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EQUICONTINUITY OF A GRAPH MAP

TAIXIANG SUN, YONGPING ZHANG AND XIAOYAN ZHANG

Let G be a graph, and f : G — G be a continuous map with periodic points. In this
paper we show that the following five statements are equivalent.
(1) f is equicontinuous.
(2) There exists some positive integer N such that f¥ is uniformly con-
vergent.
(3) f is S-equicontinuous for some positive integer sequence
S={n<ny<---}.
(4) Qz,f) =w(z, f) for every z € G.
(5) o: @{X, f}— @{X, f} is a periodic map.

1. INTRODUCTION

Let N (respectively Z* ) denote the set of positive integers (respectively nonnegative
integers ). Write N, = {1,2...,n} and Z, = {0,1,...,n} for any n € N. For any
compact metric space (X, d), let C°(X) be the set of all continuous maps from X to X.
Suppose f € C%®(X), r € X and r > 0, write B(z r) = B(z,r,d) = {y € X : d(y,z)
<r}, 0@, f) = {fMz) :ne 2}, w(z, f) = ﬂ O(f"(z), f) and Q(z, f) = {y : there
exist sequences {z;} in X and {n;} in N such that z; — z,n; — oo and f™(z;) — y}.

O(z, f) and w(z, f) are called the orbit and the w-limit set of z under f, respectively.
For n € N, a point z € X is called a periodic point of f with period n ( or an n-periodic
point of f) if f*(z) = z and f*(z) # z for each k € [0,n) NN. z is called a fixed point
of fif f(z) = z. If z € w(z, f), then z is called a recurrent point of f. Denote by
F(f), Pa(f) and R(f) the set of all fixed points, n-periodic points and recurrent points

[ 9] —_—
of f, respectively. Write P(f) = |J Pa(f). We use intA, A, A and #A to denote the

interior, boundary, the closure an?i_tlhe cardinality of a subset A of X, respectively. We
also need the following definitions.

DEFINITION 1: Let S = {n; < n2 < ---} be a subsequence of N. f € C%X)
is said to be S-equicontinuous if for any £ > 0, there exists § = d(¢) such that
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d(f™(z), f**(y)) < € whenever z,y € X with d(z,y) < § and k € N. If S = N,
then f is said to be equicontinuous.

DEFINITION 2: Let f € C°%X) and z € X. If there exists y € X such that
nlgxolo f*(z) = y, then f is said to be convergent at z. If there exists N € N such that
X = F(fV), then f is said to be a periodic map.

Let {X;}$2, be a sequence of spaces, and {f;}2, a sequence of maps f; : X;11 — X;,
then the inverse limit of {X;, f;}2,, denoted by lim{X;, f;}, is the subspace of the Carte-
sian product space [[;2, X; given by Bm{X;, f;} = {(z1,22,...) : fi(zi1) = 2; for all
i€ N}. When all the spaces X; are the same space X and all the maps f; are same map
f, we denote the inverse limit by im{X, f} (see [10]).

Define o : im{X, f} — bm{X, f} by
o : ((zo, z1,...)) = (21, %2y - ),

which is called the one-sided shift map.

It is interesting to find some properties equivalent to equicontinuity ([1]). In [3],
Blanchard, Host and Maass discussed topological complexity, and showed that a contin-
uous surjection f of a compact metric space X is equicontinuous if and only if any finite
open cover of X under f has bounded complexity.

On 1l-dimentional spaces, one has some still finer results [4, 5, 6, 7, 13]. Sun
in [11, 12] obtained necessary and sufficient conditions for equicontinuity of tree maps
and o-maps. In [8], Gu obtained necessary and sufficient conditions for equicontinuity
of figure-eight map with a periodic point. Recently, Mai in [9] obtained the following
theorem.

THEOREM A. Let G be a graph and f € C°(G) Zvoitb P(f) # 0. Then f is

equicontinuous if and only if there exists N € N such that (| f*(G) = F(f").
n=1

By a graph we mean a compact connected one-dimensional polyhedron. In this
paper we shall find some new equivalent conditions of equicontinuous graph maps. Our
main result is the following theorem:

THEOREM 2. Let G be a graph and f € C%G) with P(f) # 0. Then the
following five statements are equivalent.

(1) f is equicontinuous.

(2) There exists N € N such that fV is uniformly convergent.

(3) f is S-equicontinuous for some subsequence S = {n; <ny <---} of N.
4) Qz,f)=wlz, f) foreveryz € G.

(5) o: lim{X, f} — Ym{X, f} is a periodic map.
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2. EQUICONTINUITY AND UNIFORM CONVERGENCE IN C°(X)

In this section we shall discuss the relation between equicontinuity and uniform
convergence of continuous self-maps of a compact metric space.

THEOREM 1. Let X is a compact metric space and f € C%X). Then the
following three statements are equivalent:

(1) f is uniformly convergent;

(2) ﬁ f™(X) = F(f) and f is equicontinuous;
n=1
(3) ﬁ fA(X) = F(f) and Qz, f) = w(z, f) for every z € X.
n=1
ProoF: It is easy to see that Q(z, f)Uw(z, f) C ﬁ f*(X) for every z € X.

(2)=(1) Suppose ﬂ f™(X) = F(f) and f is equicontinuous. Let z € X and

a,b € w(z, f), then a,b e F( f). Since f is equicontinuous, for any € > 0, there exists
& > 0 such that f*(B(u,8)) C B(f"(u),£/3) for every u € X and every n € N. Take
m € N such that f™(z) € B(a,d), then b € w(z, f) = w(f™(z), f) C B(a,e). That is,
{a} = w(z, f), which implies that f is convergent at z.

Choose {z,,z2,...,2x} C X such that Lk) B(z;,6) = X. Then there exists N € N
such that =
d(f*(z:), f™(z:)) <€/3 forevery i€ Ni and anyn>m > N.
For any z € X, let z € B(z;, ) for some i € N, then when n > m > N, we have
d(f*(z), f™(x)) < d(f™(z), f(=:)) + d(f*(2s), [ (@) +d(f™(2), F™(@3) <e.

This implies f is uniformly convergent.

(2)=(3): See [1].

(1)=(2): Let g(z) = nlg{.lo f™*{(z), then g(z) is continuous. For any € > 0, there exist
N € N and 6 > 0 such that

d(f*(z), 9(z)) <e/3 for every n > N and every z € X,

and
9(B(z,6)) C B(g(z),e/3) forevery z€ X

and
fi(B(z,6)) C B(f'(z),e) forevery i€ Ny and every z € X.

Thus we have
f*(B(z,8)) € B(f*(z),e) foranyneN.
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This implies f is equicontinuous.
Let z € N f*(X), it follows from (9] that z € R(f). Then z € w(z, f) = {z},

n=1

which implies 61 fr(X) = F(f).

(3)=(2) It only needs to be shown that f is equicontinuous. For given z € X,
let z, — z, ko — o0, f¥»(z,) = a and f*(z) — b, then a € Qz, f) = w(z, f) and
a,b € F(f). Hence there exists t, — oo such that t, — k, > n and ft~k(fkn(z))
= f'*(z) — a, which implies a € w(b, f) = {b}. That is, f is equicontinuous.

3. ProOOF oF THEOREM 2

Let G be a graph. For every z € G, there exist a positive number ¢ > 0 and some
n-star X, = {z: 2" € [0,1],z is a complex number} ([2]) such that for every 0 < § <¢,
there exists a homeomorphism f : B(z,8) — X, such B(z,§) are said to be a n-star-
neighbourhoods of z. Write V(z) = n. If V(z) > 3, we call 7 a branched point of G. Let
T ([2]) be a subtree of G and a,b € T, we use [a, blr( or [b,a]r) to denote the smallest
connected subset of T containing a, b. Write [a, b)r = [a, b7 — {b}, (a,b)r = [a,b)r — {a}.

In what follows we let B(G) = {z1,z2,...,2i} be the set of all branched points of
G, and G — B(G) have p connected components. Put u = V(z;) + V(z3) +-+ V(z)) + 4p
and M = ul. Let S = {n; < ny < ---} be a subsequence of N.

LEMMA 1. Let f € C°G) and m € N, then

(1) f is equicontinuous if and only if f™ is equicontinuous, and
(2) iIf f is S-equicontinuous, then g = f™ is S;- equicontinuous for some sub-
sequence S; of N.

PROOF: (1) See [9].

(2) Let f be S-equicontinuous. Then by choosing a subsequence we can assume that
there exists r € Z,,_; such that n; = s;m +r for any ¢ € N. Since G is compact, for any
€ > 0, there exists §; > 0 such that

d(fi(u),fi(v)) < e  whenever d(u,v) < § and ¢ € Z,,.
Since f is S-equicontinuous, there exists § such that

d(f*™" (u), f5™*"(v)) <&  whenever d(u,v) <6 and i € N.

Hence
d(g**t"(u), 9" (v)) <&  whenever d(u,v) < 6 and i € N.
This implies that g is S; = {s1 + 1, sp + 1, ...}-equicontinuous. 0
0
LEMMA 2. Let f € C°(G),and X = [ f*(G). If one of following two conditions
n=1
holds,
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(1) f is S-equicontinuous, or
(2) Qz,f) =wlz, f) for every z € X;
then for any given m € N, X C w(f™|x).

ProOF: Let g = f™. Since X is compact, we have g(X) = X and X is a connected
closed subset of G. For given y; € X, there exist points y;,¥2,... in X such that
9(Yn) = Yn—1 for every n € N.

(1) If f is S-equicontinuous, then by Lemma 1 there exists a subsequence
S1 = {s1 < s < ---} of N such that g is S;- equicontinuous. Therefore for any ¢ > 0,
there exists 6 > 0 such that d(g**(u), g°*(v)) < € whenever d(u,v) < 6 and k € N. Since
X is compact, there exists a subsequence 0 < k; < k; < --- of N and y € X such that
Ys,, — Y- Then d(g’% (Ysy, ) g™ (v)) = d(vo,g™i (y)) < € for some s;; € N. Thus
Yo € w(y, 9)-

(2) If Qz, f) = w(z, f) for every z € X, then by choosing subsequence we can
assume that there exists a subsequence 0 < k) < k3 < --- of N and y € X such that

m-1 R
Yk, — y since X is compact. Thus yo € Q(y, f) = w(y, f) = U w(f(¥),9). 0
=0

LEMMA 3. Let f € C°(G) with P(f) # 0 and X = () f*(G). If one of following
two conditions holds, e
(1) f is S-equicontinuous; or
(2) Qz, f) =wl(z, f) for every z € X;
then X = F(f™). Where 7 is the smallest period of the periodic points of f.
PRrOOF: Let g = f7. Obviously F(gM) C X. Now we show X C F(g").
Assume on the contrary that X — F(¢™) # 0. Take p € F(g) and let K be the

connected component of F(g™) containing p, then K is a closed subset of X, g(K) = K
and K N 9(X — K) # 0.
CLamM 1. g(8KNd(X - K)) COKNI(X - K).

Proor oF CLAIM 1: Assume on the contrary that there exists a € KN3(X - K)
such that g(a) ¢ K N O(X — K). Then we can choose a neighbourhood U of a such
that UN(X — K) # 0 and g(UN (X — K)) C K. Thus U N (X — K) ¢ w(g|x) since
9(K) = K, which contradicts Lemma 2. Claim 1 is proven. 0

Take ap € K N 3(X — K). Let s be the period of ap under g and V; be a k;-star-
neighbourhood of ¢*(ag)(i € Z,_;). We can assume kg = min{k; : i € Z,_,}. Choose
0<d) <02 < - < dgyy2 such that

¢*(B(ao,8:)) C B(ao,0i+1) C Vo (i € Nigyr).

CLamv 2. If there exist y € B(aq,0k+1) and k € N such that {g"(y) : i € Zk}
C B(ao,0k+1) and y, g*¥*(y) is contained in same connected component L of B(ag, 0k, +1)

— {ao}, then g**(y) € (ao, )L
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PROOF OF CLAIM 2: Suppose that yo = y € (ag,¢**(y)),. Then there exist
points y1,¥2,... in L such that y, € (ao,¥n-1)r and g*¥*(y,) = yn_1 (n € N). Let
Yn HVE F(gks)’ then yo € Q(v, f) — w(v, f) and d(gkm(yn)v gk‘m(v)) = d(yo,v) > 0 for
any n € N, which implies that g** is not S—equicontinuous for any subsequence S of N.
A contradiction. Claim 2 is proven. 0
CLamM 3. Let y € B(ag, 1), then O(y, g°) C B(ao, Sky+1)-

PrROOF OF CLAIM 3: Assume on the contrary that O(y, ¢°) ¢ B(ao,0k,+1). Let
B, be the connected component of B(ag,dk+1) — {ao} containing y and r; = min{i :
9**(y) € B1}. It follows from Claim 2 that {y,...,g"~Y%(y)} C B(ao,61). Let B, be the
connected component of B(ag, 8k+1) — {ao} containing g"*(y) and 5 = min{i : g*(y)
¢ B,UB, }. Again it follows from Claim 2 that {y,...,¢""V*(y)} C B(ao,d2). Continu-
ing on, we inductively define 0 =rg < r; < 7, < - -+ £ ry, and the connected components
By, B;, ..., By, of B(ag,0ky+1) — {ao} such that

(i) r;=min{i: g*(y) € L]J By} for every j € Ni,;
(ii) B; be the connected c/\orilponent of B{ag, 0k,+1) — {@o} containing g™i-1%(y)
for every j € Ng,;
(i) {y,...,9%"(y)} C B(ao,d;) for every j € Ni,.
Hence g™o*(y) € B(ao, 0k,+1) since g*(B(ao,dk,)) C B(ao,dk,+1), which contradicts the
definition of r¢,. Hence O(z, g°) C B(ao, dko+1)- Claim 3 is proven. 0
CramM 4.  w(B(ag,6) N (X — K),g) C F(gM).
PRrRoOOF OF CLAIM 4: Let y € B(ap, ) N (X — K), it follows from Claim 3 that
O(y,9°) C B(ao, 6xp+1)-
If g*(y) € K for some i € N, then w(y,¢*) C F(gM) and w(g'(y),g*)
= g'(w(¥,9°)) C ¢'(F(¢™)) C F(g™), which implies w(y, g) C F(g").
If O(y,¢°) N K = 0, then it follows from Claim 2 that #(w(y, ¢°)) = r < ko and
w(y,9°) C F(g°"). Thus w(y, ¢°) C F(gM) and w(y,g) C F(g™). Claim 4 is proven. [
Let y € B(ap,6;) N (X — K), it follows from Lemma 2 that there exists z € X
such that y € w(z,g). Choose m € N such that g™(z) € B(ag,d) N (X — K), then
y € w(z,g) = w(g™(z),g). By Claim 4 we have y € F(¢™). Hence B(ag,d;) N (X — K)
C F(g™), which implies B(ao, do)N (X — K) C K, a contradiction. Lemma 3 is proven. 0
PROOF OF THEOREM 2. (1)¢& (2) is from Theorem A, Theorem 1 and Lemma 1.
(1) (3,4) is from [1, Theorem 2.3], Theorem A and Lemma 3.

(1)=(5) Suppose f is equicontinuous. It follows from Theorem A that ﬁ ™G

= F(fN) for some N € N. Let z = (z9,71,...) € y_{X [}, then for giver;k—%le /A

we have z; = f*(zi4,) for all n € N. Thus z; € ﬂ f™(G) = F(f"), which implies
o"(z) = z for all z = (zo, 21, .. .) € im{X, f}.
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(5)=>(1) Suppose there exists K € N such that 0X(z) = z for all z € Qir_n{X,f}.

Let y € X = ) f*(G). Since f(X) = X, there exist points y; = y, ¥», ... in X such that
n=1
f(yiz1) = y; for all ¢ € N, thus z = (y1,¥2,...) € kiLn{X,f}, 0¥ (z) = z, which implies
[+ <]
y € F(f¥). By Theorem A we know that f is equicontinuous since [ f*(G) c F(f¥). 0
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