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Abstract

This paper deals with the interpolation of given real boundary values into a bounded domain in Euclidean
n-space, under a prescribed gradient bound. It is well known that there exist an upper solution (an
inf-convolution) and a lower solution (a sup-convolution) to this problem, provided that a certain
compatibility condition is satisfied. If the upper and lower solutions coincide somewhere in the domain,
then several interesting consequences follow. They are considered here. Basically, the upper and lower
solutions must be regular wherever they coincide.
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1. Introduction

Consider the interpolation of given real boundary values ¢ into a bounded domain
Q C R” under a gradient bound: |V (u)| < g, where g is continuous. The interpolating
function must belong to W!-°°(2). This can be done if and only if the boundary values
are compatible with the gradient bound, and the condition for this is well known.
It is also known that, provided that this condition is satisfied, there exists an upper
solution W in the form of an inf-convolution and a lower solution U in the form of a
sup-convolution. If the upper and lower solutions coincide somewhere in the domain,
then several interesting consequences follow. These will be considered here in some
detail. To do so, one must look at optimal curves I', minimizing a line integral fr gds,
with prescribed endpoints. It was found convenient (though not necessary) to cast this
problem into optimal control form. An existence theorem of Cesari is used, as well
as the Pontryagin maximum principle. This leads to existence and some regularity
for optimal curves and a uniform bound for their curvature on each compact subset
of Q2. A key result is that the uniqueness set E, that is, the subset of 2 where U = W,
either consists of optimal curves having nice properties, or is empty. As expected,

© 2009 Australian Mathematical Publishing Association Inc. 1446-7887/2009 $16.00

19

https://doi.org/10.1017/51446788709000044 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788709000044

20 G. Aronsson 2]

[VU| = |VW| = g(x) on E. Itis also shown that U and W belong to C! in the interior
of E, and moreover their gradient satisfies a local Lipschitz condition there. This result
is in a sense the best possible. The concepts of semiconcavity and semiconvexity play
a key role in the proof. The main results are Theorems 4.2, 4.3 and 5.2.

2. On |Vu| and two representation formulas

We start by looking at a simple interpolation lemma. When talking about a Lipschitz
curve in a domain €2 with endpoints on d€2, we agree that the curve has only endpoints
on the boundary, and stays otherwise inside €2. The following lemma is not new. We
include here a simple and concrete proof for completeness. Further discussion follows
after the corollary.

LEMMA 2.1 (Interpolation under a gradient bound). Let 2 be a bounded domain in
Euclidean n-space. Let g >0 be a given bounded and continuous function in Q
and ¢ be a given continuous function on 02. Then there exists a solution function
u € C(Q) N WE(Q) such that |Vu| < g almost everywhere in Q and such thatu = ¢
on 02 if and only if

'/r gds = |p(P) —¢(Q)| 2.1)

for each pair of points P, Q on 0K2, and each Lipschitz curve I' C 2, with endpoints P
and Q.

PROOF. We sketch the easy proof in two dimensions. Assume that a function u exists,
having the required properties. Let A = (0, 0), B = (1, 0) and the segment AB be
contained in 2. The segment L; = {(x, #) | 0 <x < 1} is contained in Q if |¢| <,
for some § > 0. Then u is differentiable and |Du| < g almost everywhere on L; for
almost every ¢, by theorems of Rademacher and Fubini. For such ¢ it is obvious that

(0, 1) —u(l, )| < fol g(x, t) dx. Approximation gives

1
|M(A)—M(B)|§/ g(x,O)dx:/ g ds,
0 Lo

by continuity of # and g. Repeated use of this, rotational invariance, addition
and approximation gives fr gds > |p(P) — ¢(Q)|, as asserted. It also follows that
u(P) <¢(Q) + /1“ gdsfor P € 2, Qondf2, and I' connecting P and Q.

Assume instead that (2.1) holds, for all P, Q on 92 and all I". Then the
desired function u# can be defined by the formula u(P*) = inf(p(Q) + fF gds),
where the infimum is taken over all points Q € 92 and all Lipschitz curves I C €2,
connecting P* and Q. Here, P* may be a point in the domain or on the boundary;
the assumed inequality guarantees that u will have the prescribed boundary values.
The bound on the gradient is trivial, and it only remains to verify that u is
continuous on 9€2.

To do so, let O* € Q2. Let P* approach Q* in the Euclidean metric through
a sequence {Py}. Then dist(Py, 02) — 0. Further, u(Pr) < ¢(Qk) + K| Pr — Qkl,
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where K is a bound for g, and Qy is a point on 9€2, visible from P within Q and
as close as possible to Pg. It follows that lim sup(u(Px)) < ¢(Q*), showing upper
semi-continuity. To show lower semi-continuity, again let Q* € 92 and let P* € Q
approach Q* in the Euclidean metric through a sequence {P;}. Let K and Qj be
as above. Now, for each k there exist a point Ry € 9€2 and a Lipschitzian curve 't
from Ry to Py, such that p(Ry) + fl’k gds <u(Py)+ 1/k. Clearly,

@(Ri) +/r gds + K|Pr — Qx| = ¢(Qr),
k

so that u(Py) > @(Qr) —1/k — K|Py — Qkl. Sending k to infinity gives
lim inf(u(Pr)) = 9(Q%). U

REMARKS. Observe that no assumption is made about the structure of 9<2. In
particular, €2 may have inaccessible points, that is, points which cannot be reached
by a curve in Q of finite length. Such points may also be inaccessible by a curve of
finite weighted length [ g ds. Such points do not influence the definition of u, and can
usually be ignored. Observe also that g may vanish on part of 2; the lemma is still
valid. Itis possible to formulate versions of this lemma for the case of an unbounded €2,
or an unbounded g; see [L, p. 125]. The above is, however, enough for our purposes.

COROLLARY 2.2 (Minimal and maximal interpolation). Let 2, g and ¢ be as in the
lemma, and let (2.1) be satisfied. For any P* € Q, put

W(P*)=inf(<p(Q)+ / gds) and U(P*)=sup<<p(Q)— / gds>,
r I

where, as above, the infimum and the supremum are both taken over all points Q € 92
and all Lipschitz curves ' C Q connecting P* and Q. Let u be any function solving
the interpolation problem. Then

U(P*) <u(P*) < W(P%)

for any P* € Q. Further, U and W also have the prescribed boundary values, so U
and W are the minimal and maximal solutions of the interpolation problem.

REMARK. It is well known that the interior distance function is useful for solving
interpolation problems under a pointwise bound on the gradient; see [A1, supplement]
or [J, p. 57]. Above all, one should compare [L, pp. 116-117]. A very similar
situation is treated in [CDP], and the above lemma can also be seen as a
consequence of Theorem 2.11 in that paper. The above formulas for W and U are
clearly generalizations of the classical formulas, given by McShane and Whitney
independently in 1934, for the extension of functions under Lipschitz conditions.
See [A1, p. 552].
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In the rest of this paper it is assumed that (2.1) holds, unless the contrary is said.
It is convenient now to introduce the two interpolation operators

Fl(sz,g,sa)(P)=U(P>=sup(¢<Q>—/ngs) and
F(R, g, 0)(P)=W(P) = inf(<p(Q) —l—/ g ds) VP e Q.
r

LEMMA 2.3 (Self-reproducing property of these interpolation formulas). The opera-
tors F1 and F, are self-reproducing. More precisely, let w be a subdomain of 2, not
necessarily compactly contained. Then, for all P € w, we have F|(w, g4, Ujn)(P) =
U(P) and Fr(w, g, Wyo)(P) = W(P). Here, g, , Uy, and Wy, are the restrictions
of g to w and of U and W to dw respectively.

PROOF. This is obvious from the minimal and maximal interpolation properties. O

Now, let A and B be arbitrary points in €2; let g be as above. Define d(A, B)
to be inf( fr‘ g ds), where the infimum is taken over all Lipschitz curves I' C €2,
connecting A and B. If g > 0 in €2, then this defines a metric. Assuming g > 0 only, d
need not separate points, so we call it a quasi-metric or a quasi-distance. Then extend
the definition of d to points A and B in Q2. Does d(A, B) <d(A, C) 4+ d(C, B) hold?
Clearly, this need not be true in general if C € 9€2, but if C € Q it clearly holds. We
still call it a quasi-distance. The choice of the weight-function g will always be clear
from the context.

The interpolation operators F; and F» can clearly also be written as

Fi1(2, g, 9)(P) =sup{p(Q) —d(P, Q) | Q € 9%},
(2, g, 9)(P) =inf{p(Q) +d(P, Q) | Q € 92},

that is, we have a sup-convolution and an inf-convolution, though maybe not in
completely orthodox form!

Conversely, one can start from a differentiable function # and define g = |Vu|. An
obvious question is now: can u be reconstructed from its boundary values and g, using
our interpolation formulas? A partial answer is given below.

LEMMA 2.4. Both representations work for any u € C' without critical points. More
precisely, let Q and ¢ be as in Lemma 2.1. Let g > 0 be bounded and continuous in 2.
Suppose that there exists a function u € C' () N C(R) having boundary values ¢ and
such that |Vu| = g in Q. Then both representation formulas are valid, that is,

sup{p(Q) —d(P, Q)| Q € 0Q} = u(P) = inf{p(Q) +d(P, Q)| Q € 32}

forall P € Q.
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PROOF. Let P € Q, Q € 922 and let I" be a Lipschitz curve in €2, from P to Q. We
know that ¢ (Q) — d(P, Q) < u(P), that is,

sup{p(Q) —d(P, Q) | Q € 02} < u(P).

To show the converse inequality, take an arbitrary P € Q2. There exists, by Peano’s
theorem and since g > 0, one or more streamlines in the direction of increasing u,
emanating from P. Uniqueness need not hold. By Zorn’s lemma, a maximal
streamline S exists. Being maximal, S must approach the boundary. Let R be a
variable point on S. By construction, we have

u(R) —u(P) =/ Du - e(s)ds =/ gds,
N N

that is, u(R) — fS/ gds =u(P). Here, S’ is the appropriate part of S. Choose a
sequence {Ry} on S, approaching some point Q € 9S2. Passage to the limit gives
Q) — /. 5 & ds = u(P). Finally, approximating S by Lipschitz curves in €2 gives the
desired result. The other statement is proved analogously. This proves the lemma. O

Thus, u is represented in €2 as an infimal convolution, or a supremal convolution, of
its boundary values and the quasi-distance in €2 induced by g = |Vu/|. This discussion
continues in the last section.

3. A closer look at i g ds

To get further, we must consider the question of the existence and regularity of a
minimizing curve for fr g ds. Concerning the weight function g, it is assumed in
this section and the next that g € C 1(€) N C(R), and also that there exists a positive
constant & such that « < g in Q. We assume that the basic domain 2 C R” is bounded.
Choose f such that g < B in Q. At least two approaches are possible.

(A) A classical calculus-of-variations approach. The integral to be minimized can
be written as fol G (x, x) dt for some suitable parametrization x (¢) and thus fits into the
treatment in [BGH, Section 5.9]. In our case, G(x, x) = g(x)|x|, and condition A on
p. 219 is satisfied. Given any two endpoints in , accessible by some suitable arc in €2,
a minimizing curve I" exists in a wide class C of functions according to Theorem 5.22.
The further regularity analysis in [BGH] is applicable at least to any connected part
of T, lying in the interior of €2, which is sufficient here. Let I'* be such a part of T',
possibly T itself. It is shown in [BGH, pp. 220-222] that I'* can be reparametrized
with respect to arc-length s so that x (s) is Lipschitzian and |xX| = 1 almost everywhere,
indicating that nothing is lost by focusing on the next approach only.

(B) A control-theoretic approach. We have found it convenient to use the machinery
of optimal control theory and, in particular, a variant of the so-called Pontryagin
maximum principle for studying a minimizing curve. Some technical preparations
must first be done. The permissible curves are given by arc length, that is, x = x(s)
in R", such that x = x(s) is absolutely continuous and |x| = 1 almost everywhere for
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0 <s < S < oo (where S is not prescribed); further x(s) € Q for all s. The endpoints
x1 and x; in Q are prescribed. It is assumed that they can be connected by some
permissible curve I' (this is not necessarily the case, if 2 has inaccessible boundary
points). The problem is to minimize [ = fOS g(x(s)) ds over this class of curves. Now,
for any positive function F € C!(22) N C(Q) bounded away from 0, each permissible
curve can be rewritten as a solution to a control system x(z) = F(x)u(t) for some
measurable and bounded control u(¢) on some interval 0 <t < T < oo, where T is
not prescribed. Then s = fol ds/dt dt = fot |dx/dt| dt is an absolutely continuous
function of t. Therefore, in control formulation, the functional to be minimized is

’ gs= [ eenSar= r‘dx
/Og(x(s)) S—/O g(x())a —/(; g(x())z

T
=/0 g @) F(x(t)|u@)| dt.

dt

From now on, we choose F(x) = 1/g(x) for all x, so that the functional is then simply
fOT lu(t)| dt (minimum effort control). A ‘canonical’ control representation (that is,
satisfying |u| = 1) is obtained by simply putting

t—/s do
Jo F(x(0))'

Then ¢ =t(s) is bi-Lipschitz and dx/dt = (dx/ds)(ds/dt) = (dx/ds)F = F - u(t)
where |u(z)] = 1 almost everywhere. Further, there is only one such representation,
except for translations in time.

Next, we go from arbitrary control form to arc length. Take an arbitrary (AC)
solution (x(t), u(t)) such that x(t) = F(x(t))u(¢t) for almost all ¢t € [0, T'], for
some u € L°°, and with prescribed endpoints. For each ¢ € [0, T], define o (t) =
fot |dx/dt| dt; this function is increasing, though not necessarily strictly increasing.
Put S = o (T). For each s € [0, S], define Z(s) = min{r | o (¢) = s}. This function is
strictly increasing, but not necessarily continuous. Then define X (s) = x(Z(s)). If

s < s, then clearly
Z(s") dx Z(s")
[t
z@s) dt Z(s)

so X is Lipschitzian with constant 1. Thus |dx/ds| <1, and we will verify that
equality holds almost everywhere.

Let E; consist of all t* such that dx(¢*)/dt does not exist or such that ¢* is not a
Lebesgue point for dx /dt. Thus, E1 and o (E) have Lebesgue measure zero. Let E;
consist of all t*, not in E{, such that dx(t*)/dt =0. We claim that o (E;) also has
measure zero. Clearly, E> can be covered by arbitrarily short intervals /, over which
the slope of x(¢) is less than some § (that is, fI |dx/dt|dt <§|I|) and § is at our
disposal. According to Vitali’s covering theorem, a finite number of these intervals,

dx

1X(s) = X(s")| = I

dtr=s"—s,
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pairwise disjoint, can cover E; except for a set of arbitrarily small measure. It follows
that o (E») has measure zero.
Take s € [0, S], not belonging to o (E1) or o (E2). Then dx(Z(s))/dt # 0. For

small 2 > 0, we have
Z(s+h) g4
/ aad dt
Z(s) dt

Since Z(s) is a Lebesgue point for dx/d¢, the ratio of these expressions tends to 1
as h — 0. So the control trajectory is transferred to arc-length form, and |dx/ds| =1
for almost all s. Finally, fOT lu(t)| dt = fOS g(x(s)) ds, as above, so if two control
solutions are transferred to the same curve, then the functional values agree.
Concerning the minimization problem, it is obvious that we need only consider
curves I such that
1(I'o)

lx1 —x2| = L(T") = :
o

dx

Z(s+h)
and h:/ dr.
Z(s) d

|X (s +h) — X(s)| =

T

where L(I") denotes the length of I'. In the control formulation, we may impose
the general restriction |u(¢)| < 1 without loss of generality. For any admissible pair
(x(t), u(¢)) on an interval [0, T'], we may therefore assume that T > |[x; — x2|/a > 0.
An upper bound is also needed. If the same admissible pair is transformed to arc-
length form, we may assume that S < I (I'g) /. A simple scaling argument now shows
that we can assume 7 < 81 (I'g)/a without any loss of generality. Consequently, as
far as a minimum is concerned, consideration can be restricted to admissible pairs
(x(¢), u(t)) on an interval [0, T'], where T is trapped between two positive bounds.
This means that for the optimal control problem, there is a fixed starting point (x1, 0)
and a compact target set consisting of all (x3, #), where |x; — x2|/a <t < I (['o)/c.
Now the setting up is complete for invoking a general existence theorem by L. Cesari,
namely Theorem 1 in [C, p. 478]. It asserts the existence of an optimal control pair
(x*(t), u*™(t)), defined for 0 < ¢ <r*. Assume, without loss of generality, that this
solution is already parametrized so that |u*(¢)| = 1 almost everywhere. If I* is the
optimal value of the functional I, then I* =¢*. Let (x1(-), #1(-)), on an interval
(0, t1), be another admissible pair. Then * = I* < I(x(-), u1(-)) <t;. Therefore,
this particular pair (x*(-), u*(-)) is time optimal, a fact which will be extremely useful.

Clearly, the optimal curve I'* need not be contained in €2, even if the endpoints are.
The following analysis is based on a variational technique and is applicable only to
each connected part T" of I'* that is contained in Q. Now T" obviously minimizes the
line integral fr g ds among all curves in Q with the same endpoints, so the preceding
analysis is applicable to T'. Thus, ' corresponds to a time-optimal solution of the
control system x = F(x)u(t). As above, the restriction on the control variable is
just |u| < 1. We therefore have a time-optimal trajectory X(¢), contained in 2. The
corresponding control is written #(¢) and the time interval is [0, T].

In this fortunate situation we can invoke the maximal principle, also called the
Pontryagin maximum principle. Our main reference is [LM, pp. 314-315 (Cor. 1)];
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other helpful references are [PBGM, p. 81]; [CLSW, p. 252]; or [P, p. 80]. According
to that principle, there exists a nontrivial absolutely continuous ‘adjoint response’ (also

called a co-state) n(t) = (n1(¢), n2(t), . .., n,(¢)) over the interval [0, T'] satisfying
the system
dn; & oF
1 [— — .
= . t)  — 1)), :1,2,..., s
r ;:1 Nk - uk(t) ox; (x(@), i n

almost everywhere on [0, T'] such that the maximality relation also holds almost
everywhere on [0, T]. The latter means that the quantity F(x(¢)) - ZZZI i (t) - ug,
where the variable u is subject to |u| < 1 and otherwise free, is maximized by u = u(t)
for almost all 7. (Actually, the maximum principle gives more information, but this is
sufficient for the moment.) The maximality relation immediately gives

ut) = IOk 3.1

[n(0)]
for almost all #, a very useful relation. It follows from the adjoint system that n(r)
is continuously differentiable on [0, 7] and nonzero. Thus, the same holds for u(z).
It immediately follows that x(t) € C 2[0, T]. (For obtaining higher smoothness, we
would need to require more from F(x).)
Next, the adjoint system takes the interesting form

Wi oy Eway, i=1,2
- = — c—(Xx s L1=1,42,...,n.
dr o 5
This can be written
L SE&w) (3.2)
— = = X .
()] dr

for future use. The above relations for u(z), dn/dt, and so on are not new; they
can for instance be found in [BH, pp. 97-98]. Further, ds/dt = F(x(¢)), and clearly
s(t) € C?[0, T1]. It also follows that X(s) € C2 for 0 < s < S. Now the curvature of I"
is found from the relations du/dt = F (x(¢))u(t) and F(x) = 1/g(x), as well as (3.1)
and (3.2), by easy computations. The result is

d_u = Ve _ (E ﬁ)ﬁ (3.3)
ds g g

Since u(t) is the unit tangent vector of I', this means that the curvature du/ds is the

orthogonal part of the logarithmic gradient of the weight function g. This is of course

not unexpected, and somewhat similar considerations for minimizing a weighted line

integral occur in image processing; one can for instance compare [AK, Section 4.3.2,

pp- 176-179].
It seems convenient to summarize all this as follows.
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THEOREM 3.1. Let Q be bounded, and impose conditions on g as at the start of this
section. Define permissible curves as above, and assume that at least one such curve
exists.

Then there exists at least one optimal curve, that is, one minimizing fr g ds.
Further, if T'* is an arbitrary optimal curve, it has an essentially unique representation
(x*(t), u*(t)) such that \u*(t)| = 1 for almost all t. This pair (x*, u™*) is a time-optimal
pair for the control system x(t) = F (x)u(t) under the condition |u(t)| < 1. This holds
also if T* is not contained in Q. (It is certainly contained in .)

Finally, let T be a ‘relatively’ optimal curve, contained in Q, not necessarily having
the initially prescribed endpoints. Then x € C? and the curvature du/ds is the part of
the logarithmic gradient of the weight function g orthogonal to T. This holds along
all of T.

REMARK. It is natural to ask which of these results hold for an optimal curve I'y
that is situated in €2, except for one or two endpoints? One can verify that the above
relations can be extended up to endpoints on <2, by assuming that g € C'(Q). These
results will, however, not be used in this work.

4. Structure of the uniqueness set

Recall the interpolation problem from Section 2. The same assumptions as in the
beginning of Section 3 are still valid, that is, g € C(Q) N C 1(Q), and there exist
positive constants « and § such that « < g < f in Q. The basic domain  C R” is
still bounded; ¢ is defined and continuous on 9€2. The two interpolation formulas
from Section 2 must now be modified a little, since we will need the existence of
minimizing (or maximizing) couples Q, I'. The following assumption is now made:

/ngsz lp(P) — ¢(Q)I (4.1)

for each pair of points P, Q on 32, and each Lipschitz curve I' C 2, with endpoints P
and Q. The two interpolation formulas will be modified accordingly: in the formula
W(P) =inf(p(Q) + [ g ds), Q varies over 32 as before, and I' now varies over all
permissible curves in Q which connect P and Q. The formula for U(P) is changed
similarly.

We claim that the functions U and W are unchanged. To see that, consider W. Assume
that the new version of W (P) is less than the old version. Then there exist Q and
I' C Qsuchthat p(Q) + [ g ds < inf(p(R) + fl’l g ds), where Iy is restricted to 2,
except for endpoints. But I' must have a ‘last’ point S on d€2 and a corresponding last
section I'; in Q. Now choose R = § and I'1 =I';. Invoke (4.1) and a contradiction
follows, proving the result.

LEMMA 4.1. The infimum defining W (P) and the supremum defining U (P) are both
attained for each P in Q.
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PROOF. Consider the first formula only. Take a sequence {Qg, 'k} of points on 92
and curves in Q such that (¢(Q) + -/Fk g ds) approaches its lower bound. One can
assume that Oy — Q* € 9Q2. A standard selection argument gives a sequence of
curves converging uniformly (as functions of arc length) to a limit curve I'*. The
couple (Q, I'*) delivers the wanted infimum. We refer to theorems by Hilbert and
Tonelli; see [AK, p.150], or [BGH, p. 108]. O

Recall from Section 2 that W(P) > U (P) for all P € Q.

THEOREM 4.2. Assume that W(P)=U(P) for some P € Q. Then there is an
optimal curve I passing through P, having only its endpoints on 02, and such that
W = U on this curve. Further, U and W are both differentiable on T, have the same
gradient, and |VU| = |VW| = g there. Finally, VU = VW is tangential to I". Thus, I’
is a common streamline for VU and VW.

PROOF. According to the preceding lemma, there exist points Q, Q2 on 92, and
associated curves I'1, I'2 in 2 connecting these points to P, such that

(Q1) — / gds=U(P)=W(P)=¢(Q2) +/ g ds.

Iy I
One can assume that I'; has only Q1 common with 9€2, and that I'> has only QO
common with 9. This follows from an argument similar to the one above
showing that U and W are unchanged. The combined curve '} 4 > is therefore
contained in €2, except for endpoints. Now the relations above imply that ¢(Q1) —
¢(02) = [r 1, §ds. On the other hand, [. g ds > ¢(Q1) — ¢(Q>) for any curve
I' connecting 1 and Q», according to condition (4.1). Thus the combined curve
I'y + I'> is optimal in the sense of Section 3, and enjoys the regularity properties
stated in Theorem 1. Therefore the combined curve is in C? as a function of arc
length. Further, we see that W = U at each point of I'y 4+ I';. Differentiation of
U and W along the curve is no problem; the tangential derivative is clearly equal
to g. Instead, AU and AW, caused by a small ‘sideways’ shift of the curve must
be estimated. Consider again P as above. Let P’ be a neighbouring point, such
that (P’ — P) is orthogonal to T at P. From the simple estimate below, W (P’) <
W(P) + ¥ (|P’ — P|) and analogously U (P’) > U(P) — ¢(|P' — P|), where ¢ and
Y are nonnegative functions such that v (¢) = o(¢) for small ¢, and similarly for ¢.
Since U (P') < W(P’), it follows that

~$(IP' = P) S U(P) = U(P) < W(P") = W(P) < Y:(IP' = PI).

Therefore any normal derivative of U or W vanishes along I". Note also that all
estimates are locally uniform.
A simple estimate. Let w be the hyperplane orthogonal to I' through P. Thus P’
belongs to 7. We will estimate W (P’) from above by adding a linear perturbation to I'
near P. A similar estimate for U (P’) is then obtained analogously. Write " as x™*(s)
for 0 <s < S, that is, x*(0) = Q; and x*(S) = P. Let B be a unit vector with the
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direction of (P’ — P). We can assume that [P’ — P| < S%. Puta = |P’ — Pll/z; thus
0 <a < S. Now define T to be x*(s) for 0 <s < S —a and x*(s) + Ba(s — S + a)
for S —a <s < S. Thus x(S) = P’. Let s’ denote arc length along I'’, and let

/

S S
I :/ g(x*(s))ds and I’ :/ g(x*(s) + Ba(s — S + a)) ds’ ds.
S—a S—a ds
A comparison of I and I’ is needed. Now ds’/ds = |dx*/ds + Ba|, where |dx*/ds| is
1 forall s. Thus, |ds’/ds|> = 14 a* + 2a (dx*/ds) - Bfor S —a <s < S. The scalar
product (dx*/ds) - B vanishes for s = S, because the plane 7 is orthogonal to I" at P.
Therefore, we can write |ds’ /dsl2 <1+ a’ + ag for some continuous ¢ > 0, easily
estimated, such that ¢(s) — 0 if s — S. Consequently,

< — —a ap(s
ds — 2 ¢

forS —a<s<S.Puty(s)= %(a2 + ap(s)). For convenience, also put
Ag(s) = g(x™(s) + Ba(s — S + a)) — g(x*(s)).

This easily gives (recall that g < )
S S
I'—1< / Ag(s) ds—l—/ g(x*(s) + Ba(s — S+ a)¥(s) ds
S—a S—a

S S
s/ ae)ds + [ Bus) ds.
S

—a S—a

The integral involving Ag is clearly bounded by a>M = |P’ — P|3/2M, where M is a
local bound for |Vg|. Further, the last integral is dominated by
B [° B B

S| @ +ap(s)ds=SIP = PIY?+ S|P = P|-o(l),
2 S—a 2 2

where the last factor goes to 0 as P’ — P, uniformly on compact subsets of €. It
follows that W (P’) is no more that the sum of W(P) and the preceding expressions,
which is exactly an estimate of the kind we wanted. Thus, Theorem 4.2 is completely
proved. O

THEOREM 4.3. The set {P € Q| U(P) = W(P)}, that is, the uniqueness set for the
interpolation problem, is either empty or consists of a family of complete optimal
curves as in Theorem 4.2. If the uniqueness set contains a subdomain o C €,
then U = W there and both belong to CY(w). Moreover, |VU| = g in w. Finally,
if UeCY(Q), then U=W in Q, so the interpolation is unique; and similarly if
Wecl(Q).
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PROOF. The first statement is clear from the preceding. Let the solution be unique
in w C Q. It is already proved that |[VU| = g there, and g is continuous. It remains
to show that the direction of VU is continuous. Argue indirectly: let P be arbitrary
in w and assume there is a sequence { Py} in w approaching P such that VU (Py)
does not converge to VU (P), that is, the direction vectors e(Px) do not approach
e(P). Let |e(Py) —e(P)| >4 >0 for all k. For each Py there is an optimal curve
Iy passing through P with the direction e(P;). But now, as in Lemma 4.1, it is
possible to select a subsequence of points P, and curves 'y approaching an optimal
curve I'* through P. This curve must have a direction e*(P) at P. It now follows from
Theorem 3.1 that all the curves 'y have uniformly bounded curvature near P. But then
the convergence of the curves implies that e(Py) — e*(P), thatis, |e*(P) — e(P)| = 4.
This leads to two different optimal directions through P, which is clearly impossible
by the previous theorem. Finally, if U € C'(£2), then one simply looks at complete
streamlines for VU. It follows that U = W. O

EXAMPLES. (1) Choose n =2, take Q2 to be the unit circle and g=1. Put
A=(0,—1) and B= (0, 1). Choose ¢(A) =—1 and ¢(B) =1. Finally, let ¢ be a
linear function of arc length on each of the two semicircles connecting A and B. Then,
as is easily verified, the uniqueness set consists of the diameter A B and nothing else.

(2) An example where the uniqueness set is empty is obtained by choosing €2 and g
as in the previous example, and ¢(x, y) = arctan y.

5. More regularity

The statement in the previous theorem that U and W belong to C'(w) will be
strengthened here. By requiring one more derivative for g, we can show that U and W
actually belong to Cllo’c1 (w), that is, VU = VW satisfies a Lipschitz condition on each
compact part of w. (As above, w is a subdomain of the uniqueness set.) It is assumed in
this section that g € C(Q) N C 2(Q), besides the earlier assumptions. The plan of the
proof is simple: verify that W is semiconcave and U semiconvex and then use known
results from the theory for such functions; see [CS]. The definition of semiconcave to
be used here is found in [CS, p. 2]. Further, a function 4 is semiconvex by definition
if —h is semiconcave.

LEMMA 5.1. W is semiconcave and U is semiconvex on each compact part of 2.

PROOF. We will verify that W satisfies a slightly modified version of Definition 1.1.1
in [CS, p. 2], which requires a kind of upper bound for second differences of W.
Accordingly, it must be shown that, for some positive constant C, one has

W +h) + W —h) —2W(x) < Clh? 5.1

for all x and & in question. Since W is bounded, this inequality is crucial only for
small 4. We must specify which x and /& will be considered. Take § > 0 and consider
the open set E = {x € Q| dist(x, d€2) > 83}; this is assumed nonempty. Take an
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arbitrary x* € E, and h € R" such that |k| < §. An inequality like (5.1) will be proved
when x = x*, and the existence of C will become clear. There exist Q and I" such
that W (x*) = ¢(Q) + fr g ds. There also exists a uniform upper bound M for the
length S of T, where M is independent of x*. Further, I" starts on €2 and ends
in E. Thus, one can define y* to be the last point z € I for which dist(z, 92) < 446.
Write T as x(s), where x(0) = Q, x(A) = y*, and x(S) = x*. Now A is uniquely
defined, and clearly S — A > 48. Put H = |h|~'h. Define the linear function y by
y(s)=((s —A)/(S—A))-H,for A <s < Sandletr e [—|h|, |h|] be a parameter at
our disposal. Consider the perturbed curve I'/, defined by x'(s) = x(s) for 0 < s < A,
and x'(s) = x(s) + ry(s) for A <s < §. Thus, for instance x'(S) =x* + tH. Also
observe that
‘t.dy(s) ~n 1

ds |7 S—A 4

for A <s < S. Further, (x(s) 47 - y(s)) € Q and dist(x(s) + ¢ - y(s), 0R2) > 3§ for
A <s < §. For ease of notation, put ¢(Q) = 0. Consider

|h] 1

A S dS/
F(@):= / gds =/ g(x(s)) ds +/ gx(s) + ty(s))d— ds
I’ 0 A s

where ds’/ds = |dx/ds + t dy/ds|. Thus, F(0) = W(x*), F(|h]) > W(x* + h) and
F(—h]) = W(x* — h), and so

WE* 4+ h) + W™ —h) =2W(x*) < F(|h|) + F(—|h|) — 2F(0).

The right-hand side here can simply be estimated using Taylor’s formula.
Therefore, the first and second derivatives of F(¢) must be considered. Now dx /ds is
a unit vector in R”, and thus

ds'|? 12 d H 1 1

oy —— a2l > 12 > 120k — > ~.

ds (S — A)2 ds S—A S—A 45 =2
Consequently,

ds’_ 1+ 12 +2tdx H
ds (S — A)? ds S—A

can be differentiated with respect to ¢ without any problems. Therefore,

, S ds’
F(1) =f Vg(x(s) +1y(s)) - y(s) I ds
A N

+/A gx(s) + y(s))g( +m+ %'5—A> >

Here x(s) + ty(s) is contained in the set G = {x € Q2 | dist(x, 92) > 36}. Clearly,
F’(t) depends continuously on . Now g e C? and all ingredients in the above
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expression can be differentiated with respect to 7. All derivatives appearing will be
uniformly continuous and bounded, and there is a uniform bound M for the length
S — A of the interval. Therefore, F”(¢) is continuous and bounded: |F”(¢)| < K for
|t| < |h|, where K can be chosen independently of x* € E, though it may depend on §.
By Taylor’s formula,

h 2
F(|hl) + F(=|h]) = 2F(0) = %(F”(Ql) + F"(6))

for suitable 6; and 6. Consequently, F(|h|) + F(—|h]) —2F(0) < K|h|?, that
is, (5.1) holds. Since § > 0 is arbitrary, W is semiconcave.
An analogous argument shows that U is semiconvex. O

THEOREM 5.2. Let w be a subdomain of the uniqueness set. Then U and W belong to
Cllo’c1 (w), that is, VU = VW satisfies a Lipschitz condition on each compact part of w.

PrROOEFE. Since U =W 1is both semiconcave and semiconvex in w, this follows
from [CS, Corollary 3.3.8, p. 61]. ]

REMARK. This result is best possible in the sense that Uand W need not have
continuous second derivatives on w ; not even if g is constant and w = Q. See
Example 3 in [A1, p. 555], where u,y is discontinuous on the negative x-axis.

6. Interpretation in terms of an L°° extremum problem

The interpolation problem above in W1°°() can be considered as an extremum
problem: € is a bounded domain in R”, the function g in C L(©Q) N C(Q) satisfies
o < g < B for some positive o and S, and a continuous function ¢ is defined on 9€2.

PrROBLEM. Find the smallest M_Z 0, such that the interpolation problem (as in
Section 2) has a solution u € C(2) N W1°(Q) with boundary values ¢, such that
|Vu| < Mg(x) almost everywhere.

This is a variant of the problem of interpolation under a Lipschitz condition or under
a bound for the gradient; see for instance [A1] or [ACJ].

It follows from Lemma 2.1 that the optimal value is the smallest number M such
that M fr gds > |p(P)— ¢(Q)| for all P, Q and I" as in Lemma 2.1, provided that
this number exists. We assume now that it does exist, and so M exists and is finite.

This characterization of M is not new; it is found in [CDP, Theorem 2.11]. By
our Corollary 2.2 there exists a pointwise biggest and a pointwise smallest solution
to the extremum problem. This also holds in a more general situation, as shown
in [CDP, Theorem 2.11]. The results in Theorems 4.2 and 4.3 are applicable to this
extremum problem. In particular, if the extremum problem has a unique solution u,
then u € C'(Q) and |Vu| = Mg in Q. This should be compared to Theorem 3 in
[A1, p. 554]. Further, our result here that the uniqueness set (if nonempty) consists of
complete optimal curves can be compared to Theorem 2 in [A1, p. 553]. One can also
compare [Al, supplement].
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Another observation. Defining H(p, u, x) = | p|2(g(x))_2, the problem here is of
the form: minimize the functional F(u) = ess sup H(Du, u, x) over the appropriate
function class. For such a problem an associated variational equation can be found;
see for instance [Y, pp. 153—-154], or [A1, p. 557]. It has the form

Hy(Du(x), u(x), x) - Dx(H(Du(x), u(x), x)) =0. (6.1)

Here, H), is the vector of partial derivatives of H with respect to all p;, and the second
factor D, is the gradient of the function x — H (Du(x), u(x), x). The best known
case of (6.1) is obtained for H(p, u, x) = p? and n = 2, in which case (6.1) takes the
nice form

ujzcu” + 2uyuyiyy + uiuyy =0.
A good deal is known here, see [A1, A2] or [ACJ]; this is the infinity Laplace equation
in the plane.

There is also a rich theory treating the relation between (6.1) and the L extremum
problem above. In particular, under various conditions on H, it has been proved that
viscosity solutions of (6.1) are minimizers, even local minimizers, for the extremum
problem. Such functions are called absolute minimizers. It has also been proved that
absolute minimizers are viscosity solutions of (6.1). We refer to [Y, Cr] and related
work for more details on that relationship. Note that, in the present case, H does not
depend on u. The following results are consequences of the above discussion.

If the extremum problem has a unique solution u, then u is a classical solution
of (6.1), since u € C'(Q) and H(Vu(x), x) is constant. Further,  is covered by
complete optimal curves, that is, streamlines, for Vu. More generally, let E be the
uniqueness set for the extremum problem. Then E consists of complete optimal
curves, or is empty. Finally, u € C! on the interior of E and H (Vu(x), x) = M? there.

7. Some further observations

The connection between eikonal equations (including eikonal inequalities) and the
extreme functions U and W has been known for a long time. See [L] for a detailed
treatment, based on the use of viscosity solutions, or [CDP]. We will make some
further easy observations.

Recall the ‘plus formula’ W(P) = inf(¢p(Q) + fr g ds), and the ‘minus formula’
U(P) =sup(p(Q) — fr gds). Clearly, [VW|=g at each point where W is
differentiable, and the same holds for U. The question of pointwise differentiability
will not be discussed here, nor will we use viscosity solutions. Consider instead
a different problem: is a function u € C'(2), having ‘decent’ boundary values ¢,
uniquely determined by g = |Vu| and ¢? And can it be computed? These nontrivial
questions appear as the simplest case of a problem in image analysis, called shape from
shading, see [DFS]. It is trivial to give examples where u is not uniquely determined,
so the problem is not generally well posed, but still quite interesting. The problem
is easy, if there are no critical points (that is, g > 0), as seen from Lemma 2.4. The
presence of critical points makes the problem more difficult, whatever solution concept
is used. Things are easier in some cases.
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LEMMA 7.1. Consider a bounded domain o C R%. Let u € C'(w) N C(@) and let u
be constant (m) on dw. Assume that the set E = {x € w | Vu(x) = 0} is connected and
ENdw=10.

Then u(x) :M:i:inf(fr gds) in w, where u=M on E and g =|Vu|. The
infimum is taken over all Lipschitz curves in w, connecting x and E. The plus sign
holds if M < m; otherwise the minus sign holds.

PROOF. Obviously M # m, since otherwise there must be some critical pointinw \ E.
Assume that M > m; the other case is analogous. Then m < u(x) < M for each
x € w\ E, since otherwise there would be a critical point in w \ E. Now take an
arbitrary x € w \ E, and follow a maximal streamline through x in the increasing
direction (compare the proof of Lemma 2.4). This streamline must terminate on E,
which proves the minus formula. If M < m, the plus formula follows. O

REMARK. Note that it is not assumed that |Vu| is bounded. Thus, u is simply M plus
or minus the weighted distance to the critical set. Clearly, u(x) =m =% inf( fr g ds),
based on curves I' connecting x and dw.

The following is a slight improvement.

THEOREM 7.2. Let Q be a bounded domain in the plane and u € C'(Q) N C(Q).
Assume that the set E = {x € Q| Vu(x) = 0} is nonempty, connected, and E CC 2.
Put u = M on E without loss of generality. Assume that u has a local maximum on E,
that is, there is an open set w such that E C w C Q and such that u <M on w \ E.
Then u(x) = inf(u(y) + fr g ds) for all x € Q, and here the infimum is taken over all
y € 02 and all Lipschitz curves I' C Q, connecting x and y. Hence, u is uniquely
determined in the case of a local maximum (or minimum) on E. Further, there is an
open set o' such that E C ' C w and u(x) = M — inf( [ g ds) in o'. This infimum is
taken over all Lipschitz curves in o' connecting x and E.
The case of a local minimum on E is analogous.

PROOF. Take an arbitrary x in w \ E and consider a maximal streamline from x in the
direction of decreasing u (Zorn’s lemmal!). Clearly, E is repelling for such a curve, so
it cannot terminate in 2. Thus, it must approach 02, which proves the representation
formula on @ \ E. It holds on E by continuity, and so M is determined. Then, for
any 6 > 0, put Eg = {x € Q| dist(x, E) <6} and choose 6 so small that £y CC w.
Put 4 = max{u(x) | x € 9Eg}. Thus &t < M. Consider then o’ = {x € Eg | u(x) > u}.
For any x € ' \ E, follow a maximal streamline from x for increasing u. It is trapped
in @' and must approach E. This proves the theorem. Note also that u(x) =
on dw'. 0

REMARKS. One can easily verify that Proposition 5.3 in [L, pp. 142-143], follows
from the above theorem. For numerical computation of the above solution, the author
would suggest the ‘fast marching’ algorithm, explained in [S, Ch. 9].
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