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Abstract

We investigate the tail behaviour of the steady-state distribution of a stochastic recursion
that generalises Lindley’s recursion. This recursion arises in queueing systems with
dependent interarrival and service times, and includes alternating service systems and
carousel storage systems as special cases. We obtain precise tail asymptotics in three
qualitatively different cases, and compare these with existing results for Lindley’s
recursion and for alternating service systems.
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1. Introduction

In this paper we focus on large deviations properties of stochastic recursions of the form

Wn+1 = (YnWn + Xn)
+, (1)

where (Xn) is an independent and identically distributed (i.i.d.) sequence of generally distributed
random variables, and (Yn) is an i.i.d. sequence independent of (Xn) such that P(Y1 = 1) =
p = 1−P(Y1 = −1), p ∈ [0, 1]. Here, by x+ we denote max{0, x}. Assuming that there exists

a random variable W such that Wn
d−→ W (where ‘

d−→’ denotes convergence in distribution), we
are interested in the tail behaviour of W , i.e. the behaviour of P(W > x) as x → ∞. Whitt [19]
provided a detailed analysis on the existence of W .

The stochastic recursion (1) has been proposed as a unification of Lindley’s recursion (with
p = 1) and of the recursion

Wn+1 = (Xn − Wn)
+, (2)

which is obtained by taking p = 0. Lindley’s recursion [11] is one of the most studied stochastic
recursions in applied probability; Asmussen [1] and Cohen [5] provided a comprehensive
overview of its properties. Recursion (2) is not as well known as Lindley’s recursion, but
occurs naturally in several applications, such as alternating service models and carousel storage
systems. This recursion has been the subject of several studies; see, for example, [12], [15],
[16], [17], and [18]. Most of the effort in these studies has been devoted to the derivation of
the distribution of W under various assumptions on the distribution of X.
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Tail asymptotics for a random sign Lindley recursion 73

An interesting observation from a methodological point of view is that certain cases that are
tractable for Lindley’s recursion (leading to explicit expressions for the distribution of W ) do
not seem to be tractable for (2), and vice versa. This was one of the motivations of Boxma and
Vlasiou [3] to investigate the distribution of W defined in (1). For the case Xn = Bn − An,
with Bn and An independent nonnegative random variables, the work in [3] provides explicit
results for the distribution of W , assuming that either Bn is phase type and An is general or that
Bn is a constant and An is exponential.

It appears to be a considerable challenge to obtain the distribution of W under general
assumptions on the distribution of Xn. To increase the understanding of (1), it is therefore
natural to focus on the tail behaviour of W . Our interest in the tail behaviour of W was raised
after realising that the tail behaviour for W can be completely different, depending on whether
p is 0 or 1. For example, for p = 0, it was shown in [15] that

P(W > x) ∼ E[e−γW ] P(X > x)

if eX is regularly varying with index −γ . This includes the case γ = 0 (in which the right
tail of X is long tailed), as well as the case where X has a phase-type distribution (leading to
γ > 0). This behaviour is fundamentally different from the case p = 1, where, for example,
under the Cramér condition, the tail behaves asymptotically as an exponential; see also [10]
for a concise review of the state of the art. This inspired us to investigate what happens for
general p.

As is the case for Lindley’s recursion, i.e. for p = 1, we find that there are essentially three
main cases. For each case, we obtain the asymptotic behaviour of P(W > x). A brief summary
of our results is as follows.

1. We first consider the case where X has a heavy right tail. In this case, we show that the
tail of W is, up to a constant, equivalent to the tail of X, under the assumption that p < 1.
Our result shows that there is a qualitative difference with p = 1. We derive the tail
behaviour of W by developing stochastic lower and upper bounds which asymptotically
coincide.

2. The second case we consider is where X satisfies a Cramér-type condition, leading to
light-tailed behaviour of W . By conveniently transforming (1) we are able to apply the
framework of Goldie [9] to get the precise asymptotic behaviour of P(W > x) as x → ∞.
Our results indicate that for this case there is not a phase transition of the form of the tail
asymptotics at p = 1, but at p = 0.

3. We finally consider the analogue of the so-called intermediate case, where distributions
are light tailed but the Cramér-type condition does not hold. Although the framework
of Goldie [9] does not apply, we can modify some of his ideas to obtain the precise
asymptotic behaviour of P(W > x), assuming that the right tail of X is in the so-called
S(γ ) class; precise assumptions are stated later in the paper. Interestingly, we find that
in this case, there is no phase transition at all; the description of the right tail of W found
for p ∈ (0, 1) also holds for the extreme cases p = 0 and p = 1.

We believe that the method we develop to deal with the intermediate case is interesting
in itself and can also be applied to other stochastic recursions.

This paper is organized as follows. Notation is introduced in Section 2. Section 3 focuses
on the case in which X has a heavy right tail. The Cramér case is investigated in Section 4.
The intermediate case is developed in Section 5, with which we conclude.

https://doi.org/10.1239/jap/1269610817 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610817


74 M. VLASIOU AND Z. PALMOWSKI

2. Notation and preliminaries

Throughout this paper, (Xn) and (Yn) are two mutually independent, doubly infinite i.i.d.
sequences of random variables as introduced before. We often take generic independent copies
W and X of the random variables Wn and Xn, as well as of other random variables. Specifically,
W is a random variable such that W

d= (X + YW)+, where the random variables X, Y , and
W appearing on the right-hand side are independent, and ‘

d=’ denotes equality in distribution.
Let N be a random variable such that P(N = k) = (1 − p)pk, k ≥ 0, and define K = N + 1.
Loosely speaking, we will use N to count the number of times where Y = 1 before the
event Y = −1.

Let Tn = sup0≤i≤n Si , with S0 = 0 and Si = X1 + · · · + Xi for i ≥ 1. Define the random
variable U as Ui = Xi if Yi = 1 and Ui = −∞ if Yi = −1. Then

TN
d= sup

n≥0
[U0 + · · · + Un]. (3)

Under the assumption that P(Xn < 0) > 0 and P(Y1 = 1) = p = 1−P(Y1 = −1), p ∈ [0, 1),
which will be made throughout this paper (although we will occasionally compare our results
with existing ones for p = 1), it follows from results in [3] and [19] that there exists a
stationary sequence (Wn) that is driven by (1); in particular, (Wn) is regenerative with finite-
mean cycle length. As a final point, we use the notational convention f (x) ∼ g(x) to denote
that f (x)/g(x) → 1 as x → ∞.

3. The heavy-tailed case

The goal of this section is to obtain the tail behaviour of W , assuming that the right tail of
X is subexponential. Namely, we assume that the right tail of X is long tailed. That is, for
fixed y, it satisfies the following two relations (recall that X may not be positive):

P(X1 > x) ∼ P(X1 > x + y)

and
P(X1 + X2 > x) ∼ 2 P(X1 > x).

We refer the reader to [7] for a detailed treatment of subexponential distributions.
The idea of the proof for this case is to first derive stochastic bounds of W in terms of TK

(cf. Lemma 1, below), and then to derive the tail behaviour of TK (Lemma 2, below) to obtain
the tail behaviour of W .

Lemma 1. It holds that W ≤ TK and W ≥ TK − W ′, with both inequalities in distribution,
and with W ′ an independent copy of W , independent of TK .

Proof. Consider a stationary version of (1), so that W
d= W0. Note that we can interpret

N as
N = min{k ≥ 0 : Y−k−1 = −1},

keeping in mind that we look at events before time zero. Write

P(W0 > x) =
∞∑

n=0

P(W0 > x | N = n) P(N = n).
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The crucial observation is now that the sequence (Wn) behaves like the standard Lindley’s
recursion between time −N + 1 and 0. Since N is a reversed stopping time, it is independent
of all events occurring before time −N − 1. In particular, N is the first time in the past where,
for N = k, Y−k−1 = −1. That is, W−N = (X−N−1 − W−N−1)

+, and (by stationarity)
W−N−1

d= W , since W−N−1 is determined only by events before time −N − 1. If we set
WL

k+1 = (WL
k + Xk)

+ then

P(W0 > x | N = n) = P(WL
0 > x | WL−n = (X−n−1 − W−n−1)

+).

From this we see that

P(W > x) =
∞∑

n=0

P(WL
n > x | WL

0 = (X − W)+) P(N = n).

Iterating Lindley’s recursion and rearranging indices, we obtain the property that

(WL
n | WL

0 = (X − W)+)
d= max{0, X0, . . . , X0 + · · · + Xn−1, X0 + · · · + Xn − W }.

Combining the last two equations, we obtain the bounds

P(W > x) ≤
∞∑

n=0

P(Tn+1 > x) P(N = n),

P(W > x) ≥
∞∑

n=0

P(Tn+1 − W > x) P(N = n).

The proof follows by noting that K = N + 1.

Lemma 1 suggests that the tail behaviour of W is related to the tail behaviour of TK . The
tail behaviour of the latter random variable is derived in the next lemma.

Remark 1. Note that Lemma 1 holds without having to make any assumptions on the distri-
bution of X. Also, note that the lemma leads to the alternative lower bound W ≥ TN .

Lemma 2. If X is subexponential and p ∈ [0, 1), then

P(TK > x) ∼ 1

1 − p
P(X > x).

We omit the proof as the above lemma follows from the fact that the random variable K is
independent of the sequence (Xn) and has a light-tailed distribution. In the proof, the sequence
of truncated stopping times, and then the dominated convergence theorem can be used. For
details, see [7, Lemma 1.3.5] and [8].

We can now formulate the main result of this section.

Theorem 1. If X is subexponential and p ∈ [0, 1), then

P(W > x) ∼ 1

1 − p
P(X > x).

Proof. Since TK and X are tail equivalent, and since X is subexponential, TK is subexpo-
nential as well. This implies, in particular, that TK is long tailed. This implies in turn that
P(TK > x + W ′) ∼ P(TK > x); see [13]. The proof is now completed by invoking Lemma 1.
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It is interesting to compare Theorem 1 with existing results for p = 0 and p = 1. Theorem 1
is consistent with the result P(W > x) ∼ P(X > x), which holds for p = 0 and is shown
in [15], under the assumption that the right tail of X is long tailed.

As can be expected from the constant 1/(1 − p), a discontinuity in the asymptotics for
W occurs at p = 1. In this case, it is well known that the asymptotics are of the form∫ ∞
x

P(X > u) du, which decreases to 0 at a slower rate than P(X > x); see, for example, [10],
[14], and [20] for precise statements.

4. The Cramér case

The stochastic bounds of W derived in Lemma 1 yield only precise asymptotics if W itself
is long tailed. If X has a light right tail, i.e. if E[eεX] < ∞ for some ε > 0, then TK satisfies a
similar property, implying (by the first part of Lemma 1) that W has a light tail as well, which
rules out that W is long tailed. Therefore, we need a different approach to obtain the precise tail
asymptotics of W . The idea in this section is to relate our recursion to the class of stochastic
recursions investigated in [9].

Let Bn = 1 with probability p and let Bn = 0 otherwise, where, for all n, the random
variables Bn are independent of each other and of everything else. Define the three random
variables Mn = BneXn , Qn = eXn , and Rn = eWn , and observe that (Mn, Qn)

d= (eUn, eXn).
With the obvious notation, we have

R
d= max{1, Q/R, MR}, (4)

where Q, M , and R on the right-hand side are independent. Note that Q ≥ M almost surely
(a.s.). We can now obtain the tail behaviour of R by applying Theorem 2.3 of Goldie [9]. To
meet the conditions of Goldie’s result, we assume that the distribution of X is nonlattice, and
that there exists a solution κ > 0 of E[Mκ ] = 1 satisfying E[XeκX] < ∞, or, equivalently,

E[eκX] = 1

p
such that m = E[X eκX] < ∞. (5)

Theorem 2. Under condition (5), we have

P(R > x) ∼ Cx−κ and P(W > x) ∼ Ce−κx

with

C = 1

m

∫ ∞

0
[P(R > t) − P(MR > t)]tκ−1 dt.

Proof. The result follows from Theorem 2.3 of [9], after we establish that
∫ ∞

0
|P(R > t) − P(MR > t)|tκ−1 dt < ∞. (6)

The proof is therefore devoted to verifying (6). From (4), it is clear that R is stochastically
larger than MR, so we can remove the absolute values in (6). Note that

P(R > t) − P(MR > t) = P(max{1, Q/R, MR} > t) − P(MR > t).

Thus, for t > 1,
P(R > t) − P(MR > t) = P(Q/R > t; MR ≤ t).
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Since R ≥ 1 a.s., this is bounded from above by P(Q > t). Thus,

∫ ∞

0
|P(R > t) − P(MR > t)|tκ−1 dt =

∫ ∞

0
(P(R > t) − P(MR > t))tκ−1 dt

≤
∫ 1

0
tκ−1 dt +

∫ ∞

1
tκ−1 P(Q > t) dt

≤ 1

κ
+

∫ ∞

0
tκ−1 P(Q > t) dt

= 1

κ
(1 + E[Qκ ]). (7)

Since κ > 0 and E[Qκ ] = 1/p < ∞, we conclude that (6) indeed holds.

The constant C can be rewritten as follows.

Proposition 1. We have

C = 1 − p

mκ
+ 1 − p

m

∫ ∞

0
P(X − W > s)eκs ds + p

m

∫ 0

−∞
eκs P(X + W ≤ s) ds. (8)

Proof. Since R
d= max{1, Q/R, MR}, we can write

P(R > t) − P(MR > t) = P(max{1, Q/R, MR} > t) − P(MR > t)

= P(max{1, Q/R} > t; MR ≤ t).

Observe that
∫ ∞

0
tκ−1 P(max{1, Q/R} > t; MR ≤ t) dt =

∫ ∞

−∞
eκs P(max{1, Q/R} > es; MR ≤ es) ds.

(9)
Let (U, X) be a copy of (Un, Xn); it is useful to recall that U = X with probability p and

U = −∞ with probability 1 − p. Since (Q, M)
d= (eX, eU), and W = log R, it follows that

P(max{1, Q/R} > es; MR ≤ es)

= P(max{0, X − W } > s; U + W ≤ s)

= (1 − p) P(max{0, X − W } > s) + p P(max{0, X − W } > s; X + W ≤ s).

Equation (8) can now be derived by inserting the above expression into (9), distinguishing
between positive and negative values of s, and some further simplifications.

Although this provides an expression for the prefactor C, this expression is not explicit as
it depends on the entire distribution of W . It is therefore interesting to obtain bounds for C.
From the proof of Theorem 2, it is clear that

C ≤ 1

mκ

1 + p

p
;

see also (7). In addition, since W ≥ TN (see Remark 1), it is possible to obtain a lower bound
for C by deriving the tail behaviour of TN . Specifically, it follows from the representation (3)
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and a version of the Cramér–Lundberg theorem in case the summands of the random walk are
equal to −∞ with positive probability that there exists a constant CT such that

P(TN > x) ∼ CT e−κx.

This fact actually follows from Theorem 2.3 of [9] as well, but can also be proven along the
same lines as the standard proof, by mimicking, for example, the proof of Theorem XIII.5.1
of [1]. Since W ≥ TN , we see that C ≥ CT . Alternative lower and upper bounds may be
derived from (8).

The exact computation of C is possible if the exact distribution of W is available. Boxma
and Vlasiou [3] derived expressions for the distribution of W in the case X

d= B − A, with B a
phase-type distribution and A a general distribution. They also obtained the distribution of W

in the case where B is deterministic and A is exponential. Computing the exact distribution of
W in general seems to be an intractable problem.

As in the previous section, we compare our results with the existing results for p = 0 and
p = 1. For clarity, write κ = κ(p) and C = C(p). It is evident that κ(p) is continuous
at p = 1 if (5) holds for some p < 1. The constant C(1) can also be shown to be equal to
CT , by observing that Theorem XIII.5.1 of [1] is a special case of Theorem 2.3 of [9]. Thus,
unlike in the heavy-tailed case, the final asymptotic approximation C(p)e−κ(p)x of P(W > x)

is continuous at p = 1.
Interestingly, it is now the case p = 0 that is causing some issues. Vlasiou [15] showed that,

for the case p = 0,
P(W > x) ∼ E[e−γW ] P(X > x)

if eX is regularly varying of index −γ < 0. If the tail of X is of rapid variation (i.e. P(X >

xy)/ P(X > x) → 0 for fixed y > 1) then

P(W > x) ∼ P(W = 0) P(X > x).

Thus, in both cases, the tails of W and X are equivalent up to a constant. From Theorem 2 we
see that the tail asymptotics for p > 0 are of a different form. In particular, if, for example, X

is of rapid variation then E[esX] < ∞ for all s > 0, which implies that Theorem 2 holds, i.e.
the tail of W is exponential for all p > 0 while it is lighter than any exponential for p = 0.
In this case, as p → 0, we have κ(p) → ∞. In the case where E[esX] = ∞ for some s > 0
we distinguish two scenarios. Let q = sup{s : E[esX] < ∞}. In the first scenario, the moment
generating function is steep, that is, E[eqX] = ∞, in which case κ(p) converges to q. Under the
assumption in [15] that eX is regularly varying of index −γ < 0, we find that κ(p) converges
to γ . Note that the asymptotics though might still be of a different form, since P(X > x) may
not have a purely exponential tail. In the second scenario we have E[eqX] < ∞. In this case,
Theorem 2 does not apply if E[eqX] is less than 1/p. The study of this case is the subject of
the following section.

5. The intermediate case

In this section we investigate the tail asymptotics when X is light tailed, but does not satisfy
the Cramér condition (5). In particular, we assume that X is nonlattice, and a member of the
class S(γ ) for some γ > 0; that is, for a fixed y,

P(X > x + y)

P(X > x)
→ e−γy as x → ∞, (10)
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and
P(X1 + X2 > x) ∼ 2 E[eγX] P(X > x),

where E[eγX] < ∞. In addition, we assume that

E[eγX] <
1

p
,

so that the Cramér condition (5) does not hold (since (10) implies that E[e(γ+ε)X] = ∞ for
ε > 0 and the function E[esX] is convex in s).

Although the framework of Goldie [9] does not apply in this case, we are able to modify
some of the ideas in that paper to develop an analogue result for the setting of this paper; we
believe that our modification is of independent interest.

The main idea is to derive a useful representation for the distribution of W , from which the
tail behaviour can be determined. Define

g(x) = P(W > x) − P(U + W > x),

whereU andW are independent, setVn = ∑n
i=1 Ui, V0 = 0, and recall thatSn = X1+· · ·+Xn.

The following representation holds.

Lemma 3. We have

P(W > x) = P(SN > x) + p

1 − p
P(X + W + SN ≤ x; SN > x)

+ P(X − W + SN > x; SN ≤ x). (11)

Proof. By a telescopic sum argument, as in [9, p. 144], we observe that

P(W > x) =
n∑

k=1

(P(Vk−1 + W > x) − P(Vk + W > x)) + P(Vn + W > x)

=
n∑

k=1

(P(Vk−1 + W > x) − P(Vk−1 + U + W > x)) + P(Vn + W > x)

=
n−1∑
k=0

∫ ∞

−∞
g(x − y) dP(Vk ≤ y) + P(Vn + W > x).

Since Vn → −∞ a.s. as n → ∞, it follows that

P(W > x) =
∫ ∞

−∞
g(x − u)

∞∑
n=0

dP(Vn ≤ u).

Note that g(∞) = 0, and that the integration range does not include −∞, although Ui does
have mass at this point. Moreover, since P(Vn ≤ u) = 1 − pn + pn P(Sn ≤ u), we conclude
that dP(Vn ≤ u) = pn dP(Sn ≤ u). Recalling that P(N = n) = pn(1 − p), we obtain

∞∑
n=0

pn P(Sn ≤ u) = 1

1 − p
P(SN ≤ u).
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Thus,

P(W > x) = 1

1 − p

∫ ∞

−∞
g(x − u) dP(SN ≤ u). (12)

We now simplify the function g, using similar arguments as in the proof of Proposition 1 in the
previous section. Note that

g(x) = 1 − p + p P(X + W ≤ x), x < 0,

g(x) = (1 − p) P(X − W > x), x ≥ 0.

Inserting this expression for g into (12), we obtain

P(W > x) = 1

1 − p

∫ ∞

x

[1 − p + p P(X + W ≤ x − u)] dP(SN ≤ u)

+
∫ x

−∞
P(X − W > x − u) dP(SN ≤ u)

= P(SN > x) + p

1 − p
P(X + W + SN ≤ x; SN > x)

+ P(X − W + SN > x; SN ≤ x),

which is identical to (11).

A crucial second ingredient in obtaining the tail asymptotics is the following useful lemma.

Lemma 4. If X ∈ S(γ ) with ϕ(γ ) = E[eγX] < 1/p, then

P(SN > x) ∼ (1 − p)p

(1 − pϕ(γ ))2 P(X > x),

P(SK > x) ∼ 1 − p

(1 − pϕ(γ ))2 P(X > x).

Proof. From, e.g. [4, Theorem 1], we have

P(SN > x) ∼ E[Nϕ(γ )N−1] P(X > x),

P(SK > x) ∼ E[Kϕ(γ )K−1] P(X > x).

Keep in mind that K = N+1. The specific constants follow from straightforward computations.

We are now ready to state and prove the main result of this section.

Theorem 3. Let Eγ be an exponential random variable of parameter γ , independent of every-
thing else. Then,

P(W > x) ∼ Cγ P(X > x),

with

Cγ = (1 − p)p

(1 − pϕ(γ ))2

[
P(X − W + Eγ ≤ 0) + p

1 − p
P(X + W + Eγ ≤ 0)

]

+ 1 − p

(1 − pϕ(γ ))2 E[e−γW ].
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Proof. Number the terms in the representation of P(W > x) that is given in (11) as I, II,
and III. Lemma 4 yields the tail behaviour of term I . To obtain the tail behaviour of terms II
and III, we make the following useful observation. From Lemma 4 and (10), it follows that,
for fixed y,

P(SN − x > y | SN > x) = P(SN > x + y)

P(SN > x)
→ e−γy =: P(Eγ > y) (13)

as x → ∞. Observe that (13) implies that

II = p

1 − p
P(X + W + SN − x ≤ 0 | SN > x) P(SN > x)

∼ p

1 − p
P(X + W + Eγ ≤ 0) P(SN > x).

For the third term, the argument is similar, but slightly more involved. Write

III = P(X − W + SN > x; SN ≤ x)

= P(X − W + SN > x) − P(X − W + SN > x; SN > x). (14)

First, observe that X + SN
d= SK , and observe that the tail of eSK is regularly varying of index

−γ . Since e−W has bounded support, it has finite moments of all orders, so we can apply
Breiman’s theorem [6], as well as the above lemma, to obtain

P(X − W + SN > x) ∼ E[e−γW ] P(SK > x).

To analyse the second term in (14), observe that

P(X − W + SN > x; SN > x) = P(X − W + SN − x > 0 | SN > x) P(SN > x)

∼ P(X − W + Eγ > 0) P(SN > x).

We conclude that

III ∼ E[e−γW ] P(SK > x) − P(X − W + Eγ > 0) P(SN > x).

Putting everything together, we obtain

P(W > x) ∼
[

1 + p

1 − p
P(X + W + Eγ ≤ 0) − P(X − W + Eγ > 0)

]
P(SN > x)

+ E[e−γW ] P(SK > x).

Simplifying this constant and applying Lemma 4 twice completes the proof.

Again, we compare our result with the existing results for p = 0 and p = 1. For p = 0,
it was shown in [15] that P(W > x) ∼ E[eγW ] P(X > x) (note that (10) guarantees that eX is
regularly varying with index −γ ). This is consistent with the constant Cγ defined above, which
indeed simplifies to E[e−γW ] when p = 0.

For p = 1, it is known (see, e.g. [2] and [10]) that

P(W > x) ∼ E[eγW ]
1 − ϕ(γ )

P(X > x).
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This is consistent with our constant Cγ specialised to p = 1, in which case

Cγ = P(X + W + Eγ ≤ 0)

(1 − ϕ(γ ))2 .

In order to show continuity at p = 1, we need to show that p = 1 implies that

P(X + W + Eγ ≤ 0) = E[eγW ](1 − ϕ(γ )).

This can be shown by using the fact that, for any nonnegative random variable Y , E[e−γ Y ] =
P(Y ≤ Eγ ), using the identities ex + 1 = ex+ + ex−

and W
d= (W + X)+, which holds for

p = 1. To this end, we have

P(X + W + Eγ ≤ 0) = P(Eγ ≤ −(X + W))

= P(Eγ ≤ −(X + W)−)

= 1 − P(−(X + W)− ≤ Eγ )

= 1 − E[eγ (X+W)−]
= E[eγ (X+W)+] − E[eγ (X+W)]
= E[eγW ] − E[eγX] E[eγW ]
= E[eγW ](1 − ϕ(γ )).

We conclude that the formula we found for the tail asymptotics in the intermediate case is also
valid if p = 0 or if p = 1. This contrasts the heavy-tailed case, in which there is a phase
transition at p = 1 (cf. Section 3), and the Cramér case, where there is a phase transition at
p = 0 (cf. Section 4).
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