =def app(x,ρ̄(m), z.ρ̄(z ;ms)) z new

ρ̄(λx.m) =def λx.ρ̄(m)

φ̄ : L → M

φ̄(vr(x)) =def (x ; [])
φ̄(app(x, l1, y.l2)) =def sub(x,φ̄(l1), y, φ̄(l2))

φ̄(λx.l) =def λx.φ̄(l)

sub: V ×M × V ×M → M

sub(x,m, y, (y;ms)) =def (x ;m :: subs(x,m, y,ms))
sub(x,m, y, (z;ms)) =def (z ; subs(x,m, y,ms)) z 6= y

sub(x,m, y, λz.m′) =def λz.sub(x,m, y,m′)

subs: V ×M × V ×Ms→ Ms

subs(x,m, y,[]) =def []
subs(x,m, y,m′ ::ms) =def sub(x,m, y,m′) :: subs(x,m, y,ms)

8https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Table 3: Translation functions for proof terms (B)

ρ : N→ L

ρ(n) =def ρ̄(ψ(n))

φ : L → N

φ(vr(x)) =def an(var(x))
φ(app(x, l1, y.l2)) =def [ap(x, φ(l1))/y]φ(l2)

φ(λx.l) =def λx.φ(l)

andMs is defined thus:

height(λx.m) =def 1+ height(m)
height([]) =def 0

height(m::ms) =def 1+max(height(m),height(ms)).

This function can be used as a measure to prove the termination ofρ̄. It is also useful as a
well-founded measure for the required strong induction principle.

3. The proof assistantCoq

The system chosen for this formalisation wasCoq[4], a proof assistant for theCalculus
of Inductive Constructions(CIC) [9,39]. The syntax ofCoqis quite readable, provided that
the reader is aware of the conventions used to represent non-ASCII symbols in ASCII text
and the basics of the type theory that underlies the system. The main points of the notation
used in this paper are noted below.

3.1. Types, sorts, etc.
CIC has two basic sorts:Prop andSet. Each of these is actually the base of a hierarchy

of universes (Type andTypeset respectively) as in Martin-Löf Type Theory [33]. The
hierarchy can be ignored by the user, since the system automatically keeps track of universes
above the base cases.

3.2. Definitions
Two basic definition mechanisms are used:Inductive (for defining objects and fam-

ilies of sortsProp andSet) and Recursive Definition (for functions). Thus the
definition of natural numbers (nat) in Coqis as follows. (The number0 is a reserved token
in Coq, so the letterO is used.)

Inductive
nat:Set :=

O : nat |
S : nat->nat.

9https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Table 4: Relationships between the calculi

ψ_eq1: ψ(θ(m)) = m

ψ_eq2: ψ(θ ′(a,ms))= ψ ′(a,ms)

θ_eq1: θ(ψ(n)) = n

θ_eq2: θ(ψ ′(a,ms))= θ ′(a,ms)

N_Admis_θ :
0 ⇒ m:R
0>>θ(m):R

N_Admis_θ′ :
0 > a :P 0 −−−→

P
ms:R

0>>θ ′(a,ms):R

M_Admis_ψ :
0>>n:R

0 ⇒ ψ(n):R

M_Admis_ψ′ :
0 > a :P 0 −−−→

P
ms:R

0 ⇒ ψ ′(a,ms):R

φ̄_eq1: φ̄(ρ̄(m)) = m ρ_eq1: ρ(θ(m)) = ρ̄(m)

φ̄_eq2: θ(φ̄(l)) = φ(l) ρ_eq2: φ(ρ(n)) = n

L_Admis_ρ̄ :
0 ⇒ m:R

0→ ρ̄(m):R M_Admis_φ̄ :
0→ l :R
0 ⇒ φ̄(l):R

N_Admis_φ :
0→ l :R
0>>φ(l):R L_Admis_ρ :

0>>n:R
0→ ρ(n):R

10https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Table 5: Permutations of proofs inLJ

(lm)
l1 � l2

λx.l1 � λx.l2

(app1)
l1 � l2

app(x, l1, y.l3) � app(x, l2, y.l3)

(app2)
l2 � l3

app(x, l1, y.l2) � app(x, l1, y.l3)

(app_wkn) app(x, l1, y.l2) � l2 y 6∈ l2
app(x, l1, z.app(y, l2, w.l3))

(app_app1) � y 6= z
app(y,app(x, l1, z.l2), w.app(x, l1, z.l3))

app(x, l1, y.app(y, l2, z.l3))
(app_app2) � y′new

app(x, l1, y′.app(y′, app(x, l1, y.l2), z.app(x, l1, y.l3)))

(app_lm) app(x, l1, y.λz.l2) � λz.app(x, l1, y.l2)

Mutual Inductive definitions are allowed using aMutual...with... construct.
The addition function may be defined thus:

Recursive Definition
plus:nat->nat->nat :=

O j => j |
(S i) j => (S (plus i j)).

Function definition using theRecursive Definition syntax is restricted inCoqV6.1,
the version used for this formalisation, to (higher-order) primitive recursion for single func-
tions. There have been two minor releases since then whose capabilities may have changed
in this respect. A more complex definition mechanism allows definition of recursive func-
tions using a fixpoint operator [23] which also allows mutual recursive definitions. All
the definitions in this paper can be expressed using the natural syntactic generalisation
of Recursive Definition to mutual recursion: definitions in this paper will be ex-
pressed in this way to enhance readability.

3.3. The minimality principle and inversion of predicates
Inductive definitions inCoq are interpreted under aminimality principle. That is,

when anInductive definition is made, the object being defined is taken to be the smallest
object satisfying the rules as stated in the definition. Thus, if the less-than relation on natural
numbers is defined as the propositional function:

11https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Table 6: Subject reduction and weak normalisation

L_Admis_Perm1:
l1 � l2 0→ l1:R

0→ l2:R

L_Admis_Permn:
l1 �∗ l2 0→ l1:R

0→ l2:R

L_Permn_lm
l1 �∗ l2

λx.l1 �∗ λx.l2

L_Permn_app1
l1 �∗ l2

app(x, l1, y.l3) �∗ app(x, l2, y.l3)

L_Permn_app2
l2 �∗ l3

app(x, l1, y.l2) �∗ app(x, l1, y.l3)

Norm_Imperm_L: Normal(l)⇒∼ ∃l0. l � l0
Norm_L_ρ̄ : Normal(ρ̄(m))

App_Red_M: app(x,ρ̄(m1), y.ρ̄(m2))

�∗ ρ̄(sub(x,m1, y,m2))

Norm_Red: l �∗ ρ̄(φ̄(l))

Table 7: Definition of normality for terms inL

l is normal if it is
a variable, or
of the formλx.l′ wherel′ is normal, or
of the form app(x, l1, y.l2)

where
l1 is normal;
l2 is fully normal with respect to the variabley.

l is fully normalwith respect tox if it is
equal tox, or
of the formapp(x, l1, y.l2)

where
l1 is normal;
l2 is fully normal with respect toy;
x 6∈ l1, l2.

12https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Inductive
lt : nat->nat->Prop :=

lt_O : (i:nat)(lt O (S i)) |
lt_S : (i, j:nat)(lt i j)->(lt (S i) (S j)),

then all the true propositions that are members of this family are built up from a basic
fact (lt O (S n)) and a finite sequence of implications incrementing both arguments
(lt_S).

Similarly, if we have a premiss(lt i j) , then there are only two possibilities for this:

i=O /\ j=(S n) or i=(S m) /\ j=(S n) /\ (lt m n).

It would be possible to prove this as anInversion Lemma, but this is not necessary, as there
is a tactic to perform such a case analysis on a premiss of the current sequent [4, Ch.8].

3.4. Logical notation in ASCII
Lambda abstraction is represented (following AUTOMATH [11]) by square brackets;

for example,[x:A]x is the unnamed identity function on a setA.
Universal quantification is represented by parentheses; for example, symmetry of equal-

ity in a set A would be stated(x,y:A)x=y->y=x.
The symbol-> is used both for function typing and to represent logical implication.

Conjunction is represented as/\, and disjunction as\/.

4. Formalisation issues

This section deals with the definitions of the parts of a sequent: the formulae, the context
(represented as a list of formulae) and the derivation/deduction terms, followed by the
definitions of the families ofProps representingLJ andMJ derivations andNJ deductions.

4.1. Formulae, contexts, variables and proof terms
The central issue in formalising sequent-style calculi with derivation/deduction terms is

the handling of variable bindings and references. There are two different forms of variable
occurrence in proof terms: bound and free variables. Much of the benefit from using term
calculi is derived from proving theorems about the terms which may then be used in proving
theorems about derivations or deductions. For instance, the theoremsψ_eq_1 andψ_eq_2
show a relationship between the derivation terms ofMJ and the deduction terms ofNJ.
These theorems are required in order to prove the more interesting theorems N_Admis_θ

and N_Admis_θ′ regarding derivations inMJ and deductions inNJ.
This problem of variable binding and references is an old one in computer-aided rea-

soning. The problems of renaming,α-conversion and substitution have been dealt with in
various ways. The most common way of dealing with bound variables inλ-calculi has been
with nameless dummy variables, also calledde Bruijn indices[10]. (In fact,Coq itself uses
de Bruijn indices internally, together with a persistent naming mechanism for display and
interaction.) Another, more recent, idea has been to use a higher-order abstract syntax to
define equivalence classes of concrete terms to represent the abstractα-convertible terms
required [12,24]. A similar but simpler approach is outlined in [34] and more thoroughly
explained in [35].

This paper presents a formalisation using de Bruijn indices for both the bound and free
variables. Similar formalisations ofλ-calculi appear in [27,44]. See Section5 for a deeper
discussion of the alternative approaches.

13https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

So, we define a set of formulae (F) to contain an infinite set of atomic formulae plus the
implicational formulae:

Inductive
F:Set :=

form : nat->F |
Impl : F->F->F.

The setHyps of contexts is defined as a list ofF(ormulae) using syntactic constructions
together with the polymorphic list library provided withCoq: this library provides the
function length:(A:Set)(list A)->nat, giving the length of lists, and theorems
for some of its properties. The syntax forHyps is equivalent to the inductive definition:

Inductive
Hyps:Set :=

MT : Hyps |
Add_Hyp : F->Hyps->Hyps.

In_Hyps:nat->F->Hyps->Prop is a predicate that tests whether a particular formula
is present at a particular depth within a specified context, and is the formalisation of the
conceptx :P ∈ 0. The setV of nameless variables is defined as an abbreviation for the
natural numbers.

Decidability of equality forV, F andHyps is proved, as is the decidability of some other
relations, such as the occurrence or non-occurrence of a variable in a term. (See [1] for
details of how and of why this is important to the formalisation.)

Thus, the proof terms of the three systems may be defined in the following way.

Inductive
L:Set :=

vr : V->L |
app : V->L->L->L |
lm : L->L.

Mutual Inductive
M:Set :=

sc : V->Ms->M |
lambda : M->M

with
Ms:Set :=

nil : Ms |
mcons : M->Ms->Ms.

Mutual Inductive
N:Set :=

lam : N->N |
an : A->N

with
A:Set :=

ap : A->N->A |
var : V->A.

14https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

From the definitions forM andMs the following induction principle is semi-automatically
generated. (Some simple cut-and-paste and an easy proof are currently required for induc-
tion principles derived from mutual inductive definitions.)

(P:M->Prop)
(P0:Ms->Prop)

((v:V)(ms:Ms)(P0 ms)->(P (sc v ms)))->
((m:M)(P m)->(P (lambda m)))->

(P0 mnil)->
((m:M)(P m)->(ms:Ms)(P0 ms)->(P0 (mcons m ms)))->

(((m:M)(P m)) /\ ((ms:Ms)(P0 ms))).

In the more standard logical notation this is the induction scheme:

∀x :V.∀ms:Ms.P0(ms)⊃ P(x ;ms)
∀x :V.∀m :M.P (m) ⊃ P(λx.m)

P0([])∀m :M.P (m) ⊃ ∀ms:Ms.P0(ms)⊃ P0(m ::ms)
(∀m :M.P (m)) ∧ (∀ms:Ms.P0(ms))

whereP andP0 are predicates onM andMs respectively.

4.2. Derivations and deductions
We may now define the predicates representing derivations and deductions within the

three calculi. In type theory this is done by defining predicates which map a context, a term
and a formula to aProp (with an extra formula added for the stoup inMs derivations for
MJ). Each rule/axiom (as shown in Table1) provides a constructor clause for these induc-
tively defined predicates. In this way we formalise the requirement that a valid derivation or
deduction must be built up only from the primitive rules of the object logic, while allowing
reasoning about the systems at the meta-level. For brevity we show this only forMJ in
Figure3.

As may be seen from those definitions, the de Bruijn indexing flows seamlessly between
terms in sequents which change the context and the binding operators at the head of the term
(Abstract rule). This is also the case forNJ andLJ as defined in this formalisation. This
is due to the particular nature of the logics in question, and does not necessarily generalise
to other logics. In particular, a formalisation of linear logic would not work in this fashion,
and a more complex variable-referencing mechanism would be required. See Section6 for
a further discussion of this problem. Other operations, such as substitutions (sub in Table
2) and weakening, requirelift anddrop operations as defined in [27] to ensure the
correctness of the de Bruijn indexing.

Figure4 shows the induction scheme semi-automatically produced for derivations in
MJ. This complicated scheme is not strictly necessary, although its use does simplify proofs
somewhat. The inversion tactic ofCoq provides us with a relatively simple way to avoid
using induction schemes based on the derivation/deduction predicate, but only because
derivation/deduction terms so closely encode the derivation/deduction. The application of
this scheme is equivalent to using the mutual induction principle for the termsM andMs,
and then performing an inversion on the derivation in the antecedent of the current goal, for
example inverting:
(M_Deriv h (lambda m) (Impl P Q))
to give the premiss:(M_Deriv (Add_Hyp P h) m Q).

15https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Mutual Inductive
M_Deriv : Hyps -> M -> F -> Prop :=

Choose : (h:Hyps)(i:V)(P:F)(ms:Ms)(R:F)
(In_Hyps i P h)->

(Ms_Deriv h P ms R)->
(M_Deriv h (sc i ms) R) |

Abstract :
(h:Hyps)(P:F)(m:M)(Q:F)

(M_Deriv (Add_Hyp P h) m Q)->
(M_Deriv h (lambda m) (Impl P Q))

with
Ms_Deriv : Hyps -> F -> Ms -> F -> Prop :=

Meet : (h:Hyps)(P:F)
(Ms_Deriv h P mnil P) |

Implies_S :
(h:Hyps)(m:M)(P:F)(Q:F)(ms:Ms)(R:F)

(M_Deriv h m P)->
(Ms_Deriv h Q ms R)->

(Ms_Deriv h (Impl P Q) (mcons m ms) R).

Figure 3: Formal definition of derivations inMJ

While it is difficult to see how one might directly define an induction on derivation height,
one may perform such inductions indirectly by using a strong induction on terms, followed
by case analyses and inversions. Machine support for such methods may not seem necessary
for the implicational fragment presented in this paper, but the complexity of the induction
schemes rapidly increases when new connectives are added, and other aspects of the machine
support (such as tracking of case analyses) become ever more useful.

So, while induction schemes of such size are not strictly necessary, consider the formali-
sation extended to full propositional logic. The induction scheme for the derivation/deduction
terms will be even larger than that shown in Figure4 for derivations, and the use of such
schemes followed by inversions performed on the antecedents would be time-consuming
and awkward. So where straightforward structural induction is sufficient, it is useful to be
able to perform this directly on the derivations/deductions, rather than via induction on the
derivation/deduction terms, followed by inversion of premisses.

4.3. Permutation
Table5 shows the permutations in the usual informal syntax. The formalisation of these

rules was complex. The exact variable namings and renamings that form an integral part
of the reductions are subtle, and it is only when one looks at the typed case that one can
fully decipher the meanings of the reductions and formalise them to capture the correct
translations. Figure5 shows the formalised version of two of the actual permutations; that
is, rules that permute proof terms rather than the rules allowing permutation within sub-
terms. (See (app_lm) in Table5 for an example of a rule allowing permutation of subterms.)

The formalisation of (app_app2) asl_perm1_app_app2 highlights the complexity
of the process. Figure6 shows the informal version of the typed reduction rule. Only the
leaves and root of the relevant proof-tree fragments are shown, since they contain all the
information necessary for the analysis.

16https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

(P:(h:Hyps)(m:M)(f:F)(M_Deriv h m f)->Prop)
(P0:(h:Hyps)(f:F)(ms:Ms)(f0:F)(Ms_Deri v h f ms f0)->Prop)

((h:Hyps)(i:V)(f2:F)(ms:Ms)(R:F)
(i0:(In_Hyps i f2 h))

(ms0:(Ms_Deriv h f2 ms R))
(P0 h f2 ms R m)->

(P h (sc i ms) R (Choose h i f2 ms R i0 ms0)))->
((h:Hyps)(f2:F)(m:M)(Q:F)

(m0:(M_Deriv (Add_Hyp f2 h) m Q))
(P (Add_Hyp f2 h) m Q m0)->

(P h (lambda m) (Impl f2 Q) (Abstract h f2 m Q m0)))->
((h:Hyps)(f2:F)(P0 h f2 mnil f2 (Meet h f2)))->
((h:Hyps)(m:M)(f2, Q:F)(ms:Ms)(R:F)

(m0:(M_Deriv h m f2))
(P h m f2 m0)->

(ms0:(Ms_Deriv h Q ms R))
(P0 h Q ms R m1)->

(P0 h (Impl f2 Q) (mcons m ms) R
(Implies_S h m f2 Q ms R m0 ms0)))->

((h:Hyps)(m:M)(f:F)(m0:(M_Deriv h m f))(P h m f m0))/\
((h:Hyps)(f:F)(m:Ms)(f0:F)(ms0:(Ms_Deri v h f m f0))

(P0 h f m f0 ms0)).

Figure 4: Formal induction scheme for derivations inMJ

Each of the leaves of a tree corresponds to a particular occurrence of a named term
(variable or term ofL : x, y, y′, l1, l2, l3) in the root of that tree. So, for each of the three
different occurrences of the termsl1 andx in the root of the second tree there is a leaf with
l1 or x as the principal term. A comparison of the contexts of these leaves with the original
leaf in the first tree shows the differences in the de Bruijn indices for the terms. Thus the
first occurrences ofx andl1 are unchanged in the formalisation of the reduction, the second
occurrences are both lifted once, and the third occurrences are lifted twice.

The most complex variations in the contexts occur forl3: originally the bindings for
variables arez : P2, y : (P1 ⊃ P2), 0; that is, de Bruijn index occurrences inl3 are
dereferenced asz← 0; y ← 1, and higher numbers reference entries in the context0. In
the permuted derivation the bindings arey : (P1 ⊃ P2), z : P2, y

′ : (P1 ⊃ P2), 0. Sincey′
does not appear inl3, but must be accounted for in the referencing to variables in0, l3 must
be lifted by 2 (that is,(S(S O))). Also, the occurrences ofy andz are switched, so the de
Bruijn references must be exchanged — exchange is defined only for switching references
to a binding depth and its successor. This may be done without loss of generality, since
any general exchange can be expressed in terms of multiple applications of this pairwise
exchange. Similar analyses give us the lifting, dropping and exchanging requirements for
each permutation as shown in Figure5. The admissibility of various structural rules has
been proved in the formalisation for all three systems. While strengthening, weakening and
exchange are all obviously admissible for all three systems, this has only been formally
proved where required for other results.

17https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

Inductive
L_Perm1 : L->L->Prop :=

.
:

l_perm1_app_wkn :
(x:V)(l1, l2:L)

˜(Occurs_In_L O l2)->
(L_Perm1 (app x l1 l2) (drop_L O l2)) |

.
:

l_perm1_app_app2 :
(x:V)(l1, l2, l3:L)

(L_Perm1 (app x l1 (app O l2 l3))
(app x

l1
(app O

(app (lift_V O x)
(lift_L O l1)
(lift_L (S O) l2))

(app (lifts_V (S (S O)) O x)
(lifts_L (S (S O)) O l1)
(L_Exchange O

(lift_L (S (S O)) l3)))))) |
.
:

Figure 5: Formalised permutations

4.4. Non-primitive recursive definitions
The definition ofρ̄ in Table2 is not primitive recursive when directly translated into the

formal syntax. This is due to the recursive call ofρ̄(z ;ms)for newz in the third definitional
equation. The argument of this recursive call is not a sub-term of(x ;m ::ms), the original
argument. When such definitions are translated into the formal syntax, new non-primitive
recursive elements may also be added in the form of lifting and/or dropping operations on
the terms passed into the recursive calls.

The direct translation of̄ρ (from Table2) would be:

Recursive Definition
rhobar : M->L :=

(semicolon x nil) => (vr x) |
(semicolon x (mcons m ms)) =>

(app x (rhobar m)
(rhobar (semicolon O

(lift_Ms O ms)))) |
(lambda m) => (lm (rhobar m)).

Sinceapp is a binding operator for its third argument,O represents a new variable, and
ms has been lifted to take this binding into account. The following definition is used, and

18https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

(z : P2), (y : (P1 ⊃ P2)), 0→ l3 : R
(y : (P1 ⊃ P2)), 0→ l2 : P1

0→ l1 : P0
(x : (P0 ⊃ (P1 ⊃ P2))) ∈ 0....

0→ app(x, l1, y.app(y, l2, z.l3)) : R
�

(y : P1 ⊃ P2), (z : P2), (y
′ : (P1 ⊃ P2)), 0→ l3 : R

(z : P2), (y
′ : (P1 ⊃ P2)), 0→ l1 : P0

(x : (P0 ⊃ (P1 ⊃ P2))) ∈ (z : P2), (y
′ : (P1 ⊃ P2)), 0

(y : (P1 ⊃ P2)), 0→ l2 : P1
(y′ : (P1 ⊃ P2)), 0→ l1 : P0

(x : (P0 ⊃ (P1 ⊃ P2))) ∈ (y′ : (P1 ⊃ P2)), 0

(y′ : (P1 ⊃ P2)) ∈ (y′ : (P1 ⊃ P2)), 0
0→ l1 : P0

(x : (P0 ⊃ (P1 ⊃ P2))) ∈ 0....
0→ app(x, l1, y′.app(y′, app(x, l1, y.l2), z.app(x, l1, y.l3))) : R

Figure 6: Permutation of proof tree fragments by app_app2

proved equivalent to the above by proving that the three parts of the above definition hold;
that is, we prove that(x:V)((semicolon x nil)=(vr x)), and so on.

Recursive Definition
rhobar : M->L :=

(semicolon x nil) => (vr x) |
(semicolon x (mcons m ms)) =>

(app x (rhobar m) (rhobar’ (S O) ms)) |
(lambda m) => (lm (rhobar m))

with
rhobar’ : nat->Ms->L :=

i nil => (vr O) |
i (mcons m ms) =>

(app O
(lifts_L i O (rhobar m))
(rhobar’ (S i) ms)).

The operationlifts_L is merely a multiple iteration of the usual lifting operation (as
defined in [27]). In this case(rhobar m) is lifted i times with respect toO. Effectively,
the lifting operations are being pushed up the evaluation tree until they no longer interfere
with the primitive recursive nature of the definition. A similar, but slightly more compli-
cated, procedure is used to produce a primitive recursive version of sub, pushing the actual
substitution outside the primitive recursive calls. Note that as mentioned in Section3.2the
Recursive Definition format in Coq V6.1 does not allow mutual recursive def-
initions, so the actual formalisation uses the more primitive (and more difficult to read)
Fixpoint format.

19https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

4.5. Formal proof ofApp_Red_M
As mentioned in Section2.5, the proof ofApp_Red_M (amongst others) uses strong

induction on the height of terms inM andMs. The formalised strong induction principle
is:

(P:M->Prop)
(P0:Ms->Prop)

((m:M)((m1:M)(lt (Height_M m1) (Height_M m))->
(P m1))

/\((ms1:Ms)(lt (Height_Ms ms1) (Height_M m))->
(P0 ms1))->

(P m))->
((ms:Ms)((ms1:Ms)(lt (Height_Ms ms1) (Height_Ms ms))->

(P0 ms1))
/\((m1:M)(lt (Height_M m1) (Height_Ms ms))->

(P m1))->
(P0 ms))->
((m:M)(P m))/\((ms:Ms)(P0 ms)).

In this case, we are trying to prove the theorem:

app(x,ρ̄(m1), y.ρ̄(m2)) �∗ ρ̄(sub(x,m1, y,m2))

which may be proved by strong induction onm2, without requiring any equivalent property
for an object of typeMs. To allow the use of mutual induction properties generally, a goal of
the appropriate type is required. Such a goal is produced by defining propositional functions
with the correct type. Since, in the case of App_Red_M, the second conjunct is not needed
for proof of the first, a trivially true propositional function is defined. The two propositional
functions defined here are:

Definition
app_red_m : M->Prop :=

[m:M](x:V)(m1:M)
(L_Permn (app x (rhobar m1) (rhobar m))

(rhobar (MsubstVMV x m1 O m))).

Definition
app_red_ms : Ms->Prop :=

[ms:Ms](x,y:V)(m1:M)
(L_Permn (app x (rhobar m1) (rhobar (sc y ms)))

(app x (rhobar m1) (rhobar (sc y ms)))).

The goal((m:M)(app_red_m m))/\((ms:Ms)(app_red_ms ms)) is therefore
appropriate for the application of the strong mutual induction principle above, while un-
folding the definitions ofapp_red_m andapp_red_ms puts the induction hypotheses
and goals into forms amenable to proof.

Similar procedures are needed for all proofs involving mutual inductions. Often, a proof
about, say, only an object inM is required, and the appropriate second proposition for
objects inMs must be synthesised in order to allow the proof to proceed. Examples of
this can be found in Table4. The theoremsψ_eq2 andθ_eq2 are not of real interest in
themselves, yet they provide vital induction hypotheses for the proofs ofψ_eq1 andθ_eq1.

20https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

5. Related work

Formalisations of this kind are still rare, and in those that exist there is a wide variety
of approaches to the subject. This formalisation has used nameless dummy variables and
functions, as opposed to various schemes for named variables and the use of functional
relations rather than functions.

Recent formalisations such as those of Nazareth and Nipkow [38], Altenkirch [2] and
Barras [3] employ similar methods to the ones highlighted here. Although the methods of
[2] are similar to those presented here, only a single logic, System F, was formalised. System
F is a more powerful and complicated logic thanNJ etc., so different issues are addressed:
those of formalising a single powerful logic rather than the relationships between multiple
(simpler) logics. The main differences in approach are those dictated by the differences
between the LEGO system (pre-1993) and theCoqsystem (in 1997).

Coquand [8] presents another formalisation of a normalisation proof, again using a de
Bruijn encoding, although the details of the proof are very dependent on the capabilities
and style ofAlf, the system used for the formalisation.

Pfenning [41] takes a very different approach to the problem of representing sequent
calculus in a form suitable for formal meta-theoretic reasoning, a form of higher-order
abstract syntax, similar to the methods of Despeyroux, Felty and Hirschowitz [12] using
Coq. For this work, the definitions of proof terms use the variables of the framework or proof
assistant itself (respectively Elf [40] andCoq) to encode the variables of the logic being
studied. This approach has obviously met with some success, although the underlying ideas
can be quite difficult to grasp, and must be approached separately for each proof assistant.
In Coq particularly, there is a definite trade-off to be made in order to use a higher-order
abstract syntax. In encoding the terms by using the underlying system, one first defines
pseudo-terms and then defines a predicate narrowing the scope to those terms that one
wishes to allow. Even these terms are not fully specified, but are equivalence classes of terms
that are indistinguishable in judgements. One cannot define functions over the narrowed
terms, but instead must use functional relations; the intensional equality of the system must
be discarded and an extensional equality relation defined and used. A more significant
problem is that one loses the automatic production of provably correct induction schemes.
These added complexities would appear to separate the formalisation from the original
informal theory quite heavily. So, while one gains confidence in the results, perhaps, one
may not gain confidence in the informal proofs.

There has been an increasing amount of research into higher-order abstract syntax for
various application areas in the last few years, some of the most notable work having been
published since the development presented here was completed. In particular, recent work by
Gabbay and Pitts [20] suggests the use of a non-standard set theory (the Fraenkel–Mostowski
permutation model of set theory with atoms) which allows the definition of languages with
binders. This approach givesα-conversion of terms involving bound variables ‘for free’,
but does not give substitution ‘for free’. The central theoretical ideas are similar to those of
[19]. Current development of this idea is being performed inCoq.

McKinna and Pollack [34] introduce yet another approach to such formalisations. McK-
inna refers to this method asfirst-order abstract syntaxfor terms with (restricted)higher-
order abstract syntaxfor judgements. McKinna has claimed, in a personal communication
with the author, that it should be possible to use such a syntax for a different formalisation
in Coqof the theory presented here, using functional relations instead ofCoq functions to
define the translation and substitution functions, etc., while still allowing use of theCoq

21https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

intensional equality for theorems such asψ_eq1. This possibility remains unexplored at
present. Certainly the work on algorithms for checking Pure Type Systems has a number
of similarities with the work presented in this paper (see also [35]).

6. Conclusions and further work

Following the proof of strong normalisation for a system of reductions by Schwichten-
berg in [45], weak normalisation was formally proved using the conditional variants for
which strong normalisation holds. Very little work was required to re-do these proofs with
the extra conditions, indicating the robustness ofCoq’s proof-scripting mechanisms. For-
malisation of Schwichtenberg’s proof, however, would have required the development of
yet another variant of the logics, still a formidable undertaking despite the experience gained
in formalising the other three systems.

This paper has presented a formalisation of sequent-style calculi using de Bruijn indices;
that is, nameless variables. It has shown that it is possible to follow standard informal proof
techniques in a formal environment using this representation. The areas where the formal
development differs from the informal development is precisely where the informal devel-
opment makes use of assumptions about variable renaming. While other formalisations such
as the Coquand–McKinna–Pollack abstract syntax may allow named variables, and conse-
quently easier human-readable proofs, there is a consequent loss of equivalence between
informal and formal developments where functions are used. Current implementations of
higher-order abstract syntax are difficult to use, and still seldom allow for the automatic
production of induction schemes within the restrictions of tools such asCoq. In the longer
term, however, this approach could well bear productive fruit, although it is impossible to
judge at this stage how soon tools might become available to allow simple higher-order
abstract syntax and the automatic production of induction schemes.

The use of de Bruijn indices in the formalisation brings its own problems to the work,
notably the problems with primitive recursive definition highlighted in Section4.4, and
an increase in the number of intermediate lemmas (in particular, proving relationships
between functions and renumbering of nameless variables). There is also the matter of the
gap between the informal and formal definitions. This gap may undermine the confidence
in the informal proofs gained from a formalisation of the proofs. The wider gap between
informal and formal definitions produced by the current methods of first- or higher-order
abstract syntax would seem to indicate that de Bruijn nameless variables would be the best
(though not an ideal) choice for a formalisation of [15], which extends the proofs to full
propositional logic. An extension of the informal proofs to first-order logic would produce
such a large informal proof that confidence in those informal proofs could be quite low. It was
with this in mind that the original formalisation was undertaken. As we have seen, however,
the effort involved in formalising such proofs is still considerable, although extension of
an existing development to more connectives would hopefully prove less onerous than the
initial task. Should such a task be undertaken, it would be likely that work on automation of
routine aspects of the proofs would prove beneficial. For instance, the formal proofs show
similarities to those for whichrippling[6] is a successful approach. However, the existing
implementation of rippling is only useful for equational reasoning, although the background
for a more general form,relational rippling [5], does exist.

Similar problems exist in other logics, most notably [21] on permutations in linear logic.
As mentioned above, the formalisation presented here would not be completely appropriate
for work with linear logic. The problems come when dealing with a term calculus and its

22https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

interactions with the context-splitting rules:

0 ` g1:G1 1 ` g2:G2

0,1 ` g :G
where the context in the conclusion of the rule (0,1) is split into portions (0 and1) for
the premisses. References to the free variables of the term (that is, the variables referencing
formulae in the context) may be radically altered. Some possible ways of avoiding this
problem involve amending the context in some way, barring certain formulae from use in
a branch of the proof tree, or encoding the variables as binary trees of integers rather than
simply as integers. It is difficult to judge in advance whether such encodings would justify
their use, as compared with moving to an abstract syntax with the concomitant other changes
mentioned above.

Coqis only one of the systems available, and other systems of similar power and maturity
(for example, HOL[25] andNuPRL[7]) may bring different strengths and weaknesses to
bear on such problems. In particular, it is possible that the extensional equality mechanisms
in HOL might bring an abstract syntax closer to the original informal development. One
problem with this idea, however, is that meta-theory of logical systems is usually performed
in an intuitionistic setting (whether the object logic under consideration is intuitionistic or
classical), so the classical logic of HOL may not be appropriate.

Appendix A. The fullCoq 6.1development

This appendix contains a README fileand a tarred gzipped file containing the full
formal development described in this paper, and is to be found at

http://www.lms.ac.uk/jcm/3/lms1999-009/appendix-a/.

The formal development was performed with Version 6.1 of theCoqproof system, and may
not work with more recent releases. Instructions for running the formal proofs withCoq
6.1 are included in the README file.

References

1. A. A. Adams, ‘Tools and Techniques for Machine-Assisted Meta-Theory’, PhD The-
sis, School of Mathematical and Computational Sciences, University of St Andrews,
UK, 1997. 2, 14

2. Th. Altenkirch, ‘A formalisation of the strong normalisation proof for System F in
LEGO’, Typed lambda calculus and applications, Lecture Notes in Computer Science
664 (ed. M. Bezem and J. F. Groote, Springer-Verlag, 1993) pp. 13–28.1, 21,21

3. B. Barras, ‘CoqenCoq’, Tech. Rep. 3026, INRIA (1996).21

4. B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. Filliatre, E. Giménez, H. Her-
belin, G. Huet, C. Muñoz, C. Murthy, C. Parent, C. Paulin, A. Saïbi and
B. Werner, ‘The CoqProof Assistant Reference Manual (Version 6.1)’, Tech. Rep.,
INRIA, 1996. Available on-line with theCoqdistribution fromftp.inria.fr. 9, 13

5. A. Bundy andV. Lombart, ‘Relational rippling: a general approach’, Proceedings,
14th International Joint Conference on Artificial Intelligence (ed. C. Mellish, IJCAI,
1995) 175–181.22

23https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

http://www.lms.ac.uk/jcm/3/lms1999-009/appendix-a/
file:ftp.inria
https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

6. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland andA. Smaill, ‘Rippling:
a heuristic for guiding inductive proofs’,Artificial Intelligence(1993) 185–253.22

7. R. L. Constable, S. F. Allen andothers, Implementing Mathematics with the NuPrl
proof development system(Prentice-Hall, 1986).1, 23

8. C. Coquand, From semantics to rules: a machine assisted analysis, Lecture Notes in
Computer Science 832 (Springer-Verlag, 1993) 91–105.1, 21

9. Th. Coquand andG. Huet, Constructions: a higher order proof system for mecha-
nizing Mathematics, Lecture Notes in Computer Science 203 (Springer-Verlag, 1985)
151–184. 9

10. N. G. de Bruijn, ‘λ-calculus notation with nameless dummies, a tool for automatic
formula manipulation’,Indag. Math34 (1972) 381–392.13

11. N. G. de Bruijn, A survey of the project AUTOMATH(Academic Press, 1980) 579–
606. 13

12. J. Despeyroux, A. Felty andA. Hirschowitz, Higher-order abstract syntax inCoq
Lecture Notes in Computer Science 902 (Springer-Verlag, 1995) 124–138.13,21

13. P. Dybjer, B. Nordström andJ. Smith (eds),Types for proofs and programs, Pro-
ceedings, International Workshop TYPES ’94, Lecture Notes in Computer Science
(Springer-Verlag, 1994).

14. R. Dyckhoff, ‘Contraction-free sequent calculi for intuitionistic logic’,J. Symbolic
Logic 57 (1992) 795–807.3

15. R. Dyckhoff andL. Pinto, ‘A permutation-free sequent calculus for intuitionistic
logic’, Tech. Rep. CS/96/9, University of St Andrews, 1996.2, 3, 3, 3, 3, 3, 4, 22

16. R. Dyckhoff and L. Pinto, ‘Cut-elimination and Herbelin’s sequent calculus for
intuitionistic logic’, Studia Logica60 (1998) 107–118.3

17. R. Dyckhoff andL. Pinto, ‘Permutability of proofs in intuitionistic sequent calculi’,
Theoret. Comput. Sci.212 (1999) 141–155.2, 2, 3, 3

18. A. Felty,A logic program for transforming sequent proofs to natural deduction proofs,
Lecture Notes in Artificial Intelligence 475 (Springer-Verlag, 1989) 157–178.3

19. M. Fiore, G. Plotkin andD. Turi, ‘Abstract syntax and variable binding’, Proceed-
ings, 14th Annual Symposium on Logic in Computer Science (ed. G. Longo, IEEE
Computer Society Press, Washington, 1999).21

20. M. J. Gabbay andA. M. Pitts, ‘A new approach to abstract syntax involving binders’,
Proceedings, 14th Annual Symposium on Logic in Computer Science (ed. G. Longo,
IEEE Computer Society Press, Washington, 1999).21

21. D. Galmiche and G. Perrier, ‘On proof normalisation in linear logic’,Theoret.
Comput. Sci.135 (1994) 67–110.22

22. G. Gentzen, ‘Investigations into logical deduction’The collected papers of Ger-
hard Gentzen(Translated from 1934 original in German), Studies in Logic and the
Foundations of Mathematics (ed. M. E. Szabo, North-Holland, 1969) 68–131.3

23. E. Giminez, ‘Codifying guarded definitions with recursive schemes’,Types for proofs
and programs, Proceedings, International Workshop TYPES ’94, Lecture Notes in
Computer Science (ed. P. Dybjer, B. Nordström and J. Smith, Springer-Verlag, 1994)
39–59. 11

24https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

24. A. D. Gordon andT. Melham, ‘Five axioms of alpha-conversion’,Theorem proving
in higher order logics, Proceedings, 9th International Conference, Lecture Notes in
Computer Science 1125 (ed. J. von Wright, J. Grundy and J. Harrison, Springer-Verlag,
1996) 173–190.13

25. M. J. C. Gordon andT. F. Melham (eds),Introduction to HOL(Cambridge University
Press, 1993).23

26. H. Herbelin, A λ-calculus structure isomorphic to Gentzen-style sequent calculus
structure, Lecture Notes in Computer Science 933 (Springer-Verlag, 1994) 61–75.3,
3

27. G. Huet, ‘Residual theory inλ-calculus: a complete Gallina development’,J. Funct.
Programming3 (1994) 371–394.1, 13,15,19

28. G. Huet andG. Plotkin (eds),Logical frameworks(Cambridge University Press,
1991). 1

29. G. Huet andG. Plotkin (eds),Logical environments(Cambridge University Press,
1993). 1

30. S. C. Kleene, ‘Permutability of inferences in Gentzen’s calculi LK and LJ’,Mem.
Amer. Math. Soc.(1952) 1–26.2

31. J. W. Klop, Term rewriting systems(Oxford University Press, 1992) 1–116.4

32. D. Leivant, ‘Assumption classes in natural deduction’,Zeitschrift für Math. Logik
25 (1979) 1–4.3

33. P. Martin-Löf, Intuitionistic type theory(Bibliopolis, 1984). 9

34. J. McKinna andR. Pollack, ‘Pure type systems formalized’,Typed lambda calculus
and applications, Lecture Notes in Computer Science 664 (ed. M. Bezem and J. F.
Groote, Springer-Verlag, 1993) 289–305.13,21

35. J. H. McKinna andR. Pollack, ‘Some type theory and lambda calculus formalised’,
J. Automat. Reason., Special Issue on Formal Proof, ed. F. Pfenning, 23 (1999) 373–
409. 13,22

36. G. Mints, ‘Cut-elimination and normal forms of sequent derivations’, Tech. Rep.
CSLI-94-193, Stanford University, 1994.3

37. G. Mints, Normal forms for sequent derivations(A. K. Peters, Wellesley, MA, 1996)
469–492. 3

38. D. Nazareth andT. Nipkow, ‘Formal verification of Algorithm W: the monomor-
phic case’, Theorem proving in higher order logics, Proceedings, 9th International
Conference, Lecture Notes in Computer Science 1125 (ed. J. von Wright, J. Grundy
and J. Harrison, Springer-Verlag, 1996) 331–345.21

39. C. Paulin-Mohring, ‘Inductive definitions in the systemCoq. Rules and properties’,
Typed lambda calculus and applications, Lecture Notes in Computer Science 664 (ed.
M. Bezem and J. F. Groote, Springer-Verlag, 1993) 328–345.9

40. F. Pfenning, ‘Logic programming in the LF logical framework’,Logical environ-
ments(ed. G. Huet and G. Plotkin, Cambridge University Press, 1993) 149–181.21

41. F. Pfenning, ‘A structural proof of cut elimination and its representation in a logical
framework’, Tech. Rep. CMU-CS-94-218, Carnegie Mellon University (1994).21

42. F. Pfenning andE. Rohwedder, Implementing the meta-theory of deductive systems,
Lecture Notes in Artificial Intelligence 607 (Springer-Verlag, 1992) 537–551.1

25https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000188

Formalised weak normalisation of permutation reduction in LJ

43. D. Prawitz, ‘Natural deduction’, Ph.D. thesis, Acta Universitatis Stockholmensis,
1965. 3, 3

44. A. Saïbi, ‘Formalization of aλ-calculus with explicit substitutions in Coq’,Types
for proofs and programs, Proceedings, International Workshop TYPES ’94, Lecture
Notes in Computer Science (ed. P. Dybjer, B. Nordström and J. Smith, Springer-Verlag,
1994) 183–202.13

45. H. Schwichtenberg, ‘Termination of permutative conversions in intuitionistic
Gentzen calculi’,Theoretical Comput. Sci.212 (1999) 247–260.22

46. N. Shankar, Metamathematics, machines, and Gödel’s proof, Cambridge Tracts in
Theoretical Computer Science (Cambridge University Press, 1994).1

47. M. E. Szabo (ed.),The collected papers of Gerhard Gentzen(Translated from 1934
original in German), Studies in Logic and the Foundations of Mathematics (North-
Holland, 1969). 1

48. A. S. Troelstra andH. Schwichtenberg,Basic proof theory(Cambridge University
Press, 1996).3

49. L. S. van Benthem Jutting, J. McKinna andPollack R., ‘Checking algorithms for
pure type systems’, Lecture Notes in Computer Science 806 (Springer-Verlag, 1994)
19–61. 1

A. A. Adams aaa@dcs.st-and.ac.uk

Division of Computer Science
School of Mathematics and Computer Science
University of St Andrews
North Haugh
St Andrews KY16 9SS

26https://doi.org/10.1112/S1461157000000188 Published online by Cambridge University Press

mailto:aaa@dcs.st-and.ac.uk
https://doi.org/10.1112/S1461157000000188

	Introduction
	Notation
	Overview

	The informal theory
	Overview
	Three sequent-style calculi
	Relationships between the calculi
	Permutations in LJ
	Informal proofs

	The proof assistant Coq
	Types, sorts, etc.
	Definitions
	The minimality principle and inversion of predicates
	Logical notation in ASCII

	Formalisation issues
	Formulae, contexts, variables and proof terms
	Derivations and deductions
	Permutation
	Non-primitive recursive definitions
	Formal proof of App_Red_M

	Related work
	Conclusions and further work
	The full Coq 6.1 development

