
PAIRS OF CONSECUTIVE RESIDUES OF 
POLYNOMIALS 

KENNETH S. WILLIAMS 

1. Introduction. Let p be a large prime and let f(x) be a polynomial 
of fixed degree d > 4 with integral coefficients, say, 

(1.1) f(x) = a0 + aix + . . . + adx
d (ad fâ 0 (mod p)). 

Recently Mordell (8) has considered the problem of estimating the least 
positive residue oîf(x) (mod p), that is, the unique integer / ( 0 < / < £ — 1) 
such that the congruence 

(1.2) fix) = r (mod£) 

is soluble for r = I but not for r = 0, 1, . . . , / — 1. 
Let Nr (r = 0, 1, . . . , p — 1) denote the number of solutions of (1.2). 

Then 

(1.3) T,Nr = p. 

This proves that I always exists and Mordell establishes that 

(1.4) I < dp* log p. 

If we let e(u) denote exp(27r iup~l), for any real number u, we have 

(1.5) Nr=^Ze(f(f(x)-r)), 
Px,t=0 

since as the sum in t is zero if fix) ^ r and is p if f(x) = r (mod p). (We 
usually omit "mod p" hereafter.) Mordell's proof of (1.4) consists of using 
(1.5) and a deep result of Carlitz and Uchiyama (3) to show that 

(1.6) lp = pY,Nr-ip < dp y/p log p. 

The deep result quoted, which is a consequence of Weil's proof of the Riemann 
hypothesis for algebraic function fields over a finite field (10), is the following: 

(1.7) £>(/(*)) <dy/p. 

The purpose of this paper is to consider the similar problem for pairs of 
consecutive residues of f(x), that is we require an estimate for the least 
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integer e (0 < e < £ — 1) with the property that both e and e + 1 are 
residues of f(x), i.e. the pair of congruences 

(1.8) f(x) = r, / (y) s r + 1 

are soluble for r = e but not for r = 0, 1, . . . , e — 1. 
The number of incongruent solutions (x, y) of (1.8) is, of course, A7

r 7Vr+i 

and it is easy to see that 

(1.9) Vt,NrNr+1 = Nf, 

where Nf denotes the number of solutions (x, y) of the congruence 

(1.10) f(y) -f{x) - I s O . 

If Nf = 0, then each summand in (1.9) (being non-negative) is zero and e does 
not exist. I t is clear then that a necessary and sufficient condition for the 
existence of e is that Nf > 0. In Theorem 1 we show, using a deep result 
of Lang and Weil (6), that 

(1.11) Nf = p + 0(pi), 

where the constant implied by the O-symbol depends only on d. This implies 
that 

(1.12) Nf>cdp, 

where cd is a constant depending only on d, for sufficiently large primes p 
and so e always exists for large enough p. However, when p is small, e may 
not exist, for consider f(x) = 2x4 when p = 5. In this case the residues are 0 
and 2 and so there are no consecutive ones. 

Our method for estimating e for large p follows that of Mordell for /. In­
stead of considering 

Z - l 

(as in (1.6)) we consider 

(1.13) T,NrNr+1. 

After replacing Nr and iVr+i by exponential sums (see § 5) we find that we 
need to consider the sums 

p-i 

(1.14) S(v) =^NrNr+1e{-rv) (v = 1, 2, . . . , / > - 1). 

We, in fact, need an upper bound for \S(v)\, which is independent of v. From 
(1.14) it is easy to see that we require a suitable estimate for an exponential 
sum of the type 

(1-15) Z e(g(x,y)), 
x,y=0 

h(x,y)=0 
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where g and h are polynomials in the two variables x and y. (In our case 
g(x,y) = vf(x) and h(x, y) = f(y) — f(x) — 1.) It seems very difficult to 
estimate such a sum effectively. In fact our knowledge of the similar sum 

(1.16) Y,e(g(x,y)) 
x,y=0 

is slight, except in a few special cases (5). We are thus forced to estimate 
\S(v)\ for almost all polynomials of fixed degree d. This involves determining 
an upper bound for 

(1.17) S = D \S(v)\\ 
f 

deg f=d 

which is independent of v. (Without loss of generality, the summation over 
/ involves summing a* from 0 to p — 1 (i = 1, 2, . . . , d — 1) and ad from 
1 to p — 1.) This is done in Theorem 2. Our final result is 

THEOREM 3. For almost all polynomials of fixed degree d, we have 

e = O(p*logp), 

where the constant implied by the O-symbol depends only on d. 

2. Proof of Theorem 1. In this section we regard the coefficients of/ as 
reduced modulo £ and considered as belonging to [p], the Galois field with p 
elements. 

THEOREM 1. Nf = p + 0(p^), where the constant implied by the O-symbol 
depends only on d. 

Proof. Let 

(2.1) g(x9 y, z) =zd + zd(f(x/z) - f{y/z)) = zd + gl s*-i + . . . + ga, 

where 

(2.2) gi s gt(x, y) = atix* - yl) (i = 1, 2, . . . , d). 

As x — y | gi for i = 1, 2, . . . , d and (x — y)2 \ gd over [p], by Eisenstein's 
irreducibility criterion, g(x,y,z) is irreducible over \p]. Suppose, however, 
that g is not absolutely irreducible over \p]; then there is a normal extension 
N[p] of [p] over which g splits into c > 2 conjugate factors, say 

c 

(2.3) g(x, y, z) = n /*(*> ^̂  ^). 

Let 

(2.4) kt(xf y) = /,(x, y, 0) (i = 1, 2, . . . , c) ; 

then 

(2.5) Il**(^y) = ad(x
d-yd). 
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Hence x — y | kt(x, y) over N[p] for some i, and so by conjugacy for all i. Let 

(2.6) kt(x,y) = (x - y)ht(xty); 

then 

(2.7) ad{xd - yd) = (x - y)ch(x, y), 

where 

c 

h(x,y) = n hi(x,y) 
i=l 

has coefficients in [p]. This is a contradiction since c > 2, and so g(x, j , z) 
is absolutely irreducible over [p]. Hence by a result of Lang and Weil (6) 
the number of solutions (x, y, z) of 

(2.8) g(x,y,z) = 0 (mod^) 

is 

(2.9) p2 + 0(/>3/2), 

where the constant implied by the O-symbol depends only on d. Now the 
number of solutions (x, y) of 

(2.10) g(x,y,0) ^ 0 (modp), 

that is of 

(2.11) xd - yd = 0, 

is certainly 0(p), so the number of solutions (x, y, z) with z = 0 of (2.8) is 
also given by 

(2.12) p2 + 0(p*/2). 

Hence the number of solutions (x, y) of 

(2.13) g(x,y,l) s 0 , 

that is, of 

(2.14) 7 6 0 - / ( * ) - l ^ o , 

is just 

(2.15) j ~ {p + 0(p3/2)} =p + 0(p1/2), 

as required. 
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3. Some useful lemmas. 

Definition. Let Nd = Nd (ah . . . , ak) denote the number of solutions 
(xi, . . . , xk) of the system of d congruences 

aiXi + . . . + akxk = 0, 

(3.1) ai xx
2 + . . . + ak xk

2 = 0, (mod p). 

0i Xid + . . . + ak xk
d = 0. 

We require the following lemmas for the proof of Theorem 2. They give 

asymptot ic formulae for Nd (ah . . . , ak)> when & = 2, d > 2; & = 3, d > 3 ; 

and k = 4, d > 4. 

LEMMA 3.1. If 01, a2 ^ 0 and d > 2, 

1, if a i + a2 ^ 0, 
[£, if a i + a2 = 0. 

Proof. T h e result is obvious, since the only solution when a\ + a2 ^ 0 is 
(xi, X2) = (0, 0) and the only solutions when 01 + a2 = 0 are given by 
(*i, #2) = (x,x) (x = 0, 1, . . . , p - 1). 

LEMMA 3.2. If ah a2, 03 ^ 0 and d > 3, 

0 ( 1 ) , # 0 1 + 02, ^2 + 03, 03 + 01, 01 + 02 + 0 3 ^ 0 , 
p + 0 ( 1 ) , # 0 1 + 02 + 03 = 0or 01 + 02 + 0 3 ^ 0 , 

0W07 exactly one of a\ + 02, 02 + 03, 03 + 01 = 0, 
2p + 0 ( 1 ) , if 0i + 02 + 03 ^ 0 0W07 exactly two of 

01 + 02, 02 + 03, 03 + 01 = 0. 

Proof. Le t iVd* (01, 02, 03) be the number of solutions of (3.1) (d > 3, 
k = 3) with xt j£ Xj (1 < i < j < 3) . Since d > 3, for these solutions, 

(3.2) Nd(au a2) = 

(3.3) Nd(au at, a3) = 

(3.4) rank 

01 

20i xi 
02 

202 X2 

03 

203 Xz 

daz x-i d-i 

3, 

jdai x\d~l da2 x2
d~l 

and so by a result of Min (7, Theorem 1) 

(3.5) i V ( 0 i , 0 2 , 0 3 ) = 0 ( 1 ) , 

where the constant implied by the 0-symbol depends only on d. Let Nd
m 

(01, 02, 03) (1 < i < j < 3) denote the number of solutions of (3.1) (d > 3, 
k = 3) with xt = Xj. Also let Nd

(12d) (01, 02, 03) denote the number with 
Xi = x2 == X3. Then 

(3.6) iVd(0i, 02, 03) = N / ( 0 i , 02, 03) + W 1 2 ) ( a i , 02, 03) 

+ W » > ( a i , 02, 03) + iV/23)(0i, 02, 03)} - 2Nd™(alt 02, 03), 

and so by (3.5) we have 

(3.7) Nd(ah 02, 03) = {Nd(ai + a2j 03) + Nd{a2 + 03, 01) 

+ Nd(a, + 01, 02)} - 2NdW(alt a2, 03) + 0 ( 1 ) . 
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The result then follows from Lemma 3.1 and the obvious result 

\p, if ai + a2 + a3 = 0, 
(3.8) Nd^(ai,a2jaz) = 

1, if a,\ + a2 + a3 ^ 0. 

LEMMA 3.3. / / ai, a2, a3, a4 ^ 0 and d > 4, Nd(ai, a2, a3, a4) is give» fry /Âe 
expression (3.12), £&e terms of which are given by Lemmas 3.1 and 3.2 awe? (3.13). 

Proof. Let Nd*(ai, a2, a3, a4) denote the number of solutions of (3.1) (d > 4, 
& = 4) with Xi ^ Xj (1 < i < j < 4). For these solutions 

(3.9) rank 

ai 
2#i xi 

a2 

2a2 x2 

az 
2a3x3 

a4 

2a4x4 = 4 

_Jai Xid_1 da2 x / _ 1 da% x%d~l da\ xd~~l
m 

and so, using Min's theorem again, we have 

(3.10) i V / ( a b a 2 , a 3 , a 4 ) = 0(1), 

where the constant implied by the O-symbol depends only on d. Let Nd
(ij) 

(#i, a2, a3, a4) (1 < i < j < 4) denote the number of solutions of (3.1) 
(d > 4, & = 4) with Xj = Xj and Nd

(ijk) (ai, a2, a3, a4) (1 < i < j < & < 4) 
the number with xt = x;- = xÂ. Finally let Nd

{12Z4)(ah a2, a3, a4) denote the 
number with x\ = x2 = x3 = x4. Then 

(3.11) iVd(ai, a2, a3, a4) = Nd*(ah a2, a3, a4) + ^ Nd
l3\aly a2, a3, a4) 

K K j < 4 

£ JVd
("*> (al5 a2, a3, a4) - 2 £ ^ ^ K «2, «3, a4) 

K K K K 4 K i < 4 
K j < K 4 

and so 
+ 6 iV (ai, a2, «3, a4), 

(3.12) Nd(ai, a2, a3, a4) = {Nd(ai + a2l a3, a4) + ^ ( « 1 + a3, a2, a4) 

+ ^ ( a i + a4, a2, a3) + iVd(a2 + a3, ai, a4) + i\fd(a2 + a4, «i, a3) 
+ Nd(az + a4, a b a2)} — {Nd(ax + a2, a3 + a4) + ^ ( « i + a3, a2 + a4) 

+ -A^foi + a4, a2 + a3)} — 2{iVd(ai + a2 + a3, a4) + Nd{ax + a2 + a4, a3) 
+ iVi(ai + a3 + a4, a2) + i\^(a2 + a3 + a4, ai)} + 6N^uu)(ah a2, a3, a4) 

+ 0(1). 
It is clear that 

(3.13) AV1234>(a!,a2,a3,a4) = 
£, if ai + a2 + as + aA = 0, 
1, if ax + a2 + a3 + a4 ^ 0, 

and that the rest of the terms in (3.12) can be evaluated by Lemmas 3.1 and 
3.2. 
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4. Proof of Theorem 2. We prove 

THEOREM 2. For almost all polynomials of fixed degree d, there is a constant 
kd (depending only on d) such that 

(4.1) max | S 0 ) | <kdp\ 
l<v<p-l 

Proof. We have, on adding in the term corresponding to ad = 0, 

S = E |5(,)|2< Ë \S(v)\\ 
f ao ,ai,... ,ad=0 

deg f=d 

\S(v)\2 = ^NbNi+1e(-bv) 
6=0 

P-1 

(4.2) 

Now 

(4.3) 

and because 

NbNb+1NcNc+l = U Ë e(*itf(*0 - 6))fU 2 e(*2(/(*2) - 6 - 1))} 

= E Nt Nb+1 Nc Nc+1 e«c - b)v) 

X i \ E e(h(f(x,) - c ) ) } U E e&tffo) - c - 1) )} 

A £ e(-btx - (b + l)h - ch - (c + 1)*0 
P 21,22,£3>Z4, 

«l,«2»«8f «4=0 

X e(hf(Xl) + /,/(*,) + hf(x3) + t4f(Xi)) 
\ E «(-^i - Q> + i)h - c*. - (c + i)u) 
p xi,...,ti=0 

we have 

X { f i ^(#^1 *1* + 2̂ X2
l + 3̂ XZ1 + h X*1)) Î , 

p'S < £ /(-(/2 + *0) E J H I > M W + . . . + W)) | 
«1, *2, «3, «4=0 £1,Z2,X3.£4=0 ^ i=0 ai=0 

p - 1 p - 1 

X Z «(- (» + h + h)b) £ «((» - *8 - h)c) 
6=0 

d p - 1 

and so 
p—l p—l 

£2S < E *(*i + h) E i IT E « W i *i' - (*i + «0*** + '3 *3 ' 
Zi, *3=0 ari ,X2,£3 ,£4=0 \ i=0 a i = 0 

that is 
p - i 

(4.4) S < p*-1 E _e('i + h)Nd(h, - (h + v), tz, ~(h-v)). 

Then 

(4.5) 

*1,*3=0 

s < p^iZi + £2 + • • • + Z12), 
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where ^ (i' = 1, 2, . . . , 12) denotes the sum in (4 4; with t\ and t% restricted 
as below: 

1. h = 0, h = 0. 

2. h = 0, h = v. 

3. h = —v, h = v. 

4. h = - » , h = 0. 

5. h = 0, *3 = 2"1». 

6. /i = -v, h = 2~lv. 

7. h = -2~lv, h = 0. 

8. h = -2" 1 », h = v. 

9. h = -2~lv, h = 2~lv. 

10. h 7* 0, - » , -2" 1 » ; h 5* 0, », 2~h\ h + h7* 0; *i = h - v. 

11. /i 5* 0, - » , - 2 - 1 » ; *3 ^ 0, », 2"1»; ^ + tz = 0; /i ^ /3 - v. 

12. /i ^ 0, - » , - 2 - 1 » ; *3 ^ 0, », 2"1»; /i + £3 ^ 0; /i ^ /3 - v. 

In Case 1 
iV^i , - (h + »), h, - (h - v)) = Nd(0, - » , 0, ») 

= p*Nd(-v,v) = p\ 

by Lemma 3.1 and so 

(4.6) Z i = P3-

Cases 2, 3, and 4 are exactly similar to Case 1. We find that 

(4.7) £ 2 = e(v)p*, 

(4.8) Z s = P3, 

and 

(4.9) £ * = e ( -^ )p 3 . 

In Case 5 

Nd(h, - (h + v), h, -(h-v)) = Nd(0, -v, 2-% 2~h>) 

= pNd{-v,2-lv,2-lv) 

= p(p + 0(1)) =p* + 0(p) 

by Lemma 3.2, and so 

(4.10) £ 6 = e(2-*v)p* + 0(p). 

Cases 6, 7, and 8 are exactly similar to Case 5. We find that 

(4.11) E e = e(-2-k>)/>* + 0(p), 

(4.12) £ 7 = e(-2~h>)p* + 0(p), 
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and 

(4.13) E s = e(2~h)p* + 0{p). 

In Case 9 

Nd(h, - (h + v), h, - (h - v)) = Na(-2rh>, -2r*v, 2~h>, 2~lv). 

Now by Lemma 3.2 
Na{-v, 2~lv, 2-H>) = p + 0(1) 

and by Lemma 3.1 

iVd(0, -2-h>, 2-h>) = pNt(-2rh>, 2"H») = p*. 

Also by (3.13) 
Naww{-2-h, -2rh, 2~lv, 2~h) = p. 

Hence, by Lemma 3.3, we have 

Nd(-2~h), -2-hi, 2~\ 2~h) = 2(p + 0(1)) + 4£2 - (2£2 + p) 

-8p + 4p + 0(1) = 2p*-p + 0(1) 
and so 

(4.14) E * = 2p* - p + 0(1). 

Cases 10, 11, and 12 are exactly similar to Case 9. We find that 

(4.15) £ 1 0 = -(«(*) + e(-v) + l)p* + 0(p), 

(4.16) E n = P3 ~ W + 0(1), 
and 

(4.17) D , , = 0(p*). 

Hence from (4.5), (4.6), . . . , (4.17) we have 

(4.18) E \S(v)\2 = 0(pa+2). 
f 

deg f=d 

Suppose that there are more than rjpd+1 polynomials of fixed degree d which 
satisfy 

(4.19) max \S(v)\ > ph+\ 
Kv<p-1 

Then 
d+2+2e (4.20) 2 \ m a x \S(v)\\ >pl 

f \ K t < p - l / 
deg f=d 

which contradicts (4.18) for sufficiently large p\ and this is true for every 
positive y. Hence the number of polynomials which satisfy (4.19) is o(pd+1) 
and so almost all polynomials of degree d satisfy 

max \S(v)\ = 0(ph). 
K i < ? - 1 
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5. Proof of Theorem 3. We have that 

T,NrNr+1 = E U E e(t{f(x) - r))}{\j: e(u(f(y) - r - 1) )} 
T-=0 r=0 \Vx t=0 J \Py w=0 / 

P - 1 e-1 

-2 E «(*/(*) + «/(y) - M) E « ( - (* + M)r), 
P x,y,t,u=0 r=0 

and so 

T,NrNr+1-^2 t *('/(*) + w/(y) - u) 
r=0 P x,y,t,u=0 

t+u=0 

= h E «(*f(«) + w/(y) - «) £ e ( - (/ + u)r), 
V x,y,t,u=0 r=0 

that is 

r=0 P 

P 

1 

P 

p—1 p—1 e—1 

H X) e((ï> - «)/(*) + uf(y) - w) X) e ( - w ) 
z?=l a;,2/,w=0 r = 0 

p—1 C p—1 

z{z 
2=1 V s=0 

NsNs+1e(-sv) K 5 •<+"•>} 
p = l 

<^E|5(r)| 
P 0=1 

< - max | S ( v ) | 2 
P Kv<p-1 

22 e(+w) 
r=0 

p-\ 
e-1 

X) e(+w) 

< max \S(v)\-logp, 
Kv<p-1 

by a well-known result (see, for example, (8)). Hence 

eNf < max \S(v)\-plogp, 
Kv<p-l 

and so by Theorems 1 and 2, for almost all polynomials of fixed degree d, 
we have 

cape < kdp^'plogp, 

i.e. 6 < kd/cd p^ log £. 

6, Conclusion. We have assumed throughout that d > 4. This was in 
fact necessary only in one place, namely Lemma 3.3. When d = 2, a result 
of Burgess (2) gives 

(6.1) e = 0(£11/24log2/3£). 
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Concerning the case d = 3, the author and K. McCann plan to publish a 
paper on the distribution of the residues of a cubic which will include the 
result 

(6.2) e = 0(p*logp), 

valid for all cubics. 
As we have only proved an "almost all" result, it would have been suffi­

cient to prove that 

(6.3) Nf = p + 0(pi), 

for almost all polynomials / . A proof of this can be given on exactly the same 
lines as that of Theorem 2, by showing that 

(6.4) £ {Nf-pf = 0(pd+i). 
f 

deg f=d 

This, together with Theorem 2, proves Theorem 3 in a completely elementary 
manner but has the disadvantage of not showing the existence of e for all 
polynomials for all sufficiently large p. 

We also remark that in the special case 

f(x) = a0 x
d 

we have 
p - i 

S(v) = Y,N,N,+1e(-sv) 

X {1 + x(ao~\s + 1)) + . . . + x*~\a0-\s + l))}e(-sv) 

= E { E x1(alT
1s)xi(a<r1(s + D M - O T ) } , 

where x denotes a ^th order character (mod p) (without loss of generality 
d\p — 1) and so by a result of Perel'muter (9) 

S(v) = 0(pi). 
Hence 

e = O(p*logp), 

in this special case. When a0 — 1, much more is known; see for example (4, 1) 
for the cases d = 3 and 4 respectively. 

Finally we make the following 

CONJECTURE. For all polynomials of fixed degree d} we have 

e = O(p*logp), 

where the constant implied by the O-symbol depends only on d. 
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