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SOLUTION SPACE DECOMPOSITIONS FOR nth ORDER 
LINEAR DIFFERENTIAL EQUATIONS 

G. B. GUSTAFSON AND S. SEDZIWY 

1 . I n t r o d u c t i o n . Consider the wth order scalar ordinary differential equat ion 

(1.1) y w ( 0 + Z Pr(t)y(r)(t) = 0 
/•=0 

with pr G C([0, oo) —•» R ) . T h e purpose of this paper is to establish the follow
ing: 

DECOMPOSITION T H E O R E M . The solution space X of (1.1) has a direct sum 

decomposition 

X = Mi ® M2 

where M\ and M2 are subspaces of X such that 
(1) each solution in Mi\{0} is nonzero for sufficiently large t {nono s dilatory) ; 
(2) each solution in M2 has infinitely many zeros {oscillatory). 

This result includes results of F . Neuman [6], J. M. Dolan and G. A. 
Klaasen [2] for n = 3, and establishes the generalizations conjectured in [2]. 

T h e importance of this result for the oscillation theory of (1.1) is t ha t we now 
have the correct interpretat ion of "decomposing (1.1) into products of lower 
order opera tors ," in the absence of the usual factorization hypothesis of dis-
conjugacy. 

I t should be mentioned here t h a t the dimensions of M\ and M2 are not a t 
one's disposal for a given equation (1.1). Indeed, using the techniques in [5], 
it is relatively easy to construct examples of equat ions (1.1) for which 
dim Mi = n — dim Mi = k for any integer k, 0 ^ k ^ n. For n = 3, and 
dim M2 = 2, there exist examples of equat ions (1.1) such t h a t M2 is unique. 
As the dimension n of the solution space grows, this phenomena becomes less 
likely to occur. I t would be interesting to pursue the relationship between 
uniqueness of M2, satisfying dim M2 = k, and the oscillation properties of 
solutions of (1.1). 

The techniques used here are classical, and depend only on s tandard separa
tion properties of convex sets in linear spaces. In section 2 we add to the theory 
of cones in Banach spaces a geometric theorem on tangential support ing hyper-
planes. This theorem, plus a simple induction argument , allows us to prove a 
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decomposition theorem for Kn relative to a double convex cone in Kn. This 
double cone decomposition theorem was conjectured to be true by Dolan and 
Klaasen [2], and following their methods, we deduce the subspace decomposi
tion theorem in section 3 from the cone theory results of section 2. 

Acknowledgement. The authors are indebted to Professors M. Dolan and 
G. Klaasen for supplying preprint [2], in which the problem solved here was 
first identified. 

2. Cone theory. Let X be a Banach space with norm ||-| |, over the real 
numbers R. Define A + B = {a + b : a 6 A, b £ B\, \A = \\a:a Ç A}. A 
convex cone K in X is defined by (1) K + K C K, (2) \K C K for X > 0, 
(3) 0 belongs to the boundary dK of K. This definition differs from that of 
Krasnoselskii [7] in that K need not be closed, and 0 need not be an extremal 
point of K. 

We assume that the reader is familiar with standard separation theorems for 
convex sets in Banach spaces, especially the material and terminology in 
Dunford-Schwartz [3]. For convenience, we record for use in the sequel the 
following easily proved special results : 

LEMMA 2.1. Let K be a convex cone in X, f £ X*, f ^ 0, f(K) ^ 0 and let 
Xo G 'mt(K). Thenf(x0) > 0. 

LEMMA 2.2. Let K be a convex cone in X, with closure K not all of X. Then K is 
also a convex cone, and 

K = C\ {x e X:f(x) ^ 0} 
f£K* 

where X* is the dual cone of junctionals f Ç X* with f(K) §: 0. 

Definition 2.3. Let K be s. convex cone in the Banach space X, K 9^ X. We 
define the tangential periphery of K to be the subspace 

H = pi lx:g(pc) = 0}. 
g£K* 

For example, if X = R3 and K = {(x, y, z) Ç R3 : z > 0}, then H is the 
x^-plane. 

The Theorem (2.5) on tangential supporting hyperplanes is a consequence of 
the following lemma. It is interesting to note that when K satisfies Krasnosel-
skii's conditions [7], the result can be strengthened to: fix) > 0 for x 9e 0, 
x £ K. 

Positive Functional Lemma 

LEMMA 2.4. Let K be a convex cone in a separable Banach space X, K ^ X, 
K\H 9e 0, then there exists a nonzero functional f G X* such that f(H) = 0 and 
f(K\H) > 0. 

Proof, For each x Ç K\H, select/* Ç K* with ||/x|| = 1 such tha.tfx(x) j* 0; 
this is possible, by the definition of H. 
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Select for each x £ K\H} a corresponding sphere Bx, centered at x, such that 
fx(Bx) > 0. 

The space X, being separable, has a countable basis for its topology, hence 
is hereditarily Lindelôf. Therefore, the covering {Bx} of K\H has a countable 
subcover {B^}^^ Put 

/ = £ 2-%, 

Then / 6 X*, 0 < ||/|| ^ 1, and /(X) ^ 0. To show / ( # ) = 0, we utilize 
H C {*:/(*) = 0}, due t o / G X*. Finally, if x G X \ i î , then x £ £Xi for some 
index i, whereby /Xi(x) > 0. The representation for / gives f(x) > 0; this 
completes the proof. 

Tangential Supporting Hyper planes 

A closed right circular cone in R3 has a supporting hyperplane at 0 which 
meets the cone only at 0 ; for an arbitrary convex cone in R3 this need not be 
true, and in analogy with the geometry of this situation we define a tangential 
supporting hyperplane to be the kernel of a functional / Ç X* satisfying 
f(H) = 0, f(K\H) > 0. If we can insure somehow that K\H ^ 0, then the 
positive functional lemma supplies the existence of a tangential supporting 
hyperplane at 0. Thus we have : 

THEOREM 2.5. Let K be a convex cone in a separable Banach space X. The 
following are sufficient for K to have a tangential supporting hyperplane : 

(1) int K 5* 0, or 
(2) span (K) = X and K ^ X. 

Double Cone Decomposition 

We turn now to finite-dimensional Euclidean spa^e E. In this setting, a 
convex cone K has a supporting hyperplane at 0, hence K ^ E. We prove now 
the following decomposition theorem for double cones. 

THEOREM 2.6. Let Kbea convex cone in a finite dimensional Euclidean space E. 
Then there exists subspaces N1 and N2 in E such that 

(1) E = Nr 0 N2, 
(2) NiWO} Ç X U (-K),and 
(3)iV2\{0) QE\[KKJ(-K)]. 

Proof. The proof proceeds by induction on the dimension n of the space E ; 
the result is immediate for n = 1. Suppose n ^ 1 and the theorem has been 
proved for all Euclidean spaces Ei of finite dimension g n. Let us establish the 
theorem for an arbitrary Euclidean space E of finite dimension n + 1. 

First of all, we may assume that K does not lie in a lower dimensional 
subspace Ei of E. Indeed, in this case, the decomposition of Ei given by the 

https://doi.org/10.4153/CJM-1975-062-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-062-x


LINEAR DIFFERENTIAL EQUATIONS 511 

induction hypothesis induces the required decomposition of E in a natural way. 
In particular, we may assume span(iT) = E. 

By Theorem 2.5, K has a tangential supporting hyperplane F — {x:f(x) = 0}, 
where f £ K* satisfies f(H) = 0, f(K\H) > 0. Let us decompose F into 
complementary subspaces H and L: F = H © L. 

The induction hypothesis is now invoked to decompose the Euclidean space 
H, applied to the convex cone Kl = Kr\H = Kr\F. Let H = P1 © P 2 be 
the decomposition so obtained, satisfying (1), (2), (3). 

Choose any Xo £ 'mt(K) ; this is possible because span(iT) = E implies 
'mt(K) 5* 0. 

Define Nx = span{x0, Pi}, N2 = P 2 ©P.Sincei i = P i © P 2 a n d P = H © L, 
thenE = TVi © iV2. The condition iV2\{0j £ E\iC U ( - i£ ) follows immediately. 

To prove iVi\{0} £ i£ U ( — X), it suffices to show that the variety 
xo + H £ K. 

Suppose^ is any element of Xo + H ; we show y £ K. Suppose^ (? K, then by 
the separation theorem, there is a g Ç P* with g(3/) ^ g(K), g 9e 0. Then 
g(i£) è 0, hence g(y) ^ 0. However, g(;y) = g(x0) because g (if) = 0. This 
contradicts x0 G int(K) by Lemma 2.1. Hence y £ K. 

The proof is complete. 

3. Proof of the solution space decomposition theorem. Following 
Dolan and Klaasen [2], let yi, . . . , yn be a basis for the solution space of (1.1), 
and define 

K = | ( a i , . . . , a,,) G Rn: Ç a<y<(*) > 0 for large / j . 

If i£ = 0, then we are done. Assume K 7^ 0, then it is easy to verify that K 
is a convex cone in Rn. 

Let us apply Theorem 2.6, and obtain a decomposition Kn = Ni © 7V2, where 
iVi\{0} Ç X U ( - 2 Q , 7V2\{0} £ Rn\[K W (-iC)]. Define 

^ = { X) «<y<: (fli> . . . , an) G 7V;| , j = 1, 2. 

It is routine to verify that solutions in Mi are eventually positive or negative, 
hence Mi consists of nonoscillatory solutions of (1.1). On the other hand, no 
nontrivial solution in M2 can be one-signed for large /, by definition, hence M2 

consists of oscillatory solutions. 
The decomposition X = Mi © M2 is verified in a routine manner, using the 

relation Rn = Nx © N2. The proof is complete. 

4. Remarks. In [4], an example is claimed which violates the conclusion of 
the solution subspace decomposition theorem. The discrepancy was eventually 
found by the author, in an effort to resolve the differences in results obtained by 
Neuman [6] and Dolan-Klaasen [2]. The example constructed and the theorems 
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presented in [4] are without error ; the error is in the first step of the vérification 
on page 251. It is conjectured by the author that the example in [4] has a unique 
subspace M2, dim M2 = 2, in any splitting X = Mi ® M2. 

Extensions of the results herein to nth order linear differential equations in 
Banach spaces can be made without essential modifications of the foregoing 
techniques. In this case, "oscillatory" means that x*(x(t)) has infinitely many 
zeros on [0, co) for each x* in the dual £* of the Banach space E. The solution 
space £f of the differential equation therefore admits an algebraic decomposi
tion if = Mi 0 M2, where Mi is nonoscillatory and all solutions in M2 are 
oscillatory. 

In a similar manner, one can write down decompositions of finite-dimensional 
solution spaces of functional differential equations. In this connection, it would 
be interesting to extend Theorem 2.6 to separable Banach Spaces. Whether or 
not this can be done remains undecided at present. 
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