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A GENERALISED QUASI-VARIATIONAL INEQUALITY
WITHOUT UPPER SEMICONTINUITY

PAOLO CUBIOTTI AND XIAN-ZHI YUAN

In this note we deal with the following problem: given a nonempty closed convex
subset X of Rn and two multifunctions r : X -» 2X and $ : X -» 2R" , to find
(x,z) S X X Rn such that

x 6 T{x), ? e $(s?) and (?, x - y) ^ 0 for all y G T(x).

We prove a very general existence result where neither T nor $ are assumed to be
upper semicontinuous. In particular, our result give a positive answer to an open
problem raised by the first author recently.

1. INTRODUCTION

Given a nonempty closed convex subset X of R n and two multifunctions T : X —*

2X and $ : X —> 2 R , the generalised quasi-variational inequality problem associated
with X , r and $ (in short, GQVI (X, T, $)) is to find (z, z) G X x Rn such that

x e T(x), z e $(£) and (z,x - y) ^ 0 for all y e T(x),

where (•,•) is the usual scalar product of Rn which induces the Euclidean norm ||-||.
This problem, which was introduced by Chan and Pang in [3], extends simultaneously
the generalised variational inequality problem (F(x) = X) and the quasi-variational
inequality problem (where $ is single-valued), both being generalisations of the classical
variational inequality problem. The reader is referred to [10] for an excellent and
detailed treatment of the basic facts in both theory and applications of finite dimensional
variational inequalities and for very detailed references. For other applications of the
problem GQVI(X,r,$), we refer for instance to [6, 7, 8].

In the paper [3], Chan and Pang also established their classical existence result
[3, Corollary 3.1], which remains undoubtedly one of the basic facts in the theory of
variational inequalities. Chan and Pang's result is as follows (see also [10, Theorem
6.1]).
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THEOREM 1 . 1 . Let X C Rn be nonempty, compact and convex, V : X -> 2X

both lower and upper semicontinuous with nonempty closed convex values, $ :
X —> 2R upper semicontinuous with nonempty compact convex values. Then
GQVI(X,r ,$) admits a solution.

Recently, a general existence result for the problem GQVI(X, T, $) was estab-
lished by the first author in [4], which improves Theorem 1.1 in some directions. In
particular,, the multifunction $ was allowed to lie in a larger class than the one of upper
semicontinuous multifunctions. We now state such result.

THEOREM 1 .2 . [4, Theorem 1]. Let X C R" be closed and convex, T : X -> 2X

and $ : X —> 2R two multifunctions, K C X a nonempty compact set. Assume that:

(i) t ie set $(a;) is nonempty and compact for each x £ X, and convex for
each x £ X, with x £ F(a;);

(ii) for each y £ X — X, the set {x £ X : inf (z, y) ^ 0} is closed;
z€*(z)

(iii) F is a lower semicontinuous multifunction with closed graph and nonempty
convex values;

(iv) r(a;) D K ^ 0 for all x 6 X;
(v) for each x £ X \ K, with x £ F(x), one has

sup inf (z,x —y)>0.
) )

Then GQVI(X,r,$) has at least one solution.

We recall that when the set X is compact, assumption (iii) above means exactly
that F is both lower and upper semicontinuous with nonempty closed convex values.
Moreover, it is easy to see that if the compact-valued multifunction $ is upper semi-
continuous, then it satisfies assumption (ii) of Theorem 1.2, while the converse is not
necessarily true. Therefore, Theorem 1.2 strictly contains Theorem 1.1. We refer to
[15] for the basic properties and a nice characterisation of the multifunctions satisfying
assumptions (i) and (ii)/of Theorem 1.2.

Very recently, in [5], the following problem was raised:

PROBLEM A. Does Theorem 1.2 (hence, Theorem 1.1) remain true if we replace as-
sumption (iii) by the following more general assumption

(iii)' F is lower semicontinuous with nonempty convex values and the set
{a; £ X : x £ r(a;)} is closed ?

In the paper [5], it was shown that Problem A admits a positive answer (for
compact X) if one assumes, in addition, that each set T(x) has nonempty interior
(see [5, Theorem 2.1]).
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Our goal in this paper is to give a complete positive answer to Problem A. That is,
we show that the mentioned improvement of Theorem 1.2 is possible, without assuming
any further restriction. In fact, we are able to prove the following result, which unifies
all the above results and improves each of them.

THEOREM 1 .3 . Let X C R" be closed and convex, K C X be a nonempty
compact set, T : X —* 2X and $ : X —> 2 be two multifunctions. Assume that:

(i) the set $(x) is nonempty and compact for each x G X, and convex for
eaci x G X with x G T(x);

(ii) for each w G X — X, the set {x G X : inf (z,w) ^ 0} is closed;

(iii) the multifunction T is lower semicontinuous with convex values and the
set {x G X : x G T(x)} is closed;

(iv) T{x)nK ^0 foraM xeX;
(v) for each x G X \ K with x G T(x), and eaci z G ${x), there exists

y G F(x) l~l K such that {z, x - y) ^ 0.

Then GQVI (X, T, $) admits a solution.

2. PRELIMINARIES

Let S and V be two metric spaces, \P : 5 —> 2V a multifunction. We say that $ is
upper semicontinuous in 5 if for each closed fi C V the set \P~(fi) = {s G 5 : \P(.s)nfi ^
0} is closed in 5. We say that \P is lower semicontinuous in 5 if for each open f2 C V
the set \P~(fi) is open in S. We recall, in particular, that if for each v G V the set
\&~({x;}) is open in S, then $ is lower semicontinuous. In the sequel we shall write
*-(«) instead of *~({v}). The graph of $ is the set {{s,v) G S x V : v G *(s)}. We
briefly recall some basic implications. (For more details on multifunctions, the reader
is referred to [11].)

(a) if 9 has closed graph, then each set *(s) is closed;
(b) if $ has closed graph and V is compact, then $ is upper semicontinuous;
(c) if $ is upper semicontinuous with nonempty closed values, then the graph

of $ is closed;
(d) if V - S and the graph of * is closed, then the set {s G S : s G #(s)} is

also closed.

If A C R", we denote by A the closure of A. Also, we denote by ri(A) the relative
interior of A (that is, the interior of A in its affine hull), while span (.A) will denote the
linear subspace of Rn spanned by A. We recall that each nonempty convex subset of
Rn has nonempty relative interior.

If x G Rn and r > 0, we put B(x,r) = {v G R" : \\x - v\\ < r}, BT = B(0Rn,r)
and B% - {v G Rn : ||w|| < r}. The following fact follows at once from [16, Theorem
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3.8.6]. For the sake of completeness, we give a short proof.

PROPOSITI ON 2 . 1 . Let D be a metric space, T : D -> 2 a " be a multifunction,
and T > 0. Assume that:

(i) F is iower semicontinuous with convex values;

(ii) r ( z ) n £ r ^ 0 for all x G £».

Then the multifunction x —» F(x) fl B% is lower semicontinuous in D.

PROOF: Since Br is open, by (i) and (ii) the multifunction x —> F(x) n Br is
lower semicontinuous in D with nonempty values, hence by [11, Proposition 7.3.3] the
multifunction x —> F(x) C\ Br is lower semicontinuous in D. Now, let us show that for
each x G D one has

(1)

Fix x G D, and let y £ T(x) n B%. Let (yk) be a sequence in T(x) D B% such that
(l/fc) —> y- Choose u G F(x) fl 5 r (such v exists by (ii)) and, for each k G N, put
Uk = (1 — l/k)yk + ( l /^) v - It is easy to see that the whole sequence (m) lies in
F(a;) n Br. Since (ut) —» j / , we get y G F(a;) D 5 r . Therefore, we have shown that
F(i) n 5f C T(x) C\ Br for all x G JD- Since the converse inclusion trivially holds,
(1) holds. Therefore, the multifunction x —> F(a;) (1 B% is lower semicontinuous in D.
Again by [11, Proposition 7.3.3] we have that the multifunction x —> T(x)C\B^. is lower
semicontinuous in D; that is our claim. D

3. RESULTS

Theorem 1.3 will follow from the following more general result.

THEOREM 3 . 1 . Let X C Rn be closed and convex, F : X -> 2X and $ : X ->
2 R be two multifunctions. Assume that:

(i) the set $(x) is nonempty and compact for each x G X, and convex for
each x G X, with x G F(x);

(ii) for each w G X — X, the set { i £ l : inf (z,w) ^ 0} is closed;

(iii) the multifunction F is iower semicontinuous with convex values and the
set {x G X : x G F(z)} is closed.

Moreover, assume that there exists r > 0 such that the following conditions hold:
(iv) X n Br ^ $ and T(x) H Br + 0 for al/ x G X n ££;
(v) for each x G X , with x G F(x) and \\x\\ = r, and each z G 3>(z), there

exists y G F ( x ) , with \\y\\ < r, such that (z,x — y) ^ 0 .

Then there exists (x,z) G X x R n , with ||x|| < r, which solves GQVI(X,F,$).
Before proving Theorem 3.1, we consider the case where the set X is compact.

That is, we first prove the following result.
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THEOREM 3 . 2 . Let X be a. nonempty compact and convex subset of R n , F :
X —* 2X and $ : X —> 2 R be two multifunctions. Assume that:

(i) the set $ (z ) is nonempty and compact for each x £ X, and convex for

each x E X with x £ F(x) ;
(ii) {or each w £ X — X, the set {x £ X : inf (z,w) ^ 0} is closed;

2g*(l)

(iii) the multifunction T is lower semicontinuous with nonempty convex values;

(iv) the set {x £ X : x £ T(x)} is closed.

Then G Q V I ( X , I \ $ ) admits a solution.

PROOF: Define F : X -> 2X by

F{x) = {y £ T{x) : inf <z, z - y) > 0}

for each x £ H. We shall prove that .F is lower semicontinuous. We first define a
set-valued mapping Fi : X —> 2X by Ji(a;) = {y £ X : inf (z,a: - y) > 0} for

each a; £ X. Then .Fi has convex values and its graph is open by the Lemma 2.2 of
[14, p.376]. Note that T is lower semicontinuious and F(x) — Fi(x) D T(x) for each
x £ X. It is easy to see that F is lower semicontinous by the definition of the lower
semicontinuity (for example, see [16, p.141]).

Now, observe that by [12, Theorem 3.1'"] there exists a continuous g : X —» X

such that g(x) £ T(x) for all x £ X . By Brouwer's classical fixed point theorem,
(see, for instance, [1, Theorem 7.1], there exists x £ X such that x = g(x) £ T{x).

Therefore, the set H := {a; £ X : x £ F(a;)} is nonempty. Consider the multifunction
G : X -> 2X defined by putting

J F{x) H x E H
( ~ \ T(x) ifxeX\H.

We claim that there exists x £ H such that F(x) = 0. Arguing by contradiction,
assume that F(x) ^ 0 for all x £ H. Thus, the multifunction G has nonempty
convex values. Moreover, since H is closed by assumption, F and T are lower semi-
continuous and F(x) C T(x) for all x £ X, it is easily seen (see, for instance, [13,
Lemma 2.3]) that the multifunction G is lower semicontinuous. Again by [12, Theorem
3.1"'] and Brouwer's fixed point theorem, there exists x* £ X such that x* £ G(x*).

Since G(x) C T(x) for all x £ X, we get x* £ J? f~l F(x*). In particular, we have
inf (z,x* — x*) > 0, which is absurd. Consequently, there exists x £ H such that

F(x) = 0. That is, x £ T(x) and inf (z,x - y) ^ 0 for all y £ T(x). By [2,

Proposition 1] we get z *•*•'
inf sup (z, x — y) ^ 0.

https://doi.org/10.1017/S0004972700017706 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017706


252 P. Cubiotti and X-Z. Yuan [6]

Since the function z —> sup (z,x — y) is lower semicontinuous (see [9, p.10]) and the

set 3>(aT) is compact, there exists z"£ $(x) such that

sup (z, x— y) = inf sup (z,x — y) < 0.

The proof is complete. D

PROOF OF THEOREM 3.1: Put Xr=Xr\B$. By Proposition 2.1, the multifunc-
tion F r : XT —> 2^r defined by putting rr(a;) = T{x) fl J9J: is lower semicontinuous in
XT with nonempty convex values. Moreover, the set {x £ Xr : a £ Fr(a;)} = {a; £
.X : a: £ F(a;)} ("I .BJ: is closed by (iii). Finally, we observe that for each w £ XT — Xr

the set {a; £ XT : inf (z,w) ^ 0} is closed. Therefore, by Theorem 3.2, there exists

x £ r (x ) , with ||aT|| ^ r, and ? £ $(£) such that

(3) ( ? , * - y > ^ 0 for all y £ T(aT) fl BC
T.

We claim that (x,z) solves GQVI (X,T, $). To see this, let v £ T(x). We distinguish

two cases.

(a) ||aT|| < T. In this case, there exists A £ (0,1) such that v\ := (1 — A)sT + Ax; £

T(x)r\BT. By (3), we get

0 ^ (?,s; -VA) = A(z,z-t ;) ,

hence {z,x — v) ^ 0 , as desired.

(b) ||z|| = r. By assumption (v) there exists u £ r(x)ni? r such that (z,x — u) ^ 0.

By (3), we get

(4) {z,x-u)=0.

Let b £ (0,1) be such that xb := (1 - 6)u + bv £ r(x) f l 5 r . By (3) and (4) we get

0 ̂  (z,x-xb) - b{z,x-v),

hence (z, x — v) ^ 0, as desired. The proof is complete. U

REMARK 3.2. (i) Theorem 1.3 follows at once from Theorem 3.1 by choosing any
r > 0 in such a way that K C Br. Moreover, it is worth noticing that also the
coercivity condition (v) of Theorem 1.3 is weaker than the corresponding assumption
(v) in Theorem 1.2.
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(ii) It is easy to construct an example of a situation where Theorem 3.2 (hence,
Theorems 1.3 and 3.1) applies but Theorems 1.1 and 1.2 do not. To see this, take
X = [0,1], $ ( E ) = {X} and

In fact, such F is lower semicontinuous with nonempty closed convex values, but the
graph of F is not closed, F is not upper semicontinuous. However, we have {x 6 X :
x £ F(x)} = [0,1], hence Theorem 3.2 applies. We also note that the interior of F(l/2)
is empty, hence [5, Theorem 2.1] cannot be applied (see the Introduction).
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