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Abstract

Let k�2 be an integer and let λ be the Liouville function. Given k non-negative distinct
integers h1, . . . , hk, the Chowla conjecture claims that

∑
n�x λ(n + h1) · · · λ(n + hk) = o(x).

An unconditional answer to this conjecture is yet to be found, and in this paper, we take
a conditional approach. More precisely, we establish a non-trivial bound for the sums∑

n�x λ(n + h1) · · · λ(n + hk) under the existence of a Landau–Siegel zero for x in an inter-
val that depends on the modulus of the character whose Dirichlet series corresponds to the
Landau–Siegel zero. Our work constitutes an improvement over the previous related results
of Germán and Kátai, Chinis and Tao and Teräväinen.

2020 Mathematics Subject Classification: 11N37 (Primary); 11N36 (Secondary)

1. Introduction

The Liouville function λ is the completely multiplicative function that is defined as λ(n) =
(− 1)�(n) for all n ∈N, where �(n) =∑

pα‖n α. The prime number theorem implies that∑
n�x

λ(n) = o(x), as x → ∞,

which means that the sign of λ(n) has to change frequently as n grows. Chowla expected
a more general version of this asymptotic to hold, and in 1965 [2], he stated a conjecture
which can be extended to the case of the Liouville function in the following way.

CONJECTURE 1·1. For distinct fixed integers h1, h2, . . . , hk�0, we have that∑
n�x

λ(n + h1)λ(n + h2) · · · λ(n + hk) = o(x), as x → ∞.

Chowla’s conjecture remains open till this day. So far, there has only been partial progress
on it. Let us now take a look at the the main results that this progress evolved through. In
1985, Harman, Pintz and Wolke [4] studied the binary case with h1 = 0 and h2 = 1 and
proved that
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for ε > 0. About 30 years later, in 2016, Matomäki and Radziwiłł [11, Corollary 2] improved
this by showing that for any integer h�1, there exists δ(h) > 0 such that

1

x

∣∣∣∣∣∣
∑
n�x

λ(n)λ(n + h)

∣∣∣∣∣∣�1 − δ(h),

for all sufficiently large x. An averaged version of the conjecture was established by
Matomäki, Radziwiłł and Tao [12] in 2015. The three of them proved [12, (1·3)] that for
every integer k�2 and H ∈ [10, x], we have

∑
1�h2,...,hk�H

∣∣∣∣∣∣
∑
n�x

λ(n)λ(n + h2) · · · λ(n + hk)

∣∣∣∣∣∣� k

(
log log H
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( log x)1/3000

)
Hkx.

Finally, a weaker version of Chowla’s conjecture, the so-called logarithmically averaged
Chowla conjecture which claims that

∑
n�x

λ(n + h1) · · · λ(n + hk)

n
= o( log x), as x → ∞,

has been accomplished in stages for odd k and k = 2 in the works of Tao [16], Tao and
Teräväinen [17, 18], Helfgott and Radziwiłł [6], and Pilatte [13].

Despite the aforementioned partial advances towards Chowla’s conjecture, the full con-
jecture still seems to be out of reach. So, one may wish to approach it conditionally, and in
this paper, we are doing this by assuming the existence of Landau–Siegel zeroes.

A Landau–Siegel zero, often just called a Siegel zero, is a real number β associated to a
real primitive Dirichlet character χ modulo q such that L(β, χ) = 0 and

β = 1 − 1

η log q

for some η > 0. The number η is called the quality of the Landau–Siegel zero β and from
Siegel’s theorem we have the ineffective bound

η �ε qε, (1·1)

for any ε > 0. It is widely believed that Siegel zeroes do not exist, as their existence
would come in contrast to the Generalised Riemann Hypothesis. However, the unlikely
presence of Siegel zeroes has proven to have some interesting consequences. For exam-
ple, in 1983, Heath-Brown [5] proved that if there exist infinitely many Siegel zeroes
βj = 1 − 1/(ηj log qj) such that ηj → +∞, then the Twin Prime Conjecture must be true.

The first result of the literature on Chowla’s conjecture under Landau–Siegel zeroes
comes from a work of Germán and Kátai from 2010. More precisely, in [3, Theorem 2],
they proved that there exists an absolute constant c > 0 such that if χ is a primitive quadratic
character modulo q for which L(·, χ) has a Landau–Siegel zero β = 1 − 1/(η log q) with
η > exp ( exp (30)), then

1
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∑
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for all x ∈ [q10, q( log log η)/3]. Under the same assumptions, Chinis [1, Theorem 1·2] in 2021
extended the work of Germán and Kátai to k�2 distinct shifts and showed that

1

x

∑
n�x

λ(n + h1) · · · λ(n + hk) �k,h1,...,hk

1

( log log η)1/2( log η)1/12
,

for all x ∈ [q10, q( log log η)/3]. A year later, in 2022, Tao and Teräväinen [19, Corollary 1·8
(ii)] improved the bound of Chinis as well as the q-range of x that his bound holds for. In
particular, under the existence of a Siegel zero β = 1 − 1/(η log q) with η�10, they showed
that for a fixed ε ∈ (0, 1), one has

1

x

∑
n�x

λ(n + h1) · · · λ(n + hk) �ε,k,h1,...,hk

1

( log η)1/10
,

for all x in [q1/2+ε, qη1/2
]. Until the publication of the present paper, the result of Tao and

Teräväinen has provided the best bound on the sums
∑

n�x λ(n + h1) · · · λ(n + hk) with the
best q-range for x.

In this work, we improve their result in both directions. As we can see in Corollary 1·3
below, the following theorem, which is our main result, leads to stronger bounds on the
k-point correlations

∑
n�x λ(n + h1) · · · λ(n + hk) over a slightly wider q-range.

THEOREM 1·2. Let q�2 be a positive integer and let χ be a primitive quadratic charac-
ter modulo q such that L(·, χ) has a real zero β = 1 − 1/(η log q) with η�10. We also fix
an integer k�2, distinct non-negative integers h1, . . . , hk, and ε ∈ (0, 1/2). There exists a
constant c = c(ε, k) > 0 such that for x = qV with V ∈ [1/2 + ε, η], we have

∑
n�x

λ(n + h1) · · · λ(n + hk) � xV

η
+ x exp (− c

√
V log η).

COROLLARY 1·3. Let q, η, k and ε be as in the statement of Theorem 1·2. Let also c be the
constant from the bound of Theorem 1·2 and consider distinct fixed integers h1, . . . , hk�0.

(i) There exists a constant c′ = c′(ε, k) > 0 such that∑
n�x

λ(n + h1) · · · λ(n + hk) � x exp (− c′√log η),

for every x ∈ [q1/2+ε, qc−2 log η].

(ii) For every δ ∈ (0, 1), we have that∑
n�x

λ(n + h1) · · · λ(n + hk) �δ

x

η1−δ
,

for all x ∈ (qc−2 log η, qηδ
].

The implicit constants in Theorem 1·2 and 1·3 depend on ε, k and the shifts h1, . . . , hk,
but we did not include them in the � notation because the parameters ε, k, h1, . . . , hk are all
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fixed in their statements. The same applies to the bounds in the proof of Theorem 1·2. The
reason for this choice is to alleviate the notation for the reader.

We prove Theorem 1·2 in Section 5. A major input in its proof is Lemma 3·3 which is
a technical version of the fundamental lemma of sieve theory. Tao and Teräväinen did not
use the beta-sieve which basically gives rise to Lemma 3·3. They used a Selberg sieve and
this technically complicated the matters in their paper [19]. This constitutes the main reason
that we could improve their bound. However, it could be possible to somehow alter their
arguments and obtain bounds comparable to ours with a Selberg sieve.

The use of Lemma 3·3 as a main component in the improvement of the previous results
was inspired by the work of Matomäki and Merikoski in [10], where they assumed the
existence of Siegel zeroes and refined a result of Tao and Teräväinen [19] on the binary
“Hardy–Littlewood” type correlations

∑
n�x 
(n)
(n + h). As in our paper, Matomäki and

Merikoski, who were the ones who proved [10, Lemma 3·3], strengthened the result of Tao
and Teräväinen by applying Lemma 3·3 instead of a Selberg sieve that the latter used for the
more general “Hardy–Littlewood–Chowla” type correlations∑

n�x


(n + h1) · · · 
(n + hk)λ(n + h′
1) · · · λ(n + h′

k).

Notation

Let r be a positive integer. For a1, . . . , ar ∈N, we use the notation (a1, . . . , ar) for their
greatest common divisor, and the notation [a1, . . . , ar] for their least common multiple.

Throughout the text, we denote the largest and smallest prime factor of an integer n > 1 by
P+(n) and P−(n), respectively. For n = 1, we conventionally have P+(1) = 0 and P−(1) =
+∞.

The capital Greek letters � and � also appear in the paper and they correspond to the
classical counting functions of the rough and smooth integers, respectively. More precisely,
for x�y�2, we have �(x, y) = #{n�x : P−(n) > y} and �(x, y) = #{n�x : P+(n)�y}.

Given two arithmetic functions f and g, their Dirichlet convolution, denoted by f ∗ g, is
the arithmetic function which is defined as (f ∗ g)(n) =∑

ab=n f (a)g(b) for all n ∈N.
For m ∈N, the symbol τm denotes the m-fold divisor function given as τm(n) =∑
d1...dm=n 1 for all n ∈N. Finally, the lowercase Greek letters μ, τ and ϕ denote the Möbius,

the divisor and the Euler functions, respectively.

2. The Core Ideas

The purpose of this section is to explain why the existence of Siegel zeroes is a useful
hypothesis when approaching Chowla’s conjecture. Our explanation below also highlights
the main steps in the proof of Theorem 1·2.

If L(·, χ) has a zero close to 1 for some Dirichlet character χ of modulus q, then L(1, χ)
will be small by continuity. Consequently, assuming that Landau–Siegel zeroes exist, we
find a primitive quadratic character χ such that L(β, χ) = 0 for some real number β close
to 1. Then L(1, χ)−1 should be large. But,

L(1, χ)−1 =
∏

p

(
1 − χ(p)

p

)
,
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so the Euler product of the right-hand side has to be large, too. In conjunction with
Mertens’ theorems, this suggests that χ(p) = −1 = λ(p) for many large primes. This intuitive
conclusion is the basis of arguments that utilise the presence of Landau–Siegel zeroes.

Now, let z > 1 be some parameter. Following the work of Germán and Kátai [3], we define
the completely multiplicative function λz which is fully determined by its prime values

λz(p) =
{

λ(p) if p�z,

χ(p) if p > z.
(2·2)

According to the above discussion, in the presence of Siegel zeroes, the function λz seems
to be a good approximation to the Liouville function λ for large z. Therefore, for a suitably
chosen z, e.g. some small power of x, we expect

∑
n�x

λ(n + h1) · · · λ(n + hk) ≈
∑
n�x

λz(n + h1) · · · λz(n + hk). (2·3)

In fact, such an approximation is provided by Lemma 4·1 which constitutes the first step in
the proof of Theorem 1·2.

Once the transition from the sums of λ to the sums of λz has been achieved with the
introduction of an acceptable error, the study of the sums

∑
n�x λz(n + h1) . . . λz(n + hk) is

tractable. Let us elaborate on why is that. Without loss of generality, we assume that h1 is
the smallest shift. Then the right-hand side of (2·3) can be written as

∑
a1,...,ak�x,

P+(a1···ak)�z

λ(a1) · · · λ(ak)
∑

n1�(x+h1)/a1,
P−(n1···nk)>z,

a1n1=aini+h1−hi
for all i∈{1,...,k}

χ(n1) · · · χ(nk). (2·4)

The reason that makes the sums
∑

n�x λz(n + h1) . . . λz(n + hk) easier to deal with lies on
the innermost sum of (2·4), where we now have a primitive quadratic character χ instead of
the Liouville function λ. This character χ possesses two crucial features that the Liouville
function does not. The first one is its periodicity and the second one is the Weil bound that
it satisfies (see Lemma 3·5 below).

Let us now explain how the Weil bound is useful for the estimation of the expression in
(2·4). First, we can approximate the indicator function 1P−(·)>z by 1 ∗ w for some suitable
sieve weight. This removes the condition P−(n1 · · · nk) > z from the innermost sum of (2·4)
at the cost of inserting the terms (1 ∗ w)(n1 · · · nk). After opening these convolutions, we
can change the order of summation so that the innermost sums are character sums over
polynomial values. So, provided that the contribution of the errors in the approximation
1P−(·)>z ≈ 1 ∗ w can be handled, the estimation of (2·4) ends up being a simple application
of the Weil bound to the new innermost character sums. The arguments of this explanation
are rigorously executed in Section 5.

To summarise, the existence of Siegel zeroes is helpful because it puts our focus on
the sums

∑
n�x λz(n + h1) . . . λz(n + hk), which one can estimate by combining a sifting

argument with the Weil bounds of χ .
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3. Auxiliary results

In this section, we state and prove some preparatory results that are needed later for the
proof of Theorem 1·2. We start with a lemma which will be used to bound the difference
between the sums of the Liouville function λ and those of the functions λz.

LEMMA 3·1. Let χ be a primitive quadratic character modulo q�2. Assume that L(·, χ)
has a real zero β such that β = 1 − 1/(η log q) for some η�10. Let z = qv for some v > 0.
Then for any x > z, we have

∑
z<p�x

1 + χ(p)

p
�

⎧⎪⎪⎨
⎪⎪⎩
( 1

v2ηv/2
+ 1

z

)( log x

log z

)3

for v ∈ (0, 2),

log x

η log q
for v�2.

Proof. The first branch of the estimate follows from [10, Lemma 2·2]. Indeed, since (1 ∗ χ)
(n)�0 for all n ∈N, for v ∈ (0, 2), [10, Lemma 2·2] yields the following (note that in [10],
the authors adopted the notation λ = 1 ∗ χ , whereas they denote the Liouville function by
λLiouville):

∑
z<p�x

1 + χ(p)

p
�

∑
z<n�x

P−(n)>z

(1 ∗ χ)(n)

n
�
( 1

v2ηv/2
+ v log x

η log z
+ 1

z

)( log x

log z

)2

�
( 1

v2ηv/2
+ v

η
+ 1

z

)( log x

log z

)3

�
( 1

v2ηv/2
+ 1

z

)( log x

log z

)3

.

The second branch comes from [19, Proposition 3·5].

The next lemma, which is found as exercise 6(b) in [20, end of Section III·5], allows us
to restrict our attention to the summands of

∑
n�x λz(n + h1) · · · λz(n + hk) for which the

z-smooth parts
∏

p�z, pα‖n+hi
pα of n + hi are relatively small for all i ∈ {1, . . . , k}.

LEMMA 3·2. Consider the real numbers u�1 and x, z > 1. If x�zu, then

#{n�x :
∏

p�z, pα‖n

pα > zu} � xe−u/2.

Proof. We observe that

#{n�x :
∏

p�z, pα‖n

pα > zu} =
∑

ab�x, zu<a
P+(a)�z<P−(b)

1. (3·5)

When b = 1, the remaining sum over a is bounded by �(x, z). When b > 1, the condition
P−(b) > z implies that b > z, and so a�x/b < x/z, in this case. For each such a in (3·5), there
are at most �(x/a, z) integers b. Consequently, the relation (3·5) gives

#{n�x :
∏

p�z, pα‖n

pα > zu}��(x, z) +
∑

zu<a<x/z
P+(a)�z

�
( x

a
, z
)

.
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For t�z, we have the bound �(t, z) � xe− log t/(2 log z) [20, Theorem 1 in Section III·5·1].
Since x/a > z, we also have the standard estimate �(x/a, z) � x/(a log z), which readily
follows e.g. from [9, Theorem 14·2] with f = 1P−(·)>z. Therefore,

#{n�x :
∏

p�z, pα‖n

pα > zu} � xe−u/2 + x

log z

∑
zu<a<x
P+(a)�z

1

a
. (3·6)

Using partial summation and the aforementioned bound on �(t, z) for t�z, it follows that
the sum of the right-hand side of (3·6) is � log z · e−u/2. This concludes the proof of the
lemma.

The version of the fundamental lemma of sieve theory that follows provides an approxi-
mation of the indicator function 1P−(·)>z in terms of appropriate sieve weights. It is useful
when we deal with sums of the form

∑
P−(n)>z αn where αn alternate signs.

LEMMA 3·3. There exists a constant β�2 such that the following holds for any u�β.

Let z�1, and define

zr := z((β−1)/β)r

for r ∈N. There exists an arithmetic function w such that:

(i) |w(n)|�1 for all n ∈N;

(ii) supp(w) ⊆ {d ∈N : d |∏p�z p and d�zu}; and

(iii) 1P−(n)>z = (1 ∗ w)(n) + O
(
τ (n)2

∑
r�u−β

1P−(n)>zr 2
−r
)

for all n ∈N.

Proof. See [10, proof of Lemma 3·2(i)] with A = 1, β = β0 and a u which here plays the role
of the product uθ for some fixed θ ∈ (0, 1/3).

In the proof of Theorem 1·2, we also make use of the following extention of Shiu’s
theorem [15, Theorem 1] which is due to Henriot [7, 8].

LEMMA 3·4. Let k be a positive integer and let Q1, . . . , Qk ∈Z[X] be k pairwise coprime
irreducible polynomials. Set Q = Q1 · · · Qk, and denote the degree and determinant of Q by
g and D, respectively. For n ∈N and j ∈ {1, . . . , k}, we let ρj(n) (respectively ρ(n)) denote the
number of zeroes of Qj (respectively Q) modulo n. Assume that Q has no fixed prime divisor,
and consider real numbers A�1, B�1, δ ∈ (0, 1), and ε ∈ (0, 1/(100g(g + 1/δ))). Suppose
that F:Nk →R is a non-negative function such that

(i) F(m1n1, . . . , mknk) = F(m1, . . . , mk)F(n1, . . . , nk)
whenever (m1 · · · mk, n1 · · · nk) = 1, and

(ii) F(n1, . . . , nk)� min{A�(n1···nk), B(n1 · · · nk)ε} for all (n1, . . . , nk) ∈Nk.
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There exists a constant c0 > 0, depending at most on g, A, B and δ, such that∑
n�x

F(|Q1(n)|, . . . , |Qk(n)|)

� x
∏
p|D

(
1 +

∑
0�μj� deg Qj

for all j∈{1,...,k},
(μ1,...,μk)�=(0,...,0)

F(pμ1 , . . . , pμk )

)∏
p�x

(
1 − ρ(p)

p

)

×
∑

n1···nk�x
(n1···nk ,D)=1

F(n1, . . . , nk)
ρ1(n1) · · · ρk(nk)

n1 · · · nk
,

for all x�c0‖Q‖δ , where ‖Q‖ denotes the sum of the absolute values of the coefficients of
Q. The implicit constant in the bound depends at most on g, A, B and δ.

Proof. It follows from [7, Theorem 3] upon noticing that we can trivially bound the Euler
product �D in its statement by the simpler product

∏
p|D

(
1 +

∑
0�μj� deg Qj

for all j∈{1,...,k},
(μ1,...,μk)�=(0,...,0)

F(pμ1 , . . . , pμk )

)
.

We will not need Lemma 3·4 in its full generality. In fact, we can only think of F as a
product of divisor functions with a coprimality condition, whereas Q1, . . . , Qk are simply
going to be linear polynomials.

Another useful result for the proof of Theorem 1·2 is the following generalisation of the
classical Weil bound for character sums [14, Theorem 2C′].

LEMMA 3·5. Let χ be a primitive quadratic character modulo q�2, and consider a poly-
nomial f ∈Z[X]. Let also M and N�0 be two integers. If q∗ is the product of the odd prime
factors p of q for which f is a constant multiple of a square polynomial modulo p, then

∑
M<n�M+N

χ(f (n)) �ε qε
√

q∗
(

N√
q

+ √
q

)
.

Proof. See the discussion preceding the statement of Lemma 3·7 in [19, Subsection 3·4]

We close the section with an inequality which was stated without proof in [1, Subsection
4·2].

LEMMA 3·6. Let k be a positive integer. For given m1, . . . , mk ∈N, we have

[m1, . . . , mk]� m1 · · · mk∏
1�i<j�k (mi, mj)

.

Proof. For k = 1 the lemma is trivial and we may assume that k�2. We start by making use
of the following elementary observation; For positive integers a,b and c for which b | c, it is
true that (a, b)�(a, c). We apply this property and obtain

(mk, [m1, . . . , mk−1])�(mk, m1 · · · mk−1). (3·7)
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It is also easy to note that (ab, c)�(a, c)(b, c) for a, b, c ∈N. Hence,

(mk, m1 · · · mk−1)�(m1, mk) · · · (mk−1, mk). (3·8)

Now, we put (3·7) and (3·8) together and deduce that

[m1, . . . , mk] = [mk, [m1, . . . , mk−1]] = mk[m1, . . . , mk−1]

(mk, [m1, . . . , mk−1])
� mk[m1, . . . , mk−1]∏

1�i�k−1 (mi, mk)
.

Based on this inequality, the proof is completed by induction on k.

4. Preparations for the Proof of Theorem 1·2
Throughout this and the following section, we assume that ε, k and h1, . . . , hk are fixed.

Hence, any dependence of the implicit constants on any of these integers is ignored.
Moreover, recall that for z > 1, the completely multiplicative function λz is defined by (2·2),
where the Dirichlet character χ in (2·2) is now the primitive quadratic character modulo q
from the statement of Theorem 1·2.

4·1. Going from λ to λz

As was explained in Section 2, our first objective is to make a transition from the sums∑
n�x λ(n + h1) · · · λ(n + hk) to the sums

∑
n�x λz(n + h1) · · · λz(n + hk). To this end, we

prove the following.

LEMMA 4·1 Let k, q�2 be natural numbers, and let h1, . . . , hk be distinct non-negative
integers. Let also χ be as in the statement of Theorem 1·2 and write z = qv for some v > 0.
For x > z, we have that

∑
n�x

( k∏
j=1

λ(n + hj) −
k∏

j=1

λz(n + hj)

)
�

⎧⎪⎪⎨
⎪⎪⎩

x
( 1

v2ηv/2
+ 1

z

)( log x

log z

)3

for v ∈ (0, 2),

x log x

η log q
for v�2.

Proof. The beginning of the proof is similar to those of [1, Lemma 3·1] and [3, Section 3,
relation (3·3)], but for the sake of completeness we write it down here.

We will need the following inequality that one can prove by induction; If m ∈N and
w1, . . . , wm, u1, . . . , um are complex numbers of modulus at most 1, then

|w1 · · · wm − u1 · · · um|�
m∑

i=1

|wi − ui|. (4·9)

Using this inequality, we infer that

∑
n�x

∣∣∣ k∏
j=1

λ(n + hj) −
k∏

j=1

λz(n + hj)
∣∣∣�∑

n�x

k∑
j=1

|λ(n + hj) − λz(n + hj)|

=
k∑

j=1

∑
n�x

|λ(n + hj) − λz(n + hj)|

= k
∑
n�x

|λ(n) − λz(n)| + O(1). (4·10)
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In order to bound
∑

n�x |λ(n) − λz(n)|, we are exploiting the inequality (4·9) again. We
combine it with the definition of λz and get∑

n�x

|λ(n) − λz(n)|�
∑
n�x

∑
pα‖n
p>z

|λ(pα) − χ(pα)|

�
∑

pα�x
p>z

|λ(pα) − χ(pα)|
∑
n≤x
pα |n

1

� x
∑

pα�x
p>z

|λ(pα) − χ(pα)|
pα

�x
∑

z<p�x

1 + χ(p)

p
+ 2x

∑
p>z

∑
α�2

1

pα

� x
∑

z<p�x

1 + χ(p)

p
+ x

∑
p>z

1

p2

� x
∑

z<p�x

1 + χ(p)

p
+ x

z
.

(4·11)

From (4·10) and (4·11), we deduce that

∑
n�x

( k∏
j=1

λ(n + hj) −
k∏

j=1

λz(n + hj)

)
� x

∑
z<p�x

1 + χ(p)

p
+ x

z
.

The proof is now completed by an application of Lemma 3·1. In the case v < 2, Lemma
3·1 completes the proof immediately because x/z is smaller than x( log x)3/(z( log z)3) for
x > z. When v�2, the extra term x/z is absorbed by the bound x log x/(η log q), because in
this case log x� log q and (1·1) implies that η � q�z.

4·2. Restricting the z-smooth parts

Once Lemma 4·1 is used and the transition from the sums of λ to the sums of λz is
completed, one’s interest turns to the study of

∑
n�x λz(n + h1) · · · λz(n + hk). For tech-

nical reasons, we seek to exclude the terms of
∑

n�x λz(n + h1) · · · λz(n + hk) for which∏
p�z, pα‖n+hi

pα is relatively large for some i ∈ {1, . . . , k}. To this end, in the current
subsection, we assess the contribution stemming from these “undesirable” summands.

Before doing so, we introduce the following notation for convenience; For m ∈N and
z > 1, we write

mz :=
∏

pα‖m,p�z

pα .

LEMMA 4·2. Let x�z > 1 and u�1. If x�zu, then∑
n�x

λz(n + h1) · · · λz(n + hk) =
∑

n�x,(n+hi)z�zu

for all i∈{1,...,k}

λz(n + h1) · · · λz(n + hk) + O(xe−u/2 + 1).
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Proof. We readily see that∑
n�x

λz(n + h1) · · · λz(n + hk) =
∑
n�x,

(n+hi)z�zu

for all i∈{1,...,k}

λz(n + h1) · · · λz(n + hk)

+
∑
n�x,

(n+hi)z>zu

for some i∈{1,...,k}

λz(n + h1) · · · λz(n + hk). (4·12)

Note that

∑
n�x,

(n+hi)z>zu

for some i∈{1,...,k}

λz(n + h1) · · · λz(n + hk)�
k∑

i=1

∑
n�x

(n+hi)z>zu

1�
k∑

i=1

∑
hi<m�x+hi

mz>zu

1

=
k∑

i=1

#{m�x :
∏

pα‖m,p�z

pα > zu} + O(1).

Therefore, by using Lemma 3·2, we deduce that∑
n�x,

(n+hi)z>zu

for some i∈{1,...,k}

λz(n + h1) · · · λz(n + hk) � xe−u/2 + 1. (4·13)

The proof now follows by inserting (4·13) into (4·12).

4·3. Rewriting the “main term” in Lemma 4·2
Let x, z and u be as in the statement of Lemma 4·2. We are going to rewrite the sum

S :=
∑
n�x,

(n+hi)z�zu

for all i∈{1,...,k}

λz(n + h1) · · · λz(n + hk) (4·14)

in a form that we use in the upcoming section. For the sequel, we assume without loss of
generality that h1 = min1�i�k hi. We write n + hi = aini with P+(ai)�z and P−(ni) > z, and
so

S =
∑

a1,...,ak�zu,
P+(a1···ak)�z,
(ai,aj)|(hi−hj)

for all i,j∈{1,...,k} with i �=j

λ(a1 · · · ak)
∑

n1� x+h1
a1

,

P−(n1···nk)>z,
a1n1=aini+h1−hi
for all i∈{2,...,k}

χ(n1 · · · nk). (4·15)

We denote the inner sum in (4·15) by �, that is,

� :=
∑

n1� x+h1
a1

,

P−(n1···nk)>z,
a1n1=aini+h1−hi
for all i∈{2,...,k}

χ(n1 · · · nk).
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Upon writing h∗
i = hi − h1 for i ∈ {1, . . . , k}, we see that

� =
∑

n� x+h1
a1

,

P−
(∏k

i=1
a1n+h∗

i
ai

)
>z,

a1n≡−h∗
i (mod ai)

for all i∈{2,...,k}

χ

( k∏
i=1

a1n + h∗
i

ai

)
. (4·16)

Since we have the condition (ai, aj)|(hi − hj) in the outermost sum of (4·15), for every i ∈
{1, . . . , k}, one has that

a1n ≡ −h∗
i (mod ai) ⇐⇒ a1

(a1, ai)
n ≡ − h∗

i

(a1, ai)

(
mod

ai

(a1, ai)

)

⇐⇒ n ≡ −a1,i
h∗

i

(a1, ai)
(mod a∗

i ), (4·17)

where a∗
i := ai(a1, ai)−1, a1,i := a1(a1, ai)−1, and a1,i is its inverse (mod a∗

i ). Now, if the sys-
tem of linear congruences (4·17) is not soluble, then � = 0 and there is no contribution from
such systems. Consequently, we may limit the outermost sum of (4·15) to those a1, . . . , ak

for which the system of linear congruences (4·17) is soluble. In this case, by the Chinese
Remainder Theorem, there exists an integer r∗ such that:

(i) 0 < r∗�[a∗
2, . . . , a∗

k ];

(ii) n = �[a∗
2, . . . , a∗

k ] + r∗ − [a∗
2, . . . , a∗

k ] for � ∈N; and

(iii) a1r∗ ≡ −h∗
i (mod ai) for all i ∈ {1, . . . , k}.

Applying these to (4·16), we derive that

� =
∑

l� x+h1−a1r∗
a1[a∗

2,...,a∗
k ]

+1

P−(Q(�))>z

χ(Q(�)), (4·18)

where

Q(X) :=
k∏

i=1

(
a1,i

[a∗
2, . . . , a∗

k ]

a∗
i

X + a1r∗ + h∗
i

ai
− a1,i

[a∗
2, . . . , a∗

k ]

a∗
i

)

defines a polynomial of Z[X]. Since � denotes the inner sum of (4·15), by inserting (4·18)
into (4·15), we obtain that

S =
∑′

a1,...,ak�zu,
P+(a1···ak)�z,
(ai,aj)|(hi−hj)

for all i,j∈{1,...,k} with i �=j

λ(a1 · · · ak)
∑

l� x+h1−a1r∗
a1[a∗

2,...,a∗
k ]

+1

P−(Q(�))>z

χ(Q(�)), (4·19)

where the prime
′

indicates that the sum is taken over the integers a1, . . . , ak for which the
system of congruences (4·17) is soluble.

Relation (4·19) provides the form of S that we will exploit.
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5. Proof of Theorem 1·2
In this section, we establish Theorem 1·2. To achieve this, we bound S by starting from

(4·19), and then, once the estimation of S is complete, we combine the definition (4·14) of S
with Lemmas 4·1 and 4·2.

Let z = qv with

v = min

{√
V

log η
, 2

}
.

We now assume that η is sufficiently large, otherwise xV/η � x, in which case, Theorem
1·2 would immediately follow from the trivial bound x. Since η is assumed to be large
enough, Siegel’s theorem, that is (1·1), implies that q is also sufficiently large and that v �
1/

√
( log q). Therefore, v� log k/ log q, and so z = qv�k.

In (4·19), we have that P+(a1 · · · ak)�z < P−(Q(�)), and so the inner sum � of S is
taken over integers � for which (Q(�), a1 · · · ak) = 1. Moreover, since z�k, we also have
that P−(Q(�)) > z�k, and this imposes the condition (Q(�),

∏
p�k p) = 1 on �. According

to the above, we can add the supplementary condition (Q(�), a1 · · · ak
∏

p�k p) = 1 to the
inner sum � of (4·19). Therefore,

� =
∑

l� x+h1−a1r∗
a1[a∗

2,...,a∗
k ]

+1

P−(Q(�))>z
(Q(�),a1···ak

∏
p�k p)=1

χ(Q(�)). (5·20)

We now detect the sifting condition P−(Q(�)) > z of (5·20) by applying Lemma 3·3
with β = 25k and u = εV/(30kv). Since V� 1

2 + ε and η is large, we observe that u =
εV/(30vk)�50k. Hence,

� =
∑
d�zu

d|∏p�z p
(d,a1···ak

∏
p�k p)=1

w(d)
∑

�� x
a1[a∗

2,...,a∗
k ]

d|Q(�)
(Q(�),a1···ak

∏
p�k p)=1

χ(Q(�))

+ O

(
zu +

∑
r� u

2

2−r
∑

�� x
a1[a∗

2,...,a∗
k ]

P−(Q(�))>zr
(Q(�),a1···ak

∏
p�k p)=1

τ (Q(�))2

)
, (5·21)

where zr = z((25k−1)/(25k))r
, and w is the arithmetic function from the statement of Lemma

3·3.

5·1. Evaluation of the main term of � in (5·21)

We seek a bound for

�′ :=
∑
d�zu

d|∏p�z p
(d,a1···ak

∏
p�k p)=1

w(d)
∑

�� x
a1[a∗

2,...,a∗
k ]

d|Q(�)
(Q(�),a1···ak

∏
p�k p)=1

χ(Q(�)).
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We spot the condition (Q(�), a1 · · · ak
∏

p�k p) = 1 using Möbius inversion, so we obtain

�′ =
∑

d�zu, d|∏p�z p
(d,a1···ak

∏
p�k p)=1

d′|a1···ak
∏

p�k p

w(d)μ(d′)
∑

ν(mod dd′)
Q(ν)≡0 (mod dd′)

∑
�� x

a1[a∗
2,...,a∗

k ]

�≡ν (mod dd′)

χ(Q(�))

=
∑

d�zu, d|∏p�z p
(d,a1···ak

∏
p�k p)=1

d′|a1···ak
∏

p�k p

w(d)μ(d′)
∑

ν(mod dd′)
Q(ν)≡0 (mod dd′)

∑
m� x

dd′a1[a∗
2,...,a∗

k ]

χ(Rd,d′,ν(m)), (5·22)

where Rd,d′,ν ∈Z[X] with Rd,d′,ν(X) := Q(dd′X + ν).
We want to apply Lemma 3·5 to bound the innermost character sum in (5·22). In order

to do this with q∗ � (dd′, q), we have to verify that Rd,d′,ν is not a constant multiple of a
square polynomial modulo p for primes p � dd′ with p > max1�i�k hi and p|q. We do this
by considering the following complementary cases; p � ai for all i ∈ {1, . . . , k} and p|ai for
some i ∈ {1, . . . , k}.

We first assume that p � ai for all i ∈ {1, . . . , k}. In this case, if Rd,d′,ν is a square, then its
roots have even multiplicity, which implies that there exist distinct indices i, j ∈ {1, . . . , k}
such that

dd′ · a1[a∗
2, . . . , a∗

k ]

ai
·
(

a1r∗ + h∗
i

ai
+ (ν − 1)a1[a∗

2, . . . , a∗
k ]

ai

)

≡ dd′ · a1[a∗
2, . . . , a∗

k ]

aj
·
(

a1r∗ + h∗
j

aj
+ (ν − 1)a1[a∗

2, . . . , a∗
k ]

aj

)
(mod p).

We multiply both sides of this congruence by dd′(a1[a∗
2, . . . , a∗

k ])2a−1
i a−1

j and infer that

a1[a∗
2, . . . , a∗

k ]

aiaj
(h∗

i − h∗
j ) ≡ 0 (mod p).

Since p � ai for all i ∈ {1, . . . , k}, we get h∗
i ≡ h∗

j (mod p), which is equivalent to hi ≡
hj (mod p). But, since hi, hj� max1�κ�k hκ < p, we conclude that hi = hj, which is a con-
tradiction for i �= j as the shifts h1, . . . , hk are distinct. Consequently, Rd,d′,ν is not a constant
multiple of a square polynomial modulo p in this case.

We now assume that p|ai for some i ∈ {1, . . . , k}. This implies that p � aj for all j �= i,
otherwise p|(ai, aj) for some j �= i, which, combined with the condition (ai, aj)|(hi − hj)
of (4·19), would imply the divisibility relation p|(hi − hj) which contradicts the condi-
tion p > max1�i�k hi that we are working under. By the same argument, if i �= 1, then
we can deduce that p | a∗

i . Combining both our conclusions, we observe that p divides
a1,j[a∗

2, . . . , a∗
k ]a∗

j
−1 = a1[a∗

2, . . . , a∗
k ]aj

−1 for j �= i. Note also that

a1,i[a
∗
2, . . . , a∗

k ]a∗
i
−1
∣∣∣ k∏

j=1,j �=i

aj,

because [a∗
2, . . . , a∗

k ] divides a∗
2 · · · a∗

k , which in turn divides a2 · · · ak. So, p �

a1,i[a∗
2, . . . , a∗

k ]a∗
i
−1, whereas p | a1,j[a∗

2, . . . , a∗
k ]a∗

j
−1 for j �= i. We thus see that Rd,d′,ν(X) ≡
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c1X + c0mod p for some c0, c1 ∈N, which shows that Rd,d′,ν is not a constant multiple of a
square polynomial modulo p in this case either.

Now that we have concluded that Rd,d′,ν is not a constant multiple of a square polynomial
modulo p when p is a prime such that p|q, p � dd′ and p > max1�i�k hi, Lemma 3·5 yields

∑
m� x

dd′a1[a∗
2,...,a∗

k ]

χ(Rd,d′,ν(m)) � (d, q)1/2(d′, q)1/2

(
x

dd′a1[a∗
2, . . . , a∗

k ]q
1−ε

2

+ q
1+ε

2

)
. (5·23)

Using Lemma 3·6 and the condition (ai, aj)|(hi − hj) from the outermost sum of (4·19),
we find that

[a∗
2, . . . , a∗

k ]�a2 · · · ak

∏
1�i<j�k

(ai, aj)
−1�a2 · · · ak

(
max

1�i�k
hi

)−(k
2)

. (5·24)

We combine (5·23) and (5·24). Hence, since d and d’ are coprime and the arithmetic function
ρ defined as ρ(m) := {ν (mod m) : Q(ν) ≡ 0 (mod m)} for all m ∈N is multiplicative (by the
Chinese Remainder Theorem), (5·22) gives

�′ � x

q(1−ε)/2a1 · · · ak

( ∑
d|∏p�z p

(d,a1···ak)=1

ρ(d)(d, q)1/2

d

)( ∑
d′|a1···ak

∏
p�k p

ρ(d′)μ(d′)2
)

+ q(1+ε)/2
( ∑

d�zu

ρ(d)
√

d

)( ∑
d′|a1···ak

∏
p�k p

ρ(d′)
√

d′
)

. (5·25)

Using the trivial inequalities τ (m), ρ(m)�m for all m ∈N, we immediately derive the bound

∑
d�zu

ρ(d)
√

d � z5u/2,

as well as the estimate∑
d′|a1···ak

∏
p�k p

ρ(d′)
√

d′ � (a1 · · · ak)3/2τ (a1 · · · ak)�(a1 · · · ak)5/2.

Consequently, after recalling that a1, . . . , ak�zu in the expression (4·19) of S, (5·25) implies

�′ � x

q
1
4 a1 · · · ak

( ∑
d|∏p�z p

(d,a1···ak)=1

ρ(d)(d, q)
1
2

d

)( ∑
d′|a1···ak

∏
p�k p

ρ(d′)μ(d′)2
)

+ z
5(k+1)u

2 q
1+ε

2 .

(5·26)

We previously noted that any two roots of the polynomial Rd,d′,ν cannot be congruent
modulo p. By an almost identical approach, for the primes p > max1�i�k hi that do not
divide the product a1 · · · ak, one can show that the k roots

a1[a∗
2, . . . , a∗

k ]a−1
i (a1r∗ + h∗

i )a−1
i − 1
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of Q modulo p are distinct. Thus, ρ(p) = k for every prime p > max1�i�k hi which does not
divide a1 · · · ak. Furthermore, if p | a1 · · · ak, then Q reduces to a constant or first degree
polynomial modulo p. Therefore, for the primes p | a1 · · · ak, we have that ρ(p)�1. We are
going to use these two observations to bound the sums at (5·26). Firstly, we have that

∑
d|∏p�z p

(d,a1···ak)=1

ρ(d)(d, q)1/2

d
�

∏
max1�i�k hi<p�z

p � qa1···ak

(
1 + ρ(p)

p

) ∏
p|q, p � a1···ak

p>max1�i�k hi

(
1 + ρ(p)√

p

)

�
∏

max1�i�k hi<p�z
p � qa1···ak

(
1 + k

p

) ∏
p|q, p � a1···ak

p>max1�i�k hi

(1 + k)

� τk+1(q)( log z)k � q1/20( log z)k. (5·27)

We also have∑
d′|a1···ak

∏
p�k p

ρ(d′)μ(d′)2 �
∏

p|a1···ak

(1 + ρ(p))�τ (a1 · · · ak)�τ (a1) · · · τ (ak). (5·28)

We now insert (5·27) and (5·28) into (5·26) to complete the estimation of �′. This way
we obtain

�′ � x( log z)kτ (a1) · · · τ (ak)

q1/5a1 · · · ak
+ z5(k+1)u/2q(1+ε)/2. (5·29)

5·2. Evaluation of the error term of � in (5·21)

Upon denoting the Big-Oh term of (5·21) by

�′′ := zu +
∑
r� u

2

2−r
∑

�� x
a1[a∗

2,...,a∗
k ]

P−(Q(�))>zr
(Q(�),a1···ak

∏
p�k p)=1

τ (Q(�))2, (5·30)

the next step of the proof is to bound �′′. We basically achieve this with an application of
Lemma 3·4 to the divisor sum of �′′.

The inequality τ (ab)�τ (a)τ (b) which holds for any a, b ∈N implies that

∑
�� x

a1[a∗
2,...,a∗

k ]

P−(Q(�))>zr
(Q(�),a1···ak

∏
p�k p)=1

τ (Q(�))2�
∑

�� x
a1[a∗

2,...,a∗
k ]

F(Q1(�), . . . , Qk(�)), (5·31)

where

F(n1, . . . , nk) :=
k∏

i=1

τ (ni)
21P−(ni)>zr1(ni,a1···ak)=1, and

Qi(X) := a1[a∗
2, . . . , a∗

k ]

ai
X + a1r∗ + h∗

i − a1[a∗
2, . . . , a∗

k ]

ai
, for i ∈ {1, . . . , k}.
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We now aim to apply Lemma 3·4 to the right-hand side of (5·31) as this will lead to a
bound for �′′. In order to use Lemma 3·4, we verify that all of its conditions are met. First
of all, the polynomials Q1, . . . , Qk are irreducible and pairwise coprime because they are
linear and have distinct roots. Now, suppose that Q = Q1 · · · Qk has a fixed prime divisor
p, or that we equivalently have that ρ(p) = p. If p|a1 · · · ak, then the fixed prime divisor p
of Q divides a1, . . . , ak. However, in this case, the condition (Q(�), a1 · · · ak

∏
p�k p) = 1 in

(5·30) is not satisfied for any � ∈N, and �′′ = 0. If p � a1 · · · ak, then Q is a polynomial of
degree k. This implies that p = ρ(p)�k, and so, in this case, Q has a fixed prime divisor p�k.
Then the condition (Q(�), a1 · · · ak

∏
p�k p) = 1 in (5·30) is not met for any � ∈N and �′′

vanishes again. Hence, if Q has a fixed prime divisor, then �′′ = 0 and there is nothing to
bound. Therefore, we may assume that Q has no fixed prime factors. Finally, by combining
z30ku = xε, which is an immediate consequence of the definition of u, with the inequalities
r∗�[a∗

2, . . . , a∗
k ]�a2 · · · ak and a1, . . . , ak�zu, we observe that

x

a1[a∗
2, . . . , a∗

k ]
� ‖Q‖ 1

k ,

where ‖Q‖ denotes the sum of the absolute values of the coefficients of the polynomial Q.
Now that we finished verifying that Henriot’s bound, namely Lemma 3·4, is applicable,

we apply it to the right-hand side of (5·31) and obtain that

∑
�� x

a1[a∗
2,...,a∗

k ]

P−(Q(�))>zr
(Q(�),a1···ak

∏
p�k p)=1

τ (Q(�))2 � x

a1[a∗
2, . . . , a∗

k ]

∏
p�z

(
1 − ρ(p)

p

)

×
∏
p|D

p�a1···ak

(
1 +

∑
μ1,...,μk∈{0,1}

(μ1,...,μk)�=(0,...,0)

τ (pμ1 )2 · · · τ (pμk )2
)

×
∑

m1,...,mk�x
P−(m1···mk)>zr

(m1···mk ,a1···ak)=1

τ (m1)2 · · · τ (mk)2

m1 · · · mk
, (5·32)

where D is the discriminant of Q.
The value of D can be easily evaluated by the roots of Q and a simple calculation shows

that

D = [a∗
2, . . . , a∗

k ]k(k−1)

(a1 · · · ak)2(k−1)

∏
1�i<j�k

(hi − hj)
2.

Since we are working with a fixed set of non-negative integers h1, . . . , hk, we see from this
that

∏
p|D

p�a1···ak

(
1 +

∑
μ1,...,μk∈{0,1}

(μ1,...,μk)�=(0,...,0)

τ (pμ1 )2 · · · τ (pμk )2
)

� 1. (5·33)
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We saw that ρ(p) = k for the primes p > max1�i�k hi which do not divide a1 · · · ak.
Therefore, by Bernoulli’s inequality,∏

p�z

(
1 − ρ(p)

p

)
�

∏
max1�i�k hi�p�z

p�a1···ak

(
1 − ρ(p)

p

)
�

∏
max1�i�k hi�p�z

p�a1···ak

(
1 − k

p

)

�
∏

max1�i�k hi�p�z
p�a1···ak

(
1 − 1

p

)k

� ( log z)−k
∏

p|a1...ak

(
1 − 1

p

)−k

�( log z)−k
k∏

j=1

∏
p|aj

(
1 − 1

p

)−k

= ( log z)−k
k∏

j=1

(
aj

ϕ(aj)

)k

. (5·34)

Furthermore,

∑
m1,...,mk�x

P−(m1···mk)>zr
(m1···mk ,a1···ak)=1

τ (m1)2 · · · τ (mk)2

m1 · · · mk
�
( ∑

m�x
P−(m)>zr

τ (m)2

m

)k

�
∏

zr<p�x

(
1 + 4

p
+ O

(
1

p2

))k

� exp

⎛
⎝ ∑

zr<p�x

4k

p

⎞
⎠

�
(

log x

log zr

)4k

=
(

25k

25k − 1

)4kr ( log x

log z

)4k

. (5·35)

We insert the bounds (5·24), (5·33), (5·34) and (5·35) into (5·32) and obtain

∑
�� x

a1[a∗
2,...,a∗

k ]

P−(Q(�))>zr
(Q(�),a1···ak

∏
p�k p)=1

τ (Q(�))2 � x

a1 · · · ak( log z)k

(
25k

25k − 1

)4kr( log x

log z

)4k k∏
j=1

(
aj

ϕ(aj)

)k

.

But, we note that 25k − 1 > 24k > 8k/( log 4 − 1), and so(
25k

25k − 1

)4kr

= exp

{
4kr log

(
1 + 1

25k − 1

)}
� exp

(
4kr

25k − 1

)
< 2re−r/2.

Hence,

∑
�� x

a1[a∗
2,...,a∗

k ]

P−(Q(�))>zr
(Q(�),a1···ak

∏
p�k p)=1

τ (Q(�))2 � 2re−r/2x

a1 · · · ak( log z)k

(
log x

log z

)4k k∏
j=1

(
aj

ϕ(aj)

)k

,

and then in virtue of (5·30), we obtain

�′′ � zu + x

a1 · · · ak( log z)k

(
log x

log z

)4k k∏
j=1

(
aj

ϕ(aj)

)k ∑
r�u/2

e−r/2

� zu + x

a1 · · · ak( log z)k

(
log x

log z

)4k k∏
j=1

(
aj

ϕ(aj)

)k

e−u/4. (5·36)
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5·3 Completing the estimation of S in (4·14)

We now combine (5·29) with (5·36), and so (5·21) gives

� � x( log z)kτ (a1) · · · τ (ak)

q1/5a1 · · · ak
+ z5(k+1)u/2q(1+ε)/2

+ xe−u/4

a1 · · · ak( log z)k

(
log x

log z

)4k k∏
j=1

(
aj

ϕ(aj)

)k

.

We finally insert this bound into (4·19) and obtain

S � x( log z)k

q1/5

∑
a1,...,ak

P+(a1···ak)�z

τ (a1) · · · τ (ak)

a1 · · · ak
+ z(7k+5)u/2q(1+ε)/2

+ xe−u/4

( log z)k

(
log x

log z

)4k ∑
a1,...,ak

P+(a1···ak)�z

1

a1 · · · ak

k∏
j=1

(
aj

ϕ(aj)

)k

. (5·37)

But,

∑
a1,...,ak

P+(a1···ak)�z

1

a1 · · · ak

k∏
j=1

(
aj

ϕ(aj)

)k

�
( ∑

a
P+(a)�z

1

a

(
a

ϕ(a)

)k
)k

�
∏
p�z

(
1 +

(
p

p − 1

)k 1

p
+ O

(
1

p2

))k

� exp

⎛
⎝∑

p�z

(
p

p − 1

)k k

p

⎞
⎠

= exp

⎧⎨
⎩
∑
p�z

(
k

p
+ O

(
1

p2

))⎫⎬
⎭� ( log z)k. (5·38)

In a similar fashion one can show that∑
a1,...,ak

P+(a1···ak)�z

τ (a1) · · · τ (ak)

a1 · · · ak
� ( log z)2k.

Upon recalling that z = qv for some v > 0 and that z30ku = xε, the last bound, (5·37), and
(5·38) imply that

S � x( log z)3k

q1/5
+ xe−u/4

(
log x

log z

)4k

� xv3k

q1/6
+ xe−u/5. (5·39)

5·4. The completion of the proof

Since u = εV/(30kv), when we put the bound (5·39) together with the definition (4·14) of
S and Lemma 4·2, we infer that

∑
n�x

λz(n + h1) · · · λz(n + hk) � xv3k

q1/6
+ x exp

(
− εV

150kv

)
. (5·40)

https://doi.org/10.1017/S0305004125000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125000271


186 M. JASKARI AND S. SACHPAZIS

Now, if V�4 log η, then v = 2, and so a combination of (5·40) with (1·1) and Lemma 4·1
yields

∑
n�x

λ(n + h1) · · · λ(n + hk) � xV

η
+ x

q1/6
+ x exp

(
− εV

300k

)

� xV

η
+ x exp

(
−ε

√
V log η

150k

)
. (5·41)

On the other hand, if V < 4 log η, then v = √
V/( log η) < 2, so by putting the estimate

(5·40) together with Lemma 4·1, it follows that

∑
n�x

λ(n + h1) · · · λ(n + hk) � x

q1/6
+ x exp

(
−ε

√
V log η

150k

)

+ x

(
log η

V
η

−
√

V
4 log η + q

−
√

V
log η

)(
V

√
log η

V

)3

� x

q1/6
+ x exp

(
−c0

√
V log η

)

+ x(V log η)3/2 exp

(
− log q

√
V

log η

)
,

where c0 ∈ (0, ε/(150k)) is some constant.
According to (1·1), we have that xq−1/6 � x/η � xV/η and that log η � log q.

Consequently, the last bound gives

∑
n�x

λ(n + h1) · · · λ(n + hk) � xV

η
+ x exp

(
−c1

√
V log η

)
, (5·42)

where c1 < c0 is a positive constant.
We now finish the proof of Theorem 1·2 by merging the bounds (5·41) and (5·42) from

above.
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