
J. Appl. Prob. 49, 915–938 (2012)
Printed in England

© Applied Probability Trust 2012

THE TIME TO RUIN IN SOME ADDITIVE RISK
MODELS WITH RANDOM PREMIUM RATES
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Abstract

The risk processes considered in this paper are generated by an underlying Markov process
with a regenerative structure and an independent sequence of independent and identically
distributed claims. Between the arrivals of claims the process increases at a rate which
is a nonnegative function of the present value of the Markov process. The intensity for
a claim to occur is another nonnegative function of the value of the Markov process.
The claim arrival times are the regeneration times for the Markov process. Two-sided
claims are allowed, but the distribution of the positive claims is assumed to have a Laplace
transform that is a rational function. The main results describe the joint Laplace transform
of the time at ruin and the deficit at ruin. The method used consists in finding partial
eigenfunctions for the generator of the joint process consisting of the Markov process
and the accumulated claims process, a joint process which is also Markov. These partial
eigenfunctions are then used to find a martingale that directly leads to an expression for
the desired Laplace transform. In the final section, three examples are given involving
different types of the underlying Markov process.
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1. Introduction

The class of risk processes X = (Xt )t≥0 considered in this paper have the form

Xt = x0 +
∫ t

0
β(Ys) ds −

Nt∑
n=1

Un (1.1)

with Y some Markov process, N the counting process counting the number of claims incurred
over time, and claims Un that are independent and identically distributed (i.i.d.). Thus, the
random premium rate at time t is β(Yt ) and it is assumed that the function β is greater than or
equal to 0. The precise form of the model is described in Section 2, but it is important already
at this stage to emphasise thatX is constructed from Y and the accumulated claims process: in
the literature it is more standard to study models with random premium rates depending on the
value of the risk process,

Xt = x0 +
∫ t

0
β(Xs) ds −

Nt∑
n=1

Un, (1.2)
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i.e. X is determined as the solution to this stochastic differential equation. A survey of models
of this type can be found in [11]. There does not however appear to be many examples of
processes of the form (1.1) with Y not determined exclusively by X, one exception being Wu
and Wei [13].

The present paper is a natural continuation of Jacobsen [5], [6]. The latter is particularly
relevant and the main reference for this paper, dealing with a model that includes the special
case of (1.1) when Y is a certain type of Markov chain on a finite state space. Our aim is to
determine the structure of the joint Laplace transform of the time to ruin and the deficit at ruin.

Model (1.2) with N a Poisson process and the claims i.i.d. is discussed in Chapter 7 of [2].
Jasiulewicz [9] considered model (1.2) withN a Cox process with a stochastic intensity process
given as a function of a finite state space Markov chain. Wu and Wei [13] also assumedN to be a
Cox process with the same kind of intensity process, but they consideredX to be of the form (1.1)
with Y this intensity process. Ganesh et al. [4] studied a variation of (1.2) with the accumulated
claims process of Poisson shot noise form. Møller [10] considered a general model of the form
(1.2) using a marked point process to describe the occurrence and size of claims.

A rather sophisticated model, somewhat related to (1.2) in the sense thatX solves a stochastic
differential equation, is that considered by Paulsen and Gjessing [12]. The risk process X is
then Markov. Their paper is also relevant because in Theorem 2.1 therein they showed that,
e.g. the Laplace transform of the time to ruin may be found by determining what we refer to as
a ‘partial eigenfunction’ for the generator of X, the technique used in this paper as well as in
[5], [6], and [8]. By a ‘partial eigenfunction’ we mean a real-valued function that satisfies the
basic eigenfunction identity only on a subset of the set on which the function is defined. This
concept is different from that of ‘partial eigenfunction expansions’ encountered, e.g. in Fourier
analysis.

Most of the literature focuses on determining the probability of ruin within a given time
interval [0, T ], e.g. how it can be found (as a function of the initial state x0 and T ) by
solving functional equations of differential and/or integral type. Exact results are given in
[2, Corollary 7.1.8] for the case of exponential claims and Poisson arrivals. In [12] the authors
for some special cases of their model were able to find explicit forms of the ruin probability
and the Laplace transform of the time to ruin: some of their examples allow a distribution for
the claims that is not exponential but either a mixture of two exponentials or a convolution
of two exponentials. For model (1.2) with β(x) = βx, Jacobsen and Jensen [8] in particular
determined the Laplace transform of the time to X crossing below a low level l (for the time to
ruin, l = 0) when assuming that the density of the claims distribution is a linear combination
of exponentials.

In order to get reasonably explicit results, it seems necessary that there is some Markov
structure: in [2, Chapter 7] and [12], the risk process itself is Markov, in both [9] and [13] X
need not be Markov, but (X, Y ) is (with Y the intensity for the Cox process). For our model
of the form (1.1), it is certainly essential that (X, Y ) is Markov. It is also important for us that
the distribution of the downward claims (we allow for two sided Un) is of a special form, viz.
with a Laplace transform that is a rational function.

The problem of determining the partial eigenfunctions for the (X, Y )-generator needed for
determining the Laplace transform of the time to ruin is not simple, but the structure of our
model allows us to separate the two variables x and y (see (3.25) below for the analytic form of
the partial eigenfunctions), reducing the problem to that of finding the solutions to a Cramér–
Lundberg-type equation (see (3.6) below) and solving a functional equation (see (3.5) below)
which does not involve (X, Y ) but only what we shall call a generic Markov process Y ◦ from
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which Y is obtained by imposing a regenerative structure that is essential for the analysis
presented below.

Our model is complicated in the sense that although (X, Y ) is Markov, X itself in general
is not. It is simple in the sense that X is additive, i.e. to start the process at a new level x1, just
add the constant x1 − x0 on both sides of (1.1). By contrast, when X is Markov, model (1.2) is
simple in a Markovian sense, but complicated in the sense that typically it is not additive.

The discussion above has focused on models where the claims Un are i.i.d. Albrecher and
Boxma [1] discussed a model of the form (1.1) with β(y) a constant c > 0, but where the jumps
of N and the distribution of the claims are governed by a Markov chain on a finite state space.
It is quite possible that the ruin problem for this type of model can also be solved using partial
eigenfunctions; see the discussion in Remark 3.3 below where some of the difficulties that arise
are mentioned.

2. The model and the problem

The object of study in this paper is a time-homogeneous Markov process (X, Y ) =
(Xt , Yt )t≥0 with X real-valued and Y itself Markov with values in a state space (E, E) that we
shall assume is a Polish spaceE equipped with the Borel σ -algebra E . One way of constructing
(X, Y ) corresponding to an arbitrary initial state (X0, Y0) ≡ (x0, y0) ∈ R × E is as follows.
Suppose that a generic time-homogeneous Markov process Y ◦ = (Y ◦

t )t≥0 with state spaceE is
given, and assume that Y ◦ is càdlàg and strong Markov; suppose also that a probability measure
A, the reset distribution, on (E, E) and a continuous function λ from E to R0 = [0,∞) are
given. Consider a sequence (Y (n))n≥2 of i.i.d. copies of Y ◦ with initial distribution A and a
copy Y (1) of Y ◦ with fixed initial state y0, independent of the sequence (Y (n))n≥2. Next, kill
the Y (n) for n ≥ 1 independently of each other at random times T (n) where the conditional
distribution of T (n) given Y (n) is determined as

P(T (n) > t | Y (n)) = exp

(
−

∫ t

0
λ(Y (n)s ) ds

)
. (2.1)

Define τ0 ≡ 0 and
τn = T (1) + · · · + T (n) for n ≥ 1,

and then construct the càdlàg component Y of the desired process (X, Y ) by gluing the killed
Y (n) together:

Yt = Y
(n)
t−τn−1

, n ≥ 1, τn−1 ≤ t < τn.

To finally construct the second component X of (X, Y ), let the counting process N = (Nt )t≥0
be given by

Nt =
∞∑
n=1

1(τn≤t)

with N0 ≡ 0 and introduce a sequence (Un)n≥1 of i.i.d. R-valued random variables with
distribution F , independent of Y and the Tn and satisfying

P(Un > 0) > 0. (2.2)

Finally, let β : E → R0 be a given nonnegative, continuous function. Then define, correspond-
ing to the given initial state x0 for X,

Xt = x0 +
∫ t

0
β(Ys) ds − Ūt , (2.3)
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where

Ūt =
Nt∑
n=1

Un.

Thus, thinking of the τn as the claim arrival times withUn the size of thenth claim, we see that the
claims arrive according to a delayed renewal process with interarrival times τn − τn−1 = T (n)

for n ≥ 2 i.i.d. with

P(T (n) > t) = EA

(
exp

(
−

∫ t

0
λ(Y ◦

s ) ds

))
. (2.4)

Also, between claims, X increases at the rate β(Ys). (Formally, one could allow for arbitrary
R-valued functions β, but in the main result, Theorem 3.1 below, it is important that β ≥ 0 in
order to allow only for ‘ruin by jump’.)

Notation. We write P and E for the probability measure and expectation when referring to the
space where all the random variables involved in the construction of (X, Y ) are defined. When
referring to the generic process Y ◦, we write P and E. An index refers to how the process(es)
is started, either using a fixed initial state (such as y0 or (x0, y0)) or using a distribution for the
initial random variable (Y ◦

0 or (X0, Y0)). If no index is specified, it signifies that the probability
or expectation is the same for all initial distributions. Similarly, writing, e.g. Py signifies that
the probability in question is the same for all initial distributions of X and with Y0 ≡ y.

It was assumed above that the functions λ and β are both greater than or equal to 0 and
continuous. We shall further assume for convenience that the nonnegative càdlàg processes
λ(Y ◦) and β(Y ◦) both have finite left limits everywhere, so that in particular, for all t ≥ 0 and
all y ∈ E,

Py

(∫ t

0
λ(Y ◦

s ) ds < ∞
)

= Py

(∫ t

0
β(Y ◦

s ) ds < ∞
)

= 1. (2.5)

Then X defined by (2.3) is everywhere finite and all T (n) > 0, Px,y-almost surely (Px,y-a.s.)
for all x, y. In order that ruin be at all possible, it is necessary that T (1) < ∞ can occur; hence,
we also assume that, for some y ∈ E,

Py

(∫ ∞

0
λ(Y ◦

s ) ds > 0

)
> 0, (2.6)

a condition satisfied for a particular y if λ(y) > 0. As regards the total number of jumps, the
most interesting case is when N and X have infinitely many jumps as will happen if, e.g.

Py

(∫ ∞

0
λ(Y ◦

s ) ds = ∞
)

= 1 (2.7)

for all y. We shall however not assume this, and so will allow forN andX to have only finitely
many jumps; cf. Example 3.1 below. Note that if all T (n) are finite a.s., the fact that they are
i.i.d. for n ≥ 2 ensures that τn ↑ ∞ a.s., i.e. the infinitely many jumps will not accumulate in
finite time.

It is often assumed that a jump in N forces a jump in X, i.e. P(Un 
= 0) = 1. However, this
assumption is not necessary here, so at this stage the distribution F of the Un is an arbitrary
probability on R subject to (2.2).

Three special choices of Y ◦ should be mentioned. (i) Y ◦ is a time-homogeneous Markov
chain on a finite state space; see [5] and [6] with the model in [5] allowing for one-sided jumps
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only, and the model in [6] being more general than (2.3) in the sense that β is allowed to be
negative andXmay contain an additional Brownian term σ(Yt ) dBt so that ruin by creeping (X
may slide across 0 between jumps) is possible. (ii)Y ◦ is a time-homogeneous (one-dimensional)
diffusion—this is the motivating example for this research; see the specific case in Example 4.3
below. (iii) Y ◦ is purely deterministic in the sense that only the initial value Y ◦

0 is random. This
is the simplest case where it is possible to use Theorem 3.1 below for explicit analytical results;
see Example 4.2 below.

Example 2.1. The same model for X may have many representations of the form (2.3). The
standard risk model with Poisson arrivals of claims and constant premium rate β may thus be
obtained by using any generic process Y ◦, taking β(y) ≡ β and λ(y) ≡ λ > 0 in the general
setup above. It should be noted that then in Theorem 3.1 below, the solutions to the critical
equations (3.5) and (3.6) do not depend on Y ◦ (or Y ) either: the unique bounded solution to
(3.5) is always the constant function

cγ (y) ≡ λ

γβ − λ− θ

and (3.6) then reduces to

R+(γ )
(

1 + (1 − pU)L−(γ )
λ

γβ − λ− θ

)
= −pUP+(γ )

λ

γβ − λ− θ
. (2.8)

A final comment on the structure of the model is that it is additive in the sense that, for any
x ∈ R, y ∈ E, and w ∈ R, the Px+w,y-law of (X, Y ) is the same as the Px,y-law of the process
(X + w, Y ).

The analysis to be done below is in part based on applications of Itô’s formula. To facilitate
this, let AY ◦ denote the infinitesimal generator for Y ◦ with a domain DY ◦ consisting of all
bounded and continuous functions g : E → R such that AY ◦g : E → R is bounded and
continuous with

M
g
t = g(Y ◦

t )− g(y)−
∫ t

0
AY ◦g(Y ◦

s ) ds (2.9)

a true mean-zero martingale (under any Py using the filtration generated by Y ◦). The infinites-
imal generator AY for Y then has the form

AY g(y) = AY ◦g(y)+ λ(y)

∫
E

A(dv)(g(v)− g(y)),

and, for the generator AX,Y for (X, Y ), we obtain the form

AX,Y f (x, y) = AY ◦f (x, ·)(y)+ β(y)
∂

∂x
f (x, y)

+ λ(y)

∫
R

F(du)
∫
E

A(dv)(f (x − u, v)− f (x, y)) (2.10)

for suitably smooth bounded functions f .

Remark 2.1. Suppose that g ∈ DY ◦ . The martingale Mg is then uniformly bounded on any
finite interval [0, t0] and is therefore L2-bounded on any finite interval. Consequently, for the
quadratic variation of Mg , it holds that Ey[Mg]t < ∞ for all t and, therefore, the stochastic
integral

∫ t
0 Z

◦
s dMg

s , with Z◦ a uniformly bounded predictable process, also defines a true
martingale (L2-bounded on all finite intervals). This observation will be used below.
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In the first main result of the paper, Theorem 3.1, we determine the joint distribution of the
time τ to ruin and the deficit Z at ruin, where

τ = inf{t ≥ 0 : Xt < 0}, Z = −Xτ ,
with Z defined only on the set (τ < ∞). More precisely, we shall, for x ≥ 0 and y ∈ E, find
the joint Laplace transform

Ex,ye−θτ−ζZ, θ > 0, ζ ≥ 0. (2.11)

In the second main result, Theorem 3.2, we determine the marginal Laplace transform

Ex,y[e−ζZ; τ < ∞], ζ ≥ 0, (2.12)

obtainable of course from (2.11) by letting θ ↓ 0. For ζ = 0, (2.12) yields the probability of
ruin Px,y(τ < ∞).

As in [6], the main idea is to look for partial eigenfunctions h (depending on (θ, ζ )) for
the generator AX,Y (see (3.24) below), since then (2.11) is obtained immediately. The first
main result, Theorem 3.1, reduces the problem of finding h(x, y) to that of solving a functional
equation involving only the argument y and the generator AY ◦ ; see (3.5). Essentially, it is the
regenerative structure of (X, Y ) that allows us to replace the search for a function depending
on both x and y with the search for a function depending on y alone.

Only in exceptional cases is it possible to solve the functional equation (3.5) explicitly. Some
examples are presented in Section 4.

As already noted, we do not assume that (2.7) holds for all y. There is however a variation of
this that is important for understanding whether ruin is certain or not. Call (X, Y ) A-jumping
if (2.7) holds for A-almost all y. Then, cf. (2.4), for n ≥ 2,

Py(T
(n) = ∞) = 0

for all y, i.e. if τ1 < ∞, the risk process X will have infinitely many jumps on (0,∞).
Furthermore, the renewal structure implies that the increments

Xτn −Xτn−1 =
∫ T (n)

0
β(Y (n)s ) ds − Un

are i.i.d. for n ≥ 2, and since we shall assume below that EUn < ∞, the expectation of these
increments,

ξ = EA

[∫ T (1)

0
β(Y (1)s ) ds − U1

]
,

is well defined with −∞ < ξ ≤ ∞. Since, on (τ1 < ∞),

1

n

n∑
k=2

(Xτk −Xτk−1) = 1

n
(Xτn −Xτ1) → ξ a.s.,

it follows that if (X, Y ) is A-jumping then, given that τ1 < ∞, if ξ ≤ 0, ruin is certain, i.e.

Px,y(τ < ∞ | τ1 < ∞) = 1, x ≥ 0, y ∈ E,
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or, since τ ≥ τ1 always,

Px,y(τ < ∞) = Py(τ1 < ∞) = 1 − Ey

(
exp

(
−

∫ ∞

0
λ(Y ◦

s ) ds

))
(2.13)

with the ruin probability not depending on x.
If (X, Y ) is A-jumping and ξ > 0, ruin is not certain with, in particular,

lim
x→∞ Px,y(τ < ∞) = 0, y ∈ E, (2.14)

as is easily seen since Xτn → ∞ a.s. on (τ1 < ∞), so I := inf{Xt : t ≥ 0} > −∞ a.s., and
then (2.14) follows using the additivity of the model.

If (X, Y ) is A-jumping, we call (X, Y ) A-recurrent if ξ ≤ 0 and A-transient if ξ > 0. If
(X, Y ) is not A-jumping, we have PA(T

(n) = ∞) > 0 for each n ≥ 2, and since these T (n) are
i.i.d., it follows that X has only finitely many jumps on (0,∞), so ruin is not certain. In this
case I > −∞ a.s. and (2.14) is true.

3. The main results

For Theorem 3.1 below, we need the following structure on the distribution F of the claim
sizes Un, which was also used in [6]: write

F(du) =
{
pUF+(du), u > 0,

(1 − pU)F−(du), u ≤ 0,

with F+ a probability measure on (0,∞) and F− a probability measure on (−∞, 0]. Assume
that 0 < pU ≤ 1 so that positive claims (negative jumps forX) are always possible. If pU = 1,
only positive claims occur and F− is irrelevant. Next, introduce the Laplace transforms

L+(ν) = E[e−νUn | Un > 0] =
∫
(0,∞)

e−νuF+(du), ν ≥ 0,

L−(ν) = E[e−νUn | Un ≤ 0] =
∫
(−∞,0]

e−νuF−(du), ν ≤ 0.

The definitions of L+ and L− as integrals extend trivially to {ν ∈ C : Reν ≥ 0} in the case of
L+ and to C− := {ν ∈ C : Reν ≤ 0} in the case of L−. In particular,

|L+(z)| ≤ 1, Rez ≥ 0. (3.1)

The basic assumption we shall make concernsL+, which is supposed to be a rational function:

L+(ν) = P+(ν)
R+(ν)

. (3.2)

Here P+ and R+ are polynomials with no common roots, and R+ is of degree m ≥ 1,
conveniently standardised so that the leading term of degree m has coefficient 1. In particular,
P+ is of degree less than m. Note that L+ has an analytic extension to all of C except for the
m roots ρ of R+, all of which satisfy Reρ < 0.

The reader is reminded that the distributions on R+ with a Laplace transform of the form (3.2)
are the distributions with a Lebesgue density f (x) ≥ 0, which is a finite linear combination of
terms xpe−µx with p ≥ 0 an integer and µ ∈ C with Reµ > 0.

If pU < 1, we shall also need to suppose that L− has a suitable analytic extension from C−,
an assumption most easily satisfied if F− is light tailed, e.g. if L− is also a rational function.
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The main result of this paper is the following, valid only because β ≥ 0; see Remark 3.2
below.

Theorem 3.1. (i) Suppose that, for every θ > 0 and every γ ∈ C with Reγ < 0, the function

cγ,θ (y) = −Ey

∫ ∞

0
λ(Y ◦

s ) exp

(∫ s

0
(γβ(Y ◦

u )− λ(Y ◦
u )− θ) du

)
ds (3.3)

defined on E is continuous. Then

|cγ,θ (y)| < 1, γ ∈ C−, y ∈ E, (3.4)

and cγ,θ belongs to the domain DY ◦ of the generator AY ◦ and is the unique bounded solution
to the functional equation

(γβ(y)− λ(y)− θ)cγ,θ (y)+ AY ◦cγ,θ (y) = λ(y), y ∈ E. (3.5)

(ii) In addition to the continuity of the cγ,θ , suppose that L+ is given by (3.2) with R+
a polynomial of degree m. If pU < 1, suppose also that L− is analytic in an open set
containing C−. Finally, suppose that, for each θ > 0, the function γ �→ ∫

E
A(dv)cγ,θ (v) for

γ with Reγ < 0 is analytic with an analytic extension to some open set D = D(θ) ⊇ C−.
Then the Cramér–Lundberg equation

R+(γ )
(

1 + (1 − pU)L−(γ )
∫
E

A(dv)cγ,θ (v)

)
= −pUP+(γ )

∫
E

A(dv)cγ,θ (v) (3.6)

has precisely m θ -dependent solutions γ1(θ), . . . , γm(θ) ∈ {z ∈ C : Rez < 0} (counted with
multiplicity) and it furthermore holds for all θ > 0 for which thesem solutions are distinct that

Ex,ye−θτ−ζZ = L+(ζ )
∑m
k=1 rkcγk(θ),θ (y)e

γk(θ)x∑m
k=1 qk

, x ≥ 0, y ∈ E, (3.7)

for all ζ ≥ 0, where qk and rk depend on θ and ζ with

qk = P+(γk(θ))
(γk(θ)− ζ )

∏
k′ 
=k(γk(θ)− γk′(θ))

, (3.8)

rk = − pUqk

1 + (1 − pU)L−(γk(θ))
∫
E
A(dv)cγk(θ),θ (v)

. (3.9)

Remark 3.1. The assumption that the functions cγ,θ be continuous is a genuine assumption on
the structure of the Markov process Y ◦, satisfied by the processes normally studied, e.g. most
diffusions, all Lévy processes, all Markov chains on a finite or countably infinite state space,
and, more generally, all Markov processes for which the transition operators map the space of
bounded continuous functions into itself.

Remark 3.2. Identity (3.7) is true only when assuming that β ≥ 0. Without this assumption,
the functionh determined by (3.25) below would still be a partial eigenfunction for the generator
AX,Y , but instead of (3.26) below we would now only have

h(x, y) = KEx,y[e−θτ−ζZ;Aj] + Ex,ye−θτ [h(0, Yτ );Ac], x ≥ 0, y ∈ E, (3.10)

where Aj is the set where ruin occurs by a jump by X below 0, while Ac is the set where ruin
occurs by continuity (creeping). If β ≥ 0, of course, Ac = ∅, but if β(y) < 0 is possible,
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the second term on the right-hand side of (3.10) cannot be ignored and much extra effort will
be required to identify the joint Laplace transform for τ and Z. Theorem 1 of [6] essentially
corresponds to assuming that E is finite with Y ◦ a Markov chain, and there the difficulty
of the second term is resolved by showing that there is exactly the right number of partial
eigenfunctions that allows one to set up a solvable system of linear equations in the unknowns

Ex,y[e−θτ−ζZ;Aj] and Ex,y[e−θτ h(0, Yτ );Ac ∩ (Yτ = i)], i ∈ Ec,

whereEc is the set of states i ∈ E allowing ruin by creeping, i.e. β(i) < 0. In this paper, where
E may well be uncountable, this approach is just out of the question.

Example 3.1. Because of (2.6), λ(y) ≡ 0 is not allowed, but Theorem 3.1 in fact applies also
to this uninteresting case: ruin is impossible so, trivially, Ex,ye−θτ = 0 for all θ > 0, x ≥ 0,
and y ∈ E in agreement with the observation that cγ,θ (y) ≡ 0 is now the unique bounded
solution to (3.5) so that (3.7) also gives Ex,ye−θτ = 0.

For the proof of Theorem 3.1, we shall need Lemmas 3.1 and 3.2 below.

Lemma 3.1. Let g belong to the domain DY ◦ of the generator AY ◦ , see (2.9), let φ : R0 → R

be bounded with a continuous first derivative, and letψ : (−∞, 0) be bounded and measurable.
Define

h(x, y) =
{
φ(x)g(y), x ≥ 0, y ∈ E,
ψ(x), x < 0, y ∈ E,

and assume that AX,Y h(x, y) is bounded for x ≥ 0 and y ∈ E. Then, for all x0 ≥ 0 and
y0 ∈ E, it holds for all θ > 0 that

Ex0,y0 e−θτψ(Xτ ) = φ(x0)g(y0)+Ex0,y0

∫ τ

0
e−θs(AX,Y h(Xs, Ys)− θh(Xs, Ys)) ds, (3.11)

while, for θ = 0, it holds for all t ≥ 0 that

Ex0,y0ψ(Xτ∧t ) = φ(x0)g(y0)+ Ex0,y0

∫ τ∧t

0
AX,Y h(Xs, Ys) ds. (3.12)

Note. It is important that it is not required that h globally belongs to the domain of AX,Y ;
in particular, h is allowed to be discontinuous in x at x = 0. For the Lebesgue integral on
the right-hand side of (3.11), only AX,Y h(Xs, Ys) for s < τ is required, i.e. it suffices that
AX,Y h(x, y) is well defined for x ≥ 0 and y ∈ E. Then we can just use (2.10), which, for h,
becomes

AX,Y h(x, y) = φ(x)AY ◦g(y)+ β(y)φ′(x)g(y)− λ(y)φ(x)g(y)

+ λ(y)

∫
F(du)

∫
E

A(dv)k(x, u, v),

where
k(x, u, v) = 1(x≥u) φ(x − u)g(v)+ 1(x<u) ψ(x − u).

Proof of Lemma 3.1. The key step in the proof is to argue that, for all x0 ≥ 0, y0 ∈ E, t ≥ 0,
and n ≥ 1,

Ex0,y0 e−θτ∧τn∧t h(Xτ∧τn∧t , Yτ∧τn∧t )

= φ(x0)g(y0)+ Ex0,y0

∫ τ∧τn∧t

0
e−θsAθ

X,Y h(Xs, Ys) ds, (3.13)

where we write Aθ
X,Y h = AX,Y h−θh. From (3.13), if θ > 0, (3.11) then follows by dominated

convergence, letting first n and then t tend to ∞, where, for the latter convergence, it is essential
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that θ > 0. For θ = 0, (3.12) follows from (3.13) by just letting n → ∞. Equation (3.13) is
shown by induction, with the induction step from n to n+ 1 using the strong Markov property
for (X, Y ) together with the fact that τ is one of the τn and that τn+1 is the time of the first jump
after τn so that (3.13) for n = 1 can be used when conditioning on (Xs, Ys)0≤s≤τn . For the start
of the induction, i.e. the proof of (3.13) for n = 1, the idea is to evaluate both expectations in
terms of Ey0 -expectations involvingY ◦ only, as can be done by using the conditional distribution
of τ1 given X(1), cf. (2.1) for n = 1, together with the fact that

X(1)s = x0 +
∫ s

0
β(Y (1)u ) du

has the same distribution as x0 + ∫ s
0 β(Y

◦
u ) du. By invoking decomposition (2.9), (3.13) for

n = 1 then follows in a straightforward manner.

The second lemma required for the proof of Theorem 3.1 is used implicitly in the proof of
Theorem 1 of [6]; the reader is referred to that proof for further details in the cursory proof of
the lemma given below.

Lemma 3.2. Let γ �→ d(γ ) be a C-valued function, and suppose that the equation

R+(γ )(1 + (1 − pU)L−(γ )d(γ )) = −pUP+(γ )d(γ ) (3.14)

is solved by m distinct numbers γ1, . . . , γm ∈ C with all Reγk < 0 and all |d(γk)| ≤ 1. Then,
with

rk = R+(γk)
d(γk)(γk − ζ )

∏
k′ 
=k(γk − γk′)

(3.15)

= − pUP+(γk)
(1 + (1 − pU)L−(γk)d(γk))(γk − ζ )

∏
k′ 
=k(γk − γk′)

, (3.16)

K = − 1

pUL+(ζ )

m∑
k=1

rk(1 + (1 − pU)d(γk)L−(γk)) (3.17)

= 1

L+(ζ )

m∑
k=1

P+(γk)
(γk − ζ )

∏
k′ 
=k(γk − γk′)

, (3.18)

it holds for all x ≥ 0 that

m∑
k=1

rke
γkx +

m∑
k=1

rkd(γk)

∫
(−∞,x]

F(du)eγk(x−u) +K

∫
(x,∞)

F (du)eζ(x−u) = 0. (3.19)

Proof. That (3.15) is the same as (3.16) and (3.18) is the same as (3.17) is immediate
from (3.14). (Formally, (3.16) is always well defined because pU > 0, |L−(γk)| ≤ 1, and
|d(γk)| ≤ 1. Expression (3.15) makes sense only if d(γk) 
= 0, although if d(γk) = 0,
R+(γk) = 0 also by (3.14).) Comparing (3.14) with the Cramér–Lundberg [6, Equation (30)],
it is seen that they are the same provided we take

d(γ ) = a�Q−1(γ, θ)λ,

where the right-hand side comes from [6]. But, then (3.15) and (3.17) match Equations (35)
and (42) of [6], and since (3.19) is the same as Equation (43) of [6], the lemma now follows by
copying the reasoning given in [6, pp. 977–978], since this reasoning does not depend on the
special form d(γ ) has in [6].
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Proof of Theorem 3.1. We use the shorthand notation rs for r(Y ◦
s ) with r an arbitrary

measurable function r : (E, E) → (R,B).
(i) Because Reγ < 0 and θ > 0, we have

|cγ,θ (y)| ≤ Ey

∫ ∞

0
λs exp

(
−

∫ s

0
(λu + θ) du

)
ds

< Ey

∫ ∞

0
(λs + θ) exp

(
−

∫ s

0
(λu + θ) du

)
ds

= 1.

That cγ,θ ∈ DY ◦ and satisfies (3.5) is essentially a Feynman–Kac-type formula. By (2.9) we
need to show that the process (with cγ,θ,t = cγ,θ (Y

◦
t ))

Mt = cγ,θ,t − cγ,θ (y)−
∫ t

0
(λs − (γβs − λs − θ)cγ,θ,s) ds (3.20)

is, for every y ∈ E, a mean-zero Py-martingale (with respect to the filtration (F Y ◦
t )t≥0 generated

byY ◦). The only problem is the martingale property where we show directly that, for 0 ≤ t < T ,

Ey[MT | F Y ◦
t ] = Mt.

Define
α(y) = γβ(y)− λ(y)− θ,

so that, for any y′ ∈ E,

cγ,θ (y
′) = −Ey′

∫ ∞

0
λs exp

(∫ s

0
αudu

)
ds.

By the Markov property,

Ey[cγ,θ,T | F Y ◦
t ] = Ey′ [cγ,θ,T−t ],

where y′ is the value of Y ◦
t specified by the conditioning. But then, again using the Markov

property,

Ey[cγ,θ,T | F Y ◦
t ] = −Ey′EY ◦

T−t

∫ ∞

0
λs exp

(∫ s

0
αudu

)
ds

= −Ey′
∫ ∞

0
λs+T−t exp

(∫ s

0
αu+T−tdu

)
ds

= −Ey′
∫ ∞

T−t
λs exp

(∫ s

T−t
αudu

)
ds.

Similar calculations give

Ey

[∫ T

0
(λs − αscγ,θ,s) ds

∣∣∣∣ F Y ◦
t

]
= Ey′

∫ T

t

(
λs−t + αs−t

∫ ∞

s−t
λv exp

(∫ v

s−t
αudu

)
dv

)
ds,

so

Ey[MT | F Y ◦
t ] = −cγ,θ (y)−

∫ t

0
(λs − αscγ,θ,s) ds + Ey′It,T , (3.21)
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with

It,T = −
∫ ∞

T−t
λs exp

(∫ s

T−t
αudu

)
ds −

∫ T

t

(
λs−t + αs−t

∫ ∞

s−t
λv exp

(∫ v

s−t
αudu

)
dv

)
ds.

Differentiating with respect to T (or using partial integration) shows that It,T does not depend
on T ≥ t ; hence,

It,T = It,t = −
∫ ∞

0
λs exp

(∫ s

0
αudu

)
ds,

so Ey′It,T = cγ,θ (y
′) = cγ,θ,t . Referring to (3.20), we thus recognise the right-hand side of

(3.21) as Mt .
That there is only the one bounded solution to (3.5) given by (3.3) is argued as follows. Let

θ > 0 and Reγ < 0, and suppose that cγ,θ ∈ DY ◦ is a bounded solution to (3.5). Then

dcγ,θ,t = AY ◦cγ,θ,t dt + dMt

with M a mean-zero martingale. But, also defining

Zt := cγ,θ,t exp

(∫ t

0
αs ds

)
, (3.22)

we then have, because of (3.5),

dZt = (αt cγ,θ,t + AY ◦cγ,θ,t ) exp

(∫ t

0
αs ds

)
dt + dM∗

t = λt exp

(∫ t

0
αs ds

)
dt + dM∗

t ,

where

dM∗
t = exp

(∫ t

0
αs ds

)
dMt

is a new mean-zero martingale (a true martingale since | exp
∫ t

0 αs ds| ≤ 1; see Remark 2.1).
For any y ∈ E, we therefore have

EyZt = cγ,θ (y)+ Ey

∫ t

0
λs exp

(∫ s

0
αu du

)
ds. (3.23)

As t → ∞, Re
∫ t

0 αs ds → −∞ (because Reαs ≤ −θ < 0), so cγ,θ (y) is bounded, and
dominated convergence when taking expectations in (3.22) yields limt→∞ EyZt = 0 and (3.3)
follows.

(ii) As in [5] and [6], the idea is to look for a bounded partial eigenfunction for the generator
AX,Y of (X, Y ). More precisely, for each θ > 0, we shall find a C-valued function h such that

AX,Y h(x, y) = θh(x, y), x ≥ 0, y ∈ E. (3.24)

Inspired by [6] and assuming that (3.6) has m distinct solutions γ1(θ), . . . , γm(θ), denoted by
γk in the sequel, it is natural to look for h of the form

h(x, y) =

⎧⎪⎨⎪⎩
m∑
k=1

rkcγk,θ (y)e
γkx, x ≥ 0, y ∈ E,

Keζx, x < 0, y ∈ E,
(3.25)

where ζ ≥ 0 and cγk,θ is the bounded solution to (3.5) obtained for γ = γk . If this h satisfies
(3.24), Lemma 3.1 immediately gives

KEx0,y0 e−θτ−ζZ = h(x0, y0), x0 ≥ 0, y0 ∈ E; (3.26)
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hence, (3.7) follows if we show that (3.24) holds with the rk given by (3.9) and K given by
(3.18). By straightforward computations, for x ≥ 0 and y ∈ E, using (2.10),

(AX,Y − θI)h(x, y) =
m∑
k=1

rke
γkx[(γkβ(y)− λ(y)− θ)cγk,θ (y)+ AY ◦cγk,θ (y)]

+ λ(y)

m∑
k=1

rk

(∫
E

A(dv)cγk,θ (v)

) ∫
(−∞,x]

F(du)eγk(x−u)

+ λ(y)K

∫
(x,∞)

F (du)eζ(x−u).

The key observation and the raison d’être for (3.5) is that, because of (3.5), the sum in the first
line reduces to λ(y)

∑m
k=1 rke

γkx , and, with the rk given by (3.9), and K given by (3.17), it
follows from Lemma 3.2 with

d(γ ) =
∫
E

A(dv)cγ,θ (v)

that h given by (3.25) is the desired partial eigenfunction since, by (3.4), |d(γ )| < 1.
It remains to show that (3.6) has exactly m solutions γ with Reγ < 0. But, it is fairly

easy to argue that (3.4) implies this: by assumption, L−(γ ) and d(γ ) are analytic functions
of γ ∈ D(θ). Hence, by Rouché’s theorem from complex function theory we need only show
that, for sufficiently large S > 0, it holds for z ∈ ∂�S that

|R+(z)(1 − pU)L−(z)d(z)+ pUP+(z)d(z)| < |R+(z)|, (3.27)

where ∂�S denotes the boundary of the region

�S = {z ∈ C : Rez < 0, |z| ≤ S} ∪ {z ∈ C : z = iw, −S ≤ w ≤ S}.
(Inequality (3.27) implies that the number of solutions to (3.6) with γ inside �S is the same as
the number of roots for R+ inside �S and this number is exactly m, the degree of R+, if S is
sufficiently large. Also,

⋃
S>0 �S = {z ∈ C : Rez ≤ 0}.)

Since P+ is a polynomial of degree less thanm, we have |P+(z)| < |R+(z)| for sufficiently
large |z|. Furthermore, by (3.1), |P+(iw)| ≤ |R+(iw)| for w ∈ R; hence, |P+(z)| ≤ |R+(z)|
for z ∈ ∂�S if S is sufficiently large. Because pU > 0 and |L−(z)| ≤ 1 if Rez ≤ 0, (3.27) now
follows using (3.4).

Remark 3.3. As mentioned at the end of the introduction, it may be possible to solve the ruin
problem for the Albrecher–Boxma model [1] using partial eigenfunctions. The risk process in
the model has the standard form

Xt = x0 + ct −
Nt∑
n=1

Un

with c > 0 and Un > 0. The occurrence and size of the jumps are determined from a Markov
chain J d = (J d

n )n≥0 in discrete time with finite state space H = {1, . . . ,M} and transition
probabilities (pij )i,j∈H together with a collection of given jump intensities (λi)i∈H and a given
family (Fj )j∈H of distributions on (0,∞) in the following manner: with J d

0 ≡ i0 ∈ H , let
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τ1 be exponential at rate λi0 and, given τ1 and J d
1 = i1, let U1 have distribution Fi1 ; given τ1,

J d
1 = i1, and U1, let T (2) = τ2 − τ1 be exponential at rate λi1 and, given in addition J d

2 = i2,
let U2 have distribution Fi2 ; continue in the obvious manner.

Defining Jt = J d
Nt

, the joint process (X, J ) is a time-homogeneous Markov process with
generator of the form

AX,J f (x, i) = c
∂

∂x
f (x, i)+ λi

∑
j∈H

pij

∫
(0,∞)

Fj (ds)(f (x − s, j)− f (x, i)). (3.28)

In [1] the authors were interested in determining the discounted penalty function at ruin (Gerber–
Shiu-type functional), which in our notation is the expectation

Ex,i[e−θτw(Xτ−, Z); τ < ∞]
for x ≥ 0. The results discussed above correspond to the simple choice w(x, z) = e−ζz,
nevertheless it is of interest to ask whether, for this choice ofw, a result similar to Theorem 3.1
can be obtained using partial eigenfunctions since they may well be more explicit in form than
those given [1]. Comparing generator (2.10) with (3.28), it is seen that the overlap corresponds
to (writing aj for A({j}))

AX,J f (x, i) = c
∂

∂x
f (x, i)+ λi

∑
j∈H

aj

∫
(0,∞)

F (ds)(f (x − s, j)− f (x, i)),

i.e. the special case of the Albrecher–Boxma model treated in this paper corresponds to taking
Y ◦ completely deterministic (and not equivalent to J ) with Y ◦

t = Y ◦
0 for all t , β(i) = c,

pij = aj , and Fj ≡ F , which is a very simple model.
In order to use partial eigenfunctions on the Albrecher–Boxma model, it is necessary to at

least require that each Fj has a rational Laplace transform. One may then try to look for a
partial eigenfunction h satisfying, for some finite index set K ,

h(x, i) =
∑
k∈K

dike
γkx (3.29)

for x ≥ 0 and all i ∈ H with all Reγk ≤ 0; cf. (3.25). The problems that arise consist in
determining the size of K (in many cases there is a natural guess) and how to find the dik and
the γk . Finding an equation for the γk appears particularly challenging, it is not at all clear
which equation to use instead of the Cramér–Lundberg equation (3.6)! We do believe however
that, by restricting all Fj to be distributions that are finite linear combinations of exponentials,
it is indeed possible to find partial eigenfunctions of the form (3.29), but it does appear essential
that Y ◦ is as simple as a finite state space Markov chain. These results will hopefully appear in
future work.

We shall now discuss how to find the marginal Laplace transform (2.12). Forγ with Reγ ≤ 0,
define, in analogy with (3.3), taking θ = 0 there,

cγ,0(y) = −Ey

∫ ∞

0
λ(Y ◦

s ) exp

(∫ s

0
(γβ(Y ◦

u )− λ(Y ◦
u )) du

)
ds. (3.30)

Note that |cγ,0(y)| ≤ 1. The case γ = 0 is particularly important:

c0,0(y) = −1 + Ey exp

(
−

∫ ∞

0
λ(Y ◦

s ) ds

)
. (3.31)
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For the statement of the final result, we retain the assumptions from Theorem 3.1 concerning
L+, R+, and L−, and the functions cγ,θ when θ > 0 and Reγ < 0.

The reader is reminded of the concepts of A-jumping, A-recurrence, and A-transience
introduced at the end of Section 2.

Theorem 3.2. (i) Suppose that, for every γ ∈ C with Reγ < 0, the function cγ,0 defined by
(3.30) is continuous. Then cγ,0 is a bounded solution to the functional equation

(γβ(y)− λ(y))cγ,0(y)+ AY ◦cγ,0(y) = λ(y), y ∈ E. (3.32)

Any bounded and continuous solution to this equation is uniquely determined at all y ∈ E for
which (2.7) holds, i.e.

Py

(∫ ∞

0
λ(Y ◦

s ) ds = ∞
)

= 1. (3.33)

(ii) Still assuming that the cγ,0 are continuous, the modified Cramér–Lundberg equation

R+(γ )
(

1 + (1 − pU)L−(γ )
∫
E

A(dv)cγ,0(v)

)
= −pUP+(γ )

∫
E

A(dv)cγ,0(v) (3.34)

has preciselym solutions γ1(0), . . . , γm(0) (counted with multiplicity) that satisfy the following
conditions:

• if (X, Y ) is A-transient, Reγk(0) < 0 for 1 ≤ k ≤ m;

• if (X, Y ) is A-recurrent, one of the solutions, γm(0) say, equals 0 and Reγk(0) < 0 for
1 ≤ k ≤ m− 1;

• if (X, Y ) is not A-jumping, Reγk(0) < 0 for 1 ≤ k ≤ m.

If these m solutions are distinct then, for all ζ > 0,

Ex,y[e−ζZ; τ < ∞] = L+(ζ )
∑m
k=1 rkcγk(0),0(y)e

γk(0)x∑m
k=1 qk

, x ≥ 0, y ∈ E, (3.35)

with

qk = P+(γk(0))
(γk(0)− ζ )

∏
k′ 
=k(γk(0)− γk′(0))

, (3.36)

rk = − pUqk

1 + (1 − pU)L−(γk)
∫
E
A(dv)cγk(0),0(v)

. (3.37)

For ζ = 0, corresponding to finding the ruin probability Px,y(τ < ∞), (3.35) still holds if
(X, Y ) is either A-transient or not A-jumping. If (X, Y ) is A-recurrent then

Px,y(τ < ∞) = 1 − Ey exp

(
−

∫ ∞

0
λ(Y ◦

s ) ds

)
, x ≥ 0, y ∈ E. (3.38)

Remark 3.4. Note that the ruin probability (3.38) in the A-recurrent case is precisely
Py(τ1 < ∞), as it should be; cf. the discussion at the end of Section 2.

Remark 3.5. For γ = 0, (3.32) always has the solution c0,0 ≡ −1, and, referring to (3.31),
we see that if, for some y, Py(

∫ ∞
0 λ(Y ◦

s ) ds < ∞) > 0 then (3.32) for γ = 0 has at least two
linearly independent bounded and continuous solutions.
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Proof of Theorem 3.2. (i) Assume that, with Reγ ≤ 0, cγ,0 given by (3.30) is continuous.
A word-for-word copy of the proof that (Mt) defined by (3.20) is a martingale shows that

Mt = cγ,0,t − cγ,0(y)−
∫ t

0
(λs − (γβs − λs)cγ,0,s) ds

is a martingale, so cγ,0 ∈ DY ◦ and satisfies (3.32).
Suppose conversely that c̃γ,0 is a bounded and continuous solution to (3.32). Then, defining

(see (3.22))

Z̃t := c̃γ,0,t exp

(∫ t

0
(γβs − λs) ds

)
,

we find, exactly as in the proof of (3.23), that

EyZ̃t = c̃γ,0(y)+ Ey

∫ t

0
λs exp

(∫ s

0
(γβu − λu) du

)
ds,

whence
lim
t→∞ EyZ̃t = c̃γ,0(y)− cγ,0(y),

so uniqueness at y holds precisely when the limit on the left-hand side is 0. But, if (3.33) holds,
this is true since then limt→∞ Z̃t = 0, Py-a.s.

(ii) We shall use the fact that

Ex,y[e−ζZ; τ < ∞] = lim
θ→0, θ>0

Ex,ye−θτ−ζZ.

Consider the solutions γ1(θ), . . . , γm(θ) to (3.6) for an arbitrary θ > 0 with all Reγk(θ) < 0 in
some order (e.g. increasing real part first, increasing imaginary part second). Pick an arbitrary
sequence θn > 0 with θn → 0. We claim that there is a subsequence n′ such that the limit

(γ1(0), . . . , γm(0)) = lim
n′→∞

(γ1(θn′), . . . , γm(θn′)) (3.39)

exists. To see this, find S0 > 0 such that |P+(γ )| < 1
2 |R+(γ )| for all γ ∈ C with |γ | > S0.

Rewriting (3.6) as

R+(γ ) = (−pUP+(γ )− (1 − pU)R+(γ )L−(γ ))
∫
E

A(dv)cγ,θ (v),

it is immediately seen that, for |γ | > S0, the expression on the right-hand side is in absolute
value less than or equal to

pU |P+(γ )| + (1 − pU)|R+(γ )| <
( 1

2pU + (1 − pU)
)|R+(γ )| < |R+(γ )|,

and, consequently, any solution γ (θ) to (3.6) satisfies |γ (θ)| ≤ S0. In particular, all |γk(θn)| ≤
S0 and (3.39) follows by compactness. Obviously, Reγk(0) ≤ 0 for all k.

Next, observe that, by dominated convergence, limn′ cγk(θn′ ),θn′ (y) = cγk(0),0(y) for all y;
cf. (3.3) and (3.30). Using (3.7) with θ = θn′ and letting n′ → ∞, for ζ > 0 (!), we now
obtain (3.35) provided the γk(0) are distinct and with the relevant qk and rk in (3.36) and (3.37)
obtained by taking limits in (3.8) and (3.9).

Note that, because of (3.35), we can conclude that the limit point (γ1(0), . . . , γm(0)) is
uniquely determined (up to permutations of the entries) since if not, different functions of
(x, y) yielding the same expectation would appear.
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Taking limits in (3.6) shows that all of the γk(0) are solutions to (3.34), an equation which
therefore has at least m solutions γ (counted with multiplicity) with Reγ ≤ 0. We see directly
that γ = 0 is a solution to (3.34) if and only if∫

E

A(dv)c0,0(v) = −1, (3.40)

i.e. if and only if c0,0(y) = −1, A-a.s.
It was assumed above that ζ > 0. For ζ = 0, we have L+(ζ ) = 1 and (3.35) is still valid

provided all γk(0) 
= 0, in which case (3.35) the yields the ruin probability Px,y(τ < ∞). If,
however, ζ = 0 and one of the γk(0), e.g. γm(0) equals 0, because of the appearance of the
factor γm(0) in the denominator, qm is not defined by (3.36). In this case, before taking limits
on the right-hand side of (3.7), multiply both the numerator and denominator by γm(θn′) and
then obtain the desired limit

Px,y(τ < ∞) = − pU

1 + (1 − pU)
∫
E
A(dv)c0,0(v)

c0,0(y) = −c0,0(y), (3.41)

where the last equality holds because of (3.40).
It remains to show that if γk(0) 
= 0 then Reγk(0) < 0 and to argue that (3.34) has precisely

the solutions claimed in statement (ii).
The first claim is easy: we know that Reγk(0) ≤ 0, so assume that γk(0) = iw for some

w ∈ R \ 0. From (3.34), it follows that∫
E

A(dv)ciw,0(v) = −1

pUL+(iw)+ (1 − pU)L−(iw)
,

and, sincew 
= 0, pU > 0, and F+ is not degenerate at 0, the absolute value of the denominator
on the right-hand side is less than 1. Since |ciw,0| ≤ 1, we have reached a contradiction.

The second claim is more difficult. Suppose that all Reγk(0) < 0. Then (3.35) with ζ = 0
gives limx→∞ Px,y(τ < ∞) = 0 and (2.13) implies that (X, Y ) is not A-recurrent, i.e. either
A-transient or not A-jumping. If one of the γk(0) equals 0, using (3.41) and (2.13) we see that,
for x ≥ 0 and y ∈ E,

Px,y(τ < ∞) = −c0,0(y) = Py(τ1 < ∞),

which certainly fits with (X, Y ) being A-recurrent. Since (2.14) also holds if (X, Y ) is not
A-recurrent, we conclude that all Reγk(0) < 0 in the non-A-recurrent case and that in the
A-recurrent case m− 1 of the γk(0) have strictly negative real parts with the remaining γk(0)
equal to 0.

We finally need to argue that (3.34) has no solutions γ with Reγ < 0 other than the γk(0)
found for theA-transient,A-recurrent, and non-A-jumping cases. The latter is simple since the
argument involving Rouché’s theorem in the proof of Theorem 3.1 applies unchanged. To deal
with the A-jumping case, assume that (3.34), apart from the γk(0), has an additional solution
γm+1 ∈ C−, different from all the γk(0) with, necessarily, Reγm+1 < 0. Assuming that the
solution 0 to (3.34) in the A-recurrent case is γm(0), define

(γ̃1, . . . , γ̃m) = (γ1(0), . . . , γm−1(0), γm+1).

Using Lemma 3.2 with d(γ ) = ∫
E
A(dv)cγ,0(v), it follows that (3.19) holds with rk = r̃k and

K = K̃ , where r̃k and K̃ are given by (3.16) and (3.18), respectively, when taking γk = γ̃k .
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Defining, cf. (3.25),

h̃(x, y) =

⎧⎪⎨⎪⎩
m∑
k=1

r̃kcγ̃k,θ (y)e
γ̃kx, x ≥ 0, y ∈ E,

K̃eζx, x < 0, y ∈ E,
(3.42)

using (3.19) and (3.32), we find that AX,Y h̃(x, y) = 0 for x ≥ 0 and y ∈ E, so, by (3.13),
from Lemma 3.1,

Ex,y h̃(Xτ∧t , Yτ∧t ) = h̃(x, y).

Letting t → ∞ gives

h̃(x, y) = Ex,y[K̃eζXτ ; τ < ∞] + lim
t→∞ Ex,y[h̃(Xt , Yt ); τ = ∞]. (3.43)

In theA-transient case we haveXt → ∞ on (τ1 < ∞) and, therefore, by (3.42), h̃(Xt , Yt ) → 0,
Px,y-a.s. on (τ1 < ∞). In the A-recurrent case, on (τ = ∞) we have τ1 = ∞, Px,y-a.s.
Consequently, in both of these cases

lim
t→∞ Ex,y[h̃(Xt , Yt ); τ = ∞]

= lim
t→∞ Ex,y[h̃(Xt , Yt ); τ1 = ∞]

= lim
t→∞ Ey exp

(
−

∫ ∞

0
λ(Y ◦

s ) ds

) m∑
k=1

r̃kcγ̃k,0(Y
◦
t ) exp

(
γ̃k

(
x +

∫ t

0
β(Y ◦

s ) ds

))
= 0, (3.44)

where the last equality is argued below. For the non-A-jumping case, a modified argument
using the fact thatX has only finitely many jumps shows that the limit of the last term in (3.43)
is still 0. Thus, in all cases, from (3.43) and using (3.42) for x ≥ 0, it follows that

Ex,y[e−ζZ; τ < ∞] = 1

K̃

m∑
k=1

r̃k c̃γ̃k,0eγ̃kx,

where the presence of the term involving eγm+1x contradicts the established result (3.35) and we
may therefore conclude that an extra solution γm+1 to (3.34) with Reγm+1 < 0 cannot exist.

We conclude by showing that (3.44) holds: ignoring the factor r̃k , in absolute value the kth
term is less than or equal to

Ey exp

(
−

∫ t

0
λ(Y ◦

s ) ds

)
|c̃γ̃k,0(Y ◦

t )|. (3.45)

Writing y′ = Y ◦
t we have

|c̃γ̃k,0(y′)| ≤ Ey′
(

1 − exp

(
−

∫ ∞

0
λ(Y ◦

s ) ds

))
,

so, by the Markov property, the expression in (3.45) is less than or equal to

exp

(
−

∫ t

0
λ(Y ◦

s ) ds

)(
1 − exp

(
−

∫ ∞

t

λ(Y ◦
s ) ds

))
→ 0 as t → ∞.
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4. Examples

We shall present three special cases of Theorem 3.1 corresponding to Y ◦ a Markov chain
on a finite state space (Example 4.1), Y ◦ completely deterministic (Example 4.2), and Y ◦ a
Cox–Ingersoll–Ross diffusion (Example 4.3).

Example 4.1. Suppose that Y ◦ is a homogeneous Markov chain on a finite state space E
equipped with the σ -algebra E of all subsets of E. The model is the special case of that
considered in [6], see (4) therein, corresponding to taking all σi = 0 and all βi ≥ 0. Denoting
elements of E by i, j and writing gi instead of g(i) for function values, we have

(AY ◦g)i =
∑
j∈E

qij (gj − gi),

where (qij ) is the transition intensity matrix for Y ◦. In particular, qi := −qii = ∑
{j : j 
=i} qij

and (3.5) becomes, writing g for the column vector of values gi of a function g,

Q(γ, θ)cγ = λ,

where Q(γ, θ) is the matrix with entries

qij (γ, θ) =
{
γβi − qi − λi − θ, if i = j,

qij , if i 
= j,

in agreement with Equation (25) of [6]. Also,
∫
A(dv)cγ (v) becomes

a�Q−1(γ, θ)λ;
hence, the Cramér–Lundberg equation (3.6) is the same as that given in Equation (30) of [6] and
it is easily seen that (3.7) is the same as Equation (34) from Theorem 1 of [6] when remembering
that in the setup in the present paper, ruin by creeping is impossible.

Example 4.2. One choice of Y ◦ that makes it possible to solve (3.5) explicitly is when Y ◦ is
R-valued and completely deterministic, i.e.

Y ◦
t = φt (Y

◦
0 ),

with the φt : E → E (where E ⊆ R) forming a semigroup under composition:

φ0 = id, φt ◦ φs = φt+s , s, t ≥ 0.

Assuming that t �→ φt (y) is differentiable for all y, we have, for g differentiable (or just
absolutely continuous),

AY ◦g(y) = a(y)g′(y), (4.1)

where a(y) = Dtφt (y)|t=0. (Y ◦ is a special and extreme example of a piecewise-deterministic
Markov process as introduced in [3]. See also [7, pp. 159–160 and Equation (7.58)] for a
discussion of the structure of composition semigroups and the form of the generator.)

A first and very simple particular case of this deterministic model for Y ◦ is whenE = (0,∞)

and β(y), λ(y), and a(y) are proportional, e.g. assume that a(y) > 0 for y > 0 (forcing
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t �→ φt (y) to be strictly increasing) with β(y) = βa(y) and λ(y) = λa(y), where β > 0 and
λ > 0 are constants. Then (3.32) becomes (γβ − λ)cγ,0(y)+ c′γ,0(y) = λ, i.e.

cγ,0(y) = λ

γβ − λ
+K exp −(γβ − λ)y.

With Reγ ≤ 0 and y > 0, the unique bounded solution is the constant

cγ,0(y) = λ

γβ − λ
,

and it follows that the Cramér–Lundberg equation (3.34) is the same for all choices of the
function a and the reset distribution A. At first this may seem surprising since Theorem 3.2
now implies that the Px0,y0 -probability of ruin depends neither on a, A, nor y. That this is so
becomes clear however when one realises that the Px0,y0 -distribution of the random variable
XT (1)− − x0 is the exponential distribution with rate parameter λ/β for all a, A, and x0 ≥ 0,
y0 > 0! Thus, the ruin probability forX starting from x0 is simply the probability that a random
walk x0 − ∑n

k=1 Ũk in discrete time started from x0 ever becomes less than 0 with the Ũk i.i.d.,
having the same distribution asUk−Vk and the Vk i.i.d., independent of theUk and exponential
at rate λ/β. (That XT (1)− − x0 is exponential may be seen as follows. For a given y0 > 0,
introduce�(t) = ∫ t

0 φs(y0) ds. ThenXT (1)− − x0 = β�(T (1)) and the Py0 -distribution of T (1)

has density fT (1) (t) given by

fT (1) (t) = λφt (y0)e
−λ�(t).

Thus, the Px0,y0 -distribution of XT1− − x0 (which, by the additivity of X, does not depend on
x0) is given by

Py0(XT (1)− − x0 ∈ dz) = 1

β
fT (1)

(
�−1

(
z

β

))
D�−1

(
z

β

)
dz. (4.2)

But, from ∫ �−1(z/β)

0
φs(y0) ds = z

β
,

we obtain, by differentiation with respect to z,

φ�−1(z/β)(y0)D�
−1

(
z

β

)
= 1,

and, inserting this into (4.2), it follows thatXT (1)− − x0 has the desired exponential distribution.)
We shall give a second example with Y ◦ completely deterministic where the cγ,θ have a

simple explicit form and where the Cramér–Lundberg equation (3.6) also has a simple form.
Suppose that Y ◦ is completely deterministic and greater than 0 with Y ◦

t = Y ◦
0 eat corresponding

to the generator
AY ◦g(y) = ayg′(y);

cf. (4.1). We assume that a 
= 0. Next we assume that λ(y) = λ > 0 and that

β(y) = β 1[r,∞)(y),
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where β > 0 and r > 0. Then (3.5) becomes

(γβ 1[r,∞)(y)− λ− θ)cγ (y)+ ayc′γ (y) = λ,

which, if Reγ ≤ 0, has the following unique absolutely continuous and bounded solution for
y > 0:

a > 0 : cγ,θ (y) =

⎧⎪⎪⎨⎪⎪⎩
− λ

λ+ θ
+

(
y

r

)(λ+θ)/a(
λ

λ+ θ
− λ

λ+ θ − βγ

)
, y ≤ r,

− λ

λ+ θ − βγ
, y ≥ r,

a < 0 : cγ,θ (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− λ

λ+ θ
, y ≤ r,

− λ

λ+ θ − βγ

+
(
y

r

)(λ+θ−βγ )/a(
λ

λ+ θ − βγ
− λ

λ+ θ

)
, y ≥ r.

Assume from now on that the reset distribution is degenerate at r , A = εr . The Cramér–
Lundberg equation (3.6) is then particularly simple, viz.

R+(γ )
(

1 + (1 − pU)L−(γ )
λ

γβ − λ− θ

)
= −pUP+(γ )

λ

γβ − λ− θ
, (4.3)

R+(γ )
(

1 + (1 − pU)L−(γ )
−λ
λ+ θ

)
= −pUP+(γ )

−λ
λ+ θ

, (4.4)

using (4.3) for the case a > 0 and (4.4) for the case a < 0.
If a > 0, this is exactly the same as (2.8) from Example 2.1 withX the standard risk process

with Poisson λ arrivals of claims and constant premium rate β!
If a < 0, and we assume that F+ is exponential at rate µ > 0 and F− is exponential (on

(−∞, 0)) at rate ν > 0, (4.4) reduces to a second-order equation in γ which, for θ > 0, has
one root less than 0 that should be used in (3.7) and one root greater than 0. For θ = 0, the
two solutions are γ = 0 and γ1 = pUν − (1 − pU)µ, which does not depend on a, b, or r .
Thus, the ruin probability Px,y(τ < ∞) = 1 if and only if pUν − (1 − pU)µ ≥ 0 if and only
if EUn ≥ 0, while, if pUν − (1 − pU)µ < 0, we find, using (3.35), (3.36), and (3.37), that

Px,y(τ < ∞) = − pU

1 − (1 − pU)ν/(ν − γ1)
cγ1,0(y)e

γ1x,

with

cγ,0(y) =

⎧⎪⎨⎪⎩
−1, y ≤ r,

− λ

λ− βγ
+

(
y

r

)(λ−βγ )/a(
λ

λ− βγ
− 1

)
, y ≥ r.

Example 4.3. Suppose that Y ◦ is a one-dimensional diffusion, i.e.

dY ◦
t = b(Y ◦

t ) dt + σ(Y ◦
t ) dBt ,
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on some open, half-open, or closed interval I from l to r , −∞ ≤ l < r ≤ ∞. Then the domain
of the generatorAY ◦ includes all bounded functions g that are twice continuously differentiable
on the interior of I , intI , with

AY ◦g(y) = b(y)g′(y)+ 1
2σ

2(y)g′′(y)

bounded and that, if either l ∈ I or r ∈ I , satisfy the boundary conditions pertaining to a
reflecting or absorbing boundary point. (The functions b and σ must be compatible with I in
order for the diffusion to exist, e.g. in order for Y ◦ never to hit l if l /∈ I .)

In order to use Theorem 3.1, we must solve (see (3.5)) the second-order differential equation

(γβ(y)− λ(y)− θ)cγ,θ (y)+ b(y)c′γ,θ (y)+ 1
2σ

2(y)c′′γ,θ (y) = λ(y), y ∈ I, (4.5)

subject to the relevant boundary conditions. As a specific case, suppose that Y ◦ is a Cox–
Ingersoll–Ross process on the open interval I = (0,∞), i.e.

dY ◦
t = (a + bY ◦

t ) dt + σ
√
Y ◦
t dBt ,

where a ∈ R, b ∈ R, and σ > 0 satisfying 2a ≥ σ 2, which is the well-known necessary and
sufficient condition on (a, b, σ ) that insures that the diffusion stays inside I = (0,∞) forever.
Assume also that λ(y) ≡ λ > 0 (Poisson arrival of claims) and that β(y) = βy with β > 0.
Equation (4.5) then reduces to

(γβy − λ− θ)cγ,θ (y)+ (a + by)c′γ,θ (y)+ 1
2σ

2yc′′γ,θ (y) = λ (4.6)

with no boundary conditions, an equation we now proceed to solve assuming that Reγ < 0 and
θ > 0.

Define ρ± = ρ±(γ ) as the roots of the equation γβ − bz+ 1
2σ

2z2 = 0, i.e.

ρ±(γ ) = 1

σ 2 (b ±
√
b2 − 2βγσ 2),

where
√
b2 − 2βγσ 2 is the square root of b2 − 2βγσ 2 with strictly positive real part. Then

Reρ+ > 0, Reρ− < 0, and Re(ρ−/ρ+) < 0 . Furthermore, define δ± = δ±(γ, θ) ∈ C by

δ± = 2

σ 2(ρ+ − ρ−)
(λ+ θ + b + (a − σ 2)ρ±),

and, finally, define, for 0 ≤ r < 1,

ψγ,θ (r) = (1 − r)δ+
(
r − ρ−

ρ+

)−δ−
, (4.7)

using the main branch of the complex logarithm function to define log(r − ρ−/ρ+). Then
Reδ+ > −1, wherefore the integrals

�γ,θ (t) = −
∫ 1

r

ψγ,θ (u) du, �̃γ,θ (r) = −
∫ 1

r

uψγ (u) du

converge absolutely and the function

y �→ c̃γ,θ (y) =
∫ 1

0
ψγ,θ (t)e

−tρ+y dt

https://doi.org/10.1239/jap/1354716648 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1354716648


Random premium rates 937

solves the second-order differential equation

(γβy−λ−θ)c̃γ,θ (y)+(a+by)c̃′γ,θ (y)+ 1
2σ

2yc̃′′γ,θ (y) = (λ+θ)�γ,θ (0)+aρ+�̃γ,θ (0), (4.8)

i.e. (4.6) is solved by

cγ,θ (y) = λ

(λ+ θ)�γ,θ (0)+ aρ+�̃γ,θ (0)

∫ 1

0
ψγ,θ (u)e

−uρ+ydu. (4.9)

We shall not here give the technical details for the proofs of all the claims made above, but
only indicate how one argues that c̃γ solves (4.8). The left-hand side of (4.8) equals

(γβy − λ− θ)

∫ 1

0
ψγ,θ (u)e

−uρ+ydu− (a + by)

∫ 1

0
ρ+uψγ,θ (u)e−uρ+ydu

+ 1

2
σ 2y

∫ 1

0
ρ2+u2ψγ,θ (u)e

−uρ+ydu,

which, using partial integration, may be written as

y

∫ 1

0
ε(u)e−uρ+udu+ (λ+ θ)�γ,θ (0)+ aρ+�̃γ,θ (0),

where

ε(u) = (
γβ − bρ+u+ 1

2σ
2ρ2+u2)ψγ,θ (u)− (λ+ θ)ρ+�γ,θ (u)− aρ2+�̃γ,θ (u).

We claim that ε(u) ≡ 0: by differentiation,

ε′(u) = (
γβ − bρ+u+ 1

2σ
2ρ2+u2)ψ ′

γ,θ (u)− ρ+(λ+ θ + b + (a − σ 2)ρ+u)ψγ,θ (u),

and the definition of ψγ,θ given in (4.7) fits precisely with the fact that ε′ vanishes. Thus, ε is
constant, and since �γ,θ (1) = �̃γ,θ (1) = 0, this constant equals

lim
u→1

(
γβ − bρ+u+ 1

2σ
2ρ2+u2)ψγ,θ (u) = lim

u→1

1
2σ

2(ρ+u− ρ+)(ρ+u− ρ−)ψγ,θ (u) = 0,

using the fact that ρ+ and ρ− are the roots of γβ − bz+ 1
2σ

2z2 = 0 together with (4.7) and
Reδ+ > −1 for the last equality.

Equation (4.9) may be written as

cγ,θ (y) = −
∫ 1

0 λψγ,θ (u)e
−uρ+ydu∫ 1

0 (λ+ θ + aρ+u)ψγ,θ (u) du
.

From (3.4) we know that |cγ,θ (y)| < 1, an inequality that is obvious upon referring to the form
(4.7) of ψγ,θ when γ ∈ R, γ < 0, but which in the general case, γ ∈ C and Reγ < 0, appears
surprisingly difficult to prove by analytic means!
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