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Abstract

We have reviewed seed dormancy and germination in the Rubiaceae, the fourth-largest angio-
sperm family (in terms of species richness), in relation to ecology, life form, biogeography and
phylogeny (subfamily/tribe). Life forms include trees, shrubs, vines and herbs, and tropical
rainforest trees have the greatest number of tribes and species. The family has five kinds of
embryos: investing, linear-full, linear-underdeveloped, spatulate and spatulate-underdevel-
oped, and seeds are non-dormant (ND) or have morphological (MD), morphophysiological
(MPD) or physiological (PD) dormancy. Except for the occurrence of the investing embryo
only in dry fruits of Dialypetalanthoideae, each kind of embryo is found in dry and fleshy
fruits of Dialypetalanthodies and of Rubioideae. In tropical and temperate regions, there
are species with ND seeds and others whose seeds have MD, MPD or PD. A complete
seed dormancy profile (i.e. some species with ND seeds and others whose seeds have MD,
MPD or PD) was found for tropical rainforest trees and shrubs and semi-evergreen rainforest
shrubs. Dormancy-break occurs during cold or warm stratification or dry-afterripening,
depending on the species. Some tropical species have long periods of dormancy-break/ger-
mination extending for 4–5 to 30–40 weeks. Soil seed banks are found in 5 and 15 tribes
of Rubiaceae in tropical and temperate regions, respectively. With increased distance from
the Equator, diversity of life forms and seed dormancy decreases, resulting in only herbs
with PD at high latitudes. We conclude that the low species richness of Rubiaceae in temperate
regions is not related to low diversity of seed dormancy/germination.

Introduction

The Rubiaceae consists of two subfamilies (Dialpetalanthoidea and Rubioideae)
(Razafimandimbison and Rydin, 2024), 620 genera (Plants of World Online) and 13,465 spe-
cies (Stevens 2001). It is the fourth-largest angiosperm family after Asteraceae, Orchidaceae
and Fabaceae (Mabberley, 2017). Most species of Rubiaceae grow in tropical and subtropical
regions, especially in non-disturbed lowland moist forests, and members of this family may be
the most species-abundant woody plants present in the forest (Davis et al., 2009). For example,
in the rainforest flora of peninsular Malaysia, the families with 20 or more genera are
Annonaceae, Euphorbiaceae, Fabaceae and Rubiaceae with 25, 57, 27 and 24 genera, respect-
ively, and with 130, 344, 127 and 237 species, respectively (Ng, 1988). Some species in a few
tribes grow in high latitude/elevation habitats, including subpolar regions of the Arctic and
Antarctic but not on the Antarctic continent (Davis et al., 2009). With an increase in latitude,
the number of tribes and genera represented in the flora decreases. For example, Gleason and
Cronquist (1991) included nine genera in four tribes (Michelleae, Naucleae, Rubieae and
Spermacoceae) in the flora of northeastern USA and adjacent Canada, but Hultén (1968)
has only the genus Galium (Rubieae) in the flora of Alaska and neighbouring Canadian
territories.

Although studies have been conducted on seed dormancy and germination of many species
of Rubiaceae (Baskin and Baskin, 2014), no global assessment of the ecology and biogeography
of seed dormancy or of the phylogenetic relationships of species with non-dormant (ND)
seeds and those with different kinds (classes) of dormancy is available for the family.
However, an analysis of the geographical distribution, diversity, endemism and on-going taxo-
nomic work for the Rubiaceae has been published by Davis et al. (2009). The purpose of our
review is to consider seed dormancy/germination of the Rubiaceae in relation to embryo
morphology, ND and classes of dormancy, seed ecology, plant life form, biogeography/vege-
tation zone and phylogeny (tribe). We addressed five questions. (1) Do embryo morphology
and seed dormancy vary in the two subfamilies of Rubiaceae? (2) What is the seed dormancy
profile (i.e. proportion of ND and the different classes of dormancy) of Rubiaceae for the
major vegetation zones on earth and for the various life forms in this family? (3) Does the
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morphology of Rubiaceae flowers (e.g. bisexual, dioecious, distyly
and homostyly) have an influence of seed dormancy/germination?
(4) How is seed dormancy broken in Rubiaceae? (5) What life
forms and tribes of Rubiaceae are the most likely ones to form
soil seed banks? Before addressing these questions, a family over-
view and background information on palaeohistory, seeds,
embryo morphology and seed dormancy in the Rubiaceae will
be provided.

Family overview

According to Davis et al. (2009), the five most species-rich coun-
tries/regions for Rubiaceae are Columbia, Venezuela, New
Guinea, Brazil (north) and the Democratic Republic of the
Congo. At least 30 genera of Rubiaceae have 100 or more species,
and Psychotria has 1834 species, making it the world’s third lar-
gest angiosperm genus after Astragalus (Fabaceae) with 3200 spe-
cies and Bulbophyllum (Orchidaceae) with c. 2000 species
(Frodin, 2004; Plants of World Online). However, the Rubiaceae
has c. 200 monotypic genera, c. 330 genera with only 2–3 species
and c. 450 genera with 4–10 species (Davis et al., 2009). Based on
13,143 species of Rubiaceae, Davis et al. (2009) estimated that
64% of them are endemic to a particular island/country; the
five places with the highest number of endemics are New
Guinea, Madagascar, Philippines, Borneo and Cuba with 620,
520, 443, 428 and 344 endemic species, respectively.

Life forms of Rubiaceae are trees, shrubs, vines/lianas/climbers
and herbs, including epiphytes. Tree height ranges from c. 10 to
30 m (Robbrecht, 1988; Gardner et al., 2000; Ricker et al., 2013)
with one of the tallest trees, Blepharidium guatemalense, reaching
a height of 40 m (Ricker et al., 2013). In contrast, small pachycaul
(few branches) treelets such asMaschalodesme in New Guinea are
only 1–2 m tall (Ridsdale et al., 1972). There are 32 genera of
climbers in the Rubiaceae in the Neotropics (Delprete, 2022a)
and 88 in the Old World, including Eurasia, Africa and the
West Malay Archipelago (Hu and Li, 2015). Plants of Rubiaceae
climb via stipules, hook-like or straight thorns, involucral bracts,
adventitious roots or twining stems (Robbrecht, 1988; Delprete,
2022a).

Benzing (1991) reported 85 species of epiphytic Rubiaceae.
Members of the genera Anthorrhiza, Hydnophytum,
Myrmedodia, Myrmephytum and Squamellaria in subtribe
Hydnophytinae of tribe Pychotrieae are not only epiphytic, but
the hypocotyl of the seedling enlarges to form a tuber with cham-
bers that become occupied by ants (Huxley, 1978; Jebb, 1991).
These ant-plants are distributed throughout southeast Asia,
being most diverse in New Guinea, (Huxley, 1978; Huxley and
Jebb, 1991; Chomicki and Renner, 2016, 2017), and species of
Hydnophytum and Myrmecodia occur in northern Australia
(Huxley, 1982). Plants of Hydnophytum formicarum, H. moseleya-
num, Myrmecodia armata and M. tuberosa are succulent
(Succulent Plants Website).

Herbaceous Rubiaceae are annuals or perennials, and genera
such as Borreria, Diodia, Galianthe, Galium, Hexasepalum,
Mitracarpus, Paederia, Richardia and Spermacoce can be invasive
and even serious weeds in crops (Salamero et al., 1997; Mersereau
and DiTommaso, 2003; Gallon et al., 2018; Kalsing et al., 2020).
Some species of Richardia and Spermacoce have become resistant
to the herbicide glyphosate used to control weeds in crops such as
soybeans (Kalsing et al., 2020). The Rubiaceae also includes the
mangrove shrubs Rustia occidentalis and Scyphiphora hydrophyl-
lacea (Tomlinson, 1986). Further, species of a few genera such

as Durringtonia (Henderson and Guymer, 1985), Limnosipanea
(Delprete and Cortés-B, 2004) and Oldenlandia (Mukherjee and
Ghosh, 2015) grow in wet habitats.

Taxonomic descriptions of species of Rubiaceae may include
information about raphids (calcium oxalate crystals), leaves,
inflorescences, flowers, fruits and seeds (Dwyer, 1980;
Robbrecht, 1988; Kirkbride et al., 2000; Simpson, 2006;
Mabberley, 2017). Raphides are present in Rubioideae, but they
may, or may not, be present in Dialypetalanthoideae. Leaves are
entire and simple, and they are opposite or decussate (rarely
whorled) on the stem. Leaves of some species, for example
Tricalysia, have domatia used by ants. Stipules are entire, bifid
or fimbriate and may be deciduous or persistent. They are either
intrapetiolar (stipule on both sides of a leaf fuse, placing margin of
stipule between stem and petiole) or interpetiolar (stipules of
opposite leaves fuse, placing margin of stipulate on stem between
the petioles of opposite leaves). In some species, the stipules have
colleters (glands) that produce mucilage.

Flowers are usually produced in a cyme, but sometimes they
are solitary or in panicles or heads. The calyx has four or five
sepals that fuse, forming a tube with distinct lobes, and the four
or five (or more) petals fuse, forming a tubular actinomorphic
flower with lobes. Flowers have four or five (rarely 8–10) stamens
that dehisce pollen via longitudinal slits, but stamens of some spe-
cies have pores. The ovary is inferior (or rarely half inferior) and
has 1–10 locules, often 2, with 1 to many ovules per locule. The
fruit is a berry, capsule, drupe or schizocarp with 1, 2–9, 10–24,
25–49 or ≥50 endospermous seeds, depending on the species
and kind of fruit produced.

Family palaeohistory

In a critical analysis of 134 fossil specimens (macrofossils and pol-
len) attributed to the Rubiaceae, Graham (2009) accepted the
genus name of 43 of them as being correct, but he questioned
the identification of the other 91 specimens. The oldest accepted
fossils for Rubiaceae were: Dialypetalanthoideae, Eocene to
Pliocene from Australia and Middle Eocene from Oregon
(USA) and Rubioideae, Late Eocene from Panama. The presence
of fossils of the two subfamilies of Rubiaceae in the Eocene and
their wide distribution in the world suggested to Graham that
the family originated in the Late Cretaceous or Paleocene.
Accepted fossils of Rubiaceae from the Eocene have been collected
in Argentina, Australia, Caribbean region, Panama and the USA
(Kentucky/Tennessee, Mississippi/Tennessee and Oregon/
Washington). Based on fossils of 20 accepted genera from the
Miocene collected in Africa, Central America, Europe, North
America, South America and south-eastern Pacific-Asia,
Graham concluded that the Miocene was a period of great diver-
sification of the Rubiaceae.

The Rubiaceae is predominantly pantropical in distribution.
According to Delprete and Jardin (2012), about one-third of
the genera and one-half of the species in this family occur in
the neotropics. In South America, the Rubiaceae is especially
diverse in the Amazon Basin, but members of this family are
also found in cloud forests and Páramo of the Andes, savannas
(cerrado), dry forests (caatinga and restinga), Atlantic forest of
Brazil and llanos (seasonally flooded areas) of Brazil and
Venezuela (Delprete and Jardin, 2012). Palaeobotanical research,
for example palynology, in the neotropics has revealed that a sig-
nificant increase in plant diversity occurred in northern South
America in the early to middle Eocene (Jaramillo et al., 2006,
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2010). Thus, by the Eocene, diverse rainforests were present in
South America (Burnham and Johnson, 2004). This increase in
plant diversity, mostly angiosperms, occurred during a period of
rapid global warming at the Paleocene–Eocene boundary, that is
the Paleocene–Eocene Thermal Maximum (PETM), which was
correlated with thousands of petagrams (1015 g) of carbon
being released into the atmosphere (McInerney and Wing,
2011). During the PETM, the 5–8°C increase in global tempera-
ture apparently promoted the rapid diversification of angiosperm
species and thus greatly increased plant species richness of
Neotropical forests (Dick and Pennington, 2019). However, trop-
ical dry forests did not develop until the late Eocene, and other
types of tropical vegetation, for example savanna, montane forest
and Páramo, did not appear until the Miocene or Pliocene, after
the PETM (Jaramillo, 2023). We note that the research cited here
does not provide specific information about speciation of the
Rubiaceae in the neotropics; however, it does provide clues as to
when significant species diversification may have occurred in
the Rubiaceae of South America.

Based on molecular data, various dates have been proposed for
the beginning of divergence of Rubiaceae, for example 66.1 Ma
(Antonelli et al., 2009) to 84.9 Ma (Manns et al., 2012) and
90.4 Ma (Bremer and Eriksson, 2009). Bremer et al. (2004)
obtained a stem age of 108 Ma for the Gentianales. However,
when Wikström et al. (2015) reanalysed the dataset of Bremer
et al. (2004) and added information from DNA analysis of 67
additional taxa of Rubiaceae, they obtained a stem and crown
age for Gentianales of 99 and 75 Ma, respectively. Using the com-
bined dataset, Wikström et al. (2015) obtained an estimated age
for the Rubiaceae of 87 Ma with a credibility interval of
78–96 Ma.

Antonelli et al. (2009) concluded that the Rubiaceae originated
in the palaeotropics in the Early Paleocene and that members of
the family reached North America in the Late Paleocene/Early
Eocene via land bridges such as the North Atlantic Thulean
Land Bridge. From North America, Rubiaceae migrated to
South America. In contrast, Manns et al. (2012) concluded that
the ancestor of the Dialypetalanthoideae was present in South
America during the Late Cretaceous and that they were dispersed
to Central America in the Early Paleocene and to islands in the
Caribbean in the Oligocene–Miocene.

Much research using molecular techniques has been con-
ducted to determine the general phylogenetic relationships in
the Rubiaceae. Consequently, we have a good understanding of
the phylogenetic relations of the Rubiaceae at the whole family
level (Robbrecht and Manen, 2006; Davis et al., 2007; Bremer
and Eriksson, 2009; Rydin et al., 2009, 2017; Wikström et al.,
2015, 2020; Razafimandimbison and Rydin, 2024). Also, the
phylogenetic relationships within the subfamilies (Andreasen
and Bremer, 2000; Bremer and Manen, 2000; Sonké et al., 2008;
Manns and Bremer, 2010; Wen and Wang, 2012; Kainulainen
et al., 2013; Thureborn et al., 2022 Razafimandimbison and
Rydin, 2024) and various tribes (e.g. Bremer and Thulin, 1998;
Rova et al., 2002; Paudyal et al., 2014; Razafimandimbison
et al., 2014, 2022; Delprete, 2015; Santos et al., 2021) have been
explored. However, questions remain about the phylogenetic rela-
tionships within the Rubiaceae. For example, the Acranthereae,
Coptosapelteae and Lucelieae remain unplaced in the Rubiaceae
(Bremer and Eriksson, 2009; Manns et al., 2012; Wikström
et al., 2020; Razafimandimbison and Rydin, 2024).

Molecular phylogenetic studies have revealed much informa-
tion about the dispersal and diversification of the Rubiaceae.

Tribe Rubieae is thought to have originated in the Old World,
after which it was dispersed to the New World (Soza and
Olmstead, 2010; Ehrendorfer et al., 2018). Janssens et al. (2016)
concluded that Spermacoceae originated in the Late Eocene and
diversified during the Oligocene and Miocene. These authors
attributed the presence of two clades of Spermacoceae in
Madagascar to long-distance dispersal events from eastern trop-
ical Africa and from tropical America in the Oligocene and radi-
ation in the Miocene. The ancestor of the genera Colletoecema
and Seychellea likely reached the Seychelles islands from Africa
via bird dispersal, and the two genera diverged in the late
Oligocene–Early Pliocene (Razafimandimbison et al., 2020).
Diversification and dispersal of Plocama occurred in the Early
Miocene during a time of climate warming. Today, there are sister
species of Plocama growing in the Canary Islands and in eastern
and southern Africa (Rincón-Barrado et al., 2021).

Deng et al. (2017) reconstructed the evolution and migration
of Theligonum and Kelloggia, which originated from ancestors
growing in tropical/subtropical habitats along the coast of the
Tethys Sea. When the Tibetan Plateau formed, it separated the
eastern and western parts of the Tethys region, which helps to
explain the current distribution of Theligonum in Asia and in
the Mediterranean/Near East. The Plateau also separated the dis-
tribution of Kelloggia into an eastern and western part. The occur-
rence of Kelloggia in alpine meadows on the Tibetan Plateau
represents the western part of this ancient distribution pattern;
the eastern part per se became extinct. However, Kelloggia
(from the western part of the distribution) migrated to North
America via the North Atlantic Land Bridge and now grows in
coniferous forests on the West Coast (Nie et al., 2005; Deng
et al., 2017).

The ancestral lineage of the Psychotrieae alliance has been
inferred to have originated in Africa in the Upper Cretaceous
(Razafimandimbison et al., 2017), and after its dispersal to the
neotropics tribes Gaertnereae, Morindeae and Palicoureeae were
formed. The alliance was dispersed from the neotropics to Asia
and the Pacific islands, and in the Pacific, it gave rise to tribe
Psychotrieae. During the last 10 million years, the alliance has
reached the Western Indian Ocean Region at least 14 times via
dispersal events from Africa, Asia and the Pacific. According to
Barrabé et al. (2014), New Caledonia has been colonized four
times by Psychotria and allied genera, but only one clade of
Psychotria s.l. underwent extensive and rapid diversification,
resulting in 85 species that are all endemic to New Caledonia.

Molecular phylogenetic studies also have provided insight on
long-distance dispersal and speciation within the Rubiaceae. For
example, the Coffeeae alliance has undergone many dispersal
events in the Western Indian Ocean Region, followed by diversi-
fication upon arrival in new habitats. Kainulainen et al. (2017)
have inferred at least 15 immigrations of the Coffeeae alliance
into Madagascar in the last 10 million years, with many of the dis-
persal events originating in Africa. Further, Madagascar has been
the source of dispersal of members of the Coffeeae alliance to the
Comoros, Mascarenes and Seychelles islands.

Various kinds of studies have been done with the aim of gain-
ing insight into species diversification of Rubiaceae. Ploidy levels
(2×, 4×, 6×, 7× and 10×) in the New Zealand species of Coprosma
were evaluated to test the hypothesis that species with high ploidy
levels occur in more biomes (i.e. types of habitat) than those with
low ploidy levels (Liddell et al., 2021). Species with high ploidy
were three to eight times more likely to occur in more than one
biome than those with low ploidy. The authors suggested that
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whole-genome duplication has promoted expansion into add-
itional biomes and thus speciation.

Niche modelling, in lieu of transplant studies, was used to
investigate the role of ecogeographic (i.e. ecology and geography)
isolation as a reproductive barrier in section Amphiotis of
Houstonia (Glennon et al., 2012). Diploid and tetraploid forms
of H. longifolia exhibited some ecogeographic isolation, but
those of H. purpurea did not. The authors suggested that ecogeo-
graphic isolation has played a role in species divergence of
Houstonia because niche models and principal components ana-
lyses showed that the species have niches with different climatic
variables. Further, species diversification of the diploid-polyploid
Galium pusillum complex has occurred in northern Europe in
areas covered by glaciers during the Pleistocene (Kolář et al.,
2013). Studies on niche differentiation of different species and
ploidy levels of the G. pusillum complex in the deglaciated area
revealed high levels of ecogeographic segregation/isolation.

Seeds of Rubiaceae

Seeds vary from <1 mm (dust-like or minute) to 10–20 mm long,
and those of some species are distinguished by presence of wings
or trichomes. The embryo is differentiated and has two cotyle-
dons that are wider than, or the same width as, the hypocotyl-
radicle, depending on the species. Also, embryo length relative
to seed length varies with the species (e.g. Martin, 1946). The

endosperm in seeds of Rubiaceae may, or may not, contain starch,
but it does contain hemicellulose and galactomannans (Jacobsen,
1984; Robbrecht, 1988). In tribes Guettardeae, Morindeae and
Vanguerieae, the endosperm is soft and contains oil. However,
Robbrecht (1988) observed that the hard endosperm in seeds of
Psychotria also contains some oil and suggested that presence of
oil in the endosperm is not a dependable taxonomic character.
Depending on the species, the endosperm is soft, fleshy, fleshy-
firm, hard or cartilaginous (Robbrecht, 1988). The endosperm
may have shallow or deep rumination, which provides useful
taxonomic information for a few genera.

The seed coat of Rubiaceae is not multiplicative and generally
consists of only the outer epidermis and a few layers of mesophyll
cells. Depending on the genus, cells of the seed coat may be thin
walled or variously thickened/lignified (Corner, 1976). In some
Rubiaceae, the integuments are well formed, but in other species,
the integuments may be absorbed during seed development
resulting in seeds without a seed coat (Boesewinkel and
Bouman, 1984). The seed coat does not have a water-impermeable
palisade layer of cells (macrosclereids). Thus, the Rubiaceae is not
included on the list of plant families whose seeds have physical or
combinaltional (physical + physiological) dormancy (Baskin and
Baskin, 2014).

Only a relatively few species of Rubiaceae have been reported
to have recalcitrant (desiccation-sensitive) seed storage behaviour,
and all these species are trees or shrubs (Table 1). Seeds of some

Table 1. Species of Rubiaceae whose seeds have recalcitrant (R) or intermediate (I) seed storage behaviour

Species Storage Tribe Life form References

Alibertia patinoi R Cordiereae Tree Escobar and Torres (2013) and Ley-López et al. (2023)

Alibertia sorbilis R Cordiereae Tree Braga et al. (1999)

Atractocarpus chartaceus R Gardenieae Tree Hamilton et al. (2013)

Atractocarpus fitzalanii R Gardenieae Shrub or tree Hamilton et al. (2013)

Atractocarpus stipularis R Gardenieae Tree Hamilton et al. (2013)

Atractocarpus vaginatus I Gardenieae Shrub or tree Hong et al. (1998)

Coffee arabica I Coffeeae Tree Ellis et al. (1990)

Coffea canephora I Coffeeae Tree Hong et al. (1998), Dussert et al. (1999) and Oryem-Origa (1999)

Coffea liberica R Coffeeae Tree Hong and Ellis (1995) and Hong et al. (1998)

Coffea racemosa I Coffeeae Shrub Hong et al. (1998)

Coussarea paniculata R Coussareeae Shrub or tree Ley-López et al. (2023)

Faramea occidentalis R Coussareeae Shrub or tree Ley-López et al. (2023)

Faramea tamberlikiana R Coussareeae Shrub or tree Ley-López et al. (2023)

Fosbergia shweliensis I Gardenieae Tree Li et al. (2013)

Genipa americana I Gardenieae Tree Magistrali et al. (2013)

Gynochthodes jasminoides I Morindeae Climber Sommerville et al. (2021)

Isertia haenkeana R Isertieae Tree Ley-López et al. (2023)

Ixora brevifolia R Ixoreae Tree José et al. (2007)

Ixora nicaraguensis R Ixoreae Shrub or tree Ley-López et al. (2023)

Ixora smeruensis R Ixoreae Shrub Darmayanti et al. (2020)

Posoqueria latifolia R Posoquerieae Shrub or tree Ley-López et al. (2023)

Psychotria simmondsiana I Psychotrieae Shrub or tree Sommerville et al. (2021)

Tocoyena pittieri R Gardenieae Shrub or tree Ley-López et al. (2023)
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Coffea species, Fosbergia shweliensis, Genipa americana,
Gynochthodes jasminoides and Psychotria simmondsiana have
been reported to have intermediate storage behaviour. Further,
seeds of Coprosma, Gardenia, Kadua and Psydrax from Hawaii
are sensitive to freezing (Chau et al., 2019), suggesting that they
may have intermediate storage behaviour. Various genera of
Rubiaceae have been listed as having species with orthodox (des-
iccation tolerant) seeds, including Alseis, Anthocephalus,
Asperula, Bertiera, Cephalanthus, Chomelia, Coutarea, Exostema,
Galium, Guettarda, Hamelia, Houstonia, Kraussia, Lasianthus,
Mitracarpus, Morinda, Nauclea, Neohymenopogon, Paederia,
Palicourea, Phyllis, Psychotria, Randia, Rubia, Rudgea,
Sherardia, Spermacoce, Stenostomum and Vangueria (Hong
et al., 1998; Daws et al., 2005; Athugala et al., 2016; Wu et al.,
2019; Mattana et al., 2020; Wanda et al., 2020; Ley-López et al.,
2023). Seeds of Gardenia aubryi, G. brighamii, G oudiepe, G.
remyi and G. taitensis were short lived when stored dry under
conventional seed bank conditions, but the kind of seed storage
behaviour was not determined (Opgenorth et al., 2024).

In attempting to test the hypothesis that animal dispersal of
seeds promotes species diversification of plants, Eriksson and
Bremer (1991) used dispersal information for 427 genera of
Rubiaceae. They concluded that no single dispersal trait was cor-
related with species diversification. However, they found large
numbers of species for herbs with abiotically dispersed seeds,
shrubs with animal-dispersed seeds and trees/shrubs with winged
seeds, suggesting an association between species diversification
and seed dispersibility. In relation to fruit dispersal by animals,
Bremer and Eriksson (1992) used a phylogenetic tree for
Rubiaceae based on variation in chloroplast DNA to evaluate
the origins of fleshy fruits in the family. They concluded that fle-
shy fruits have evolved independently from dry fruits at least 12
times in the Rubiaceae, with most of these events occurring in
the Eocene to Oligocene.

Thus, we now find many tribes with dry fruits and many with
fleshy fruits in both subfamilies of Rubiaceae (Table 2). The five
alliances of Dialypetalanthoideae each have some tribes with
dry fruits and others with fleshy fruits. However, the Hamelieae
in the Cinchoneae alliance has both dry and fleshy fruits. In the
Rubioideae, three alliances have some tribes with dry fruits and
others with fleshy fruits. All nine tribes in the Psychotrieeae alli-
ance have fleshy fruits. Anthrospermeae and Knoxieae in the
Spermacoceae alliance have both dry and fleshy fruits.

Embryo morphology in seeds of Rubiaceae

Martin (1946) illustrated the embryo for 27 species of Rubiaceae,
and 20 of them had a spatulate (spoon-shaped) embryo and 7 a
linear (cotyledons and hypocotyl-radicle with the same width)
embryo. Three of the 20 species with a spatulate embryo have a
spatulate underdeveloped embryo, that is the small embryo has
cotyledons and hypocotyl-radicle but its full length is much less
than that of the endosperm/seed. The seven species with a linear
embryo have an embryo that is about the full length of the seed, or
nearly so, and thus they have a linear fully developed embryo
(sensu Baskin and Baskin, 2007). Part of our review involved an
intensive literature research to expand our database on embryo
morphology for the Rubiaceae to include all the kinds of embryos
that occur in the family Rubiaceae (in addition to those illustrated
by Martin (1946)) and to gain an understanding of embryo
morphology in the two subfamilies and various tribes of
Rubiaceae. Much attention was given to the drawings of embryos

in early taxonomic works that included Rubiaceae (e.g. Gaertner,
1788, 1805–1807; Lamarck, 1791–1823; Endlicher, 1833–1835,
1837–1838; Richard, 1834; von Martius et al., 1840–1906;
Raoul, 1846; Wight, 1846, 1850; Wendell, 1855–1857; Baillon,
1866–1895; Hooker, 1867–1871, 1876; Kotschy and Peyritsch,
1867; Beddome, 1874; Beccari, 1877–1890; Grandidier, 1890;
Koorders and Valeton, 1897–1914). The nomenclature of all spe-
cies in the embryo and germination databases (Supplementary
Tables S1 and S2) was checked/modified using Plants of World
Online.

In addition to the three kinds of embryos seen in Martin’s
(1946) work, that is spatulate (S), spatulate-underdeveloped
(SU) and linear-full (LF), some seeds of Rubiaceae have a linear-
underdeveloped (LU) embryo (Supplementary Table S1).
Further, seeds of Gleasonia, Henriquezia and Platycarpum in
Tribe Henriquezieae collected in the Guiana Highlands in nor-
thern South America have large foliose cotyledons that cover
more than half of the radicle (Rogers, 1984), which fit
Martin’s definition of an investing (I) embryo. Thus, based on
morphology, five kinds of embryos have been identified in the
Rubiaceae.

Information on embryo morphology was found for 260 genera
in 62 tribes of Rubiaceae (Supplementary Table S1). All 62 tribes,
except Mitchelleae, which is restricted to the temperate zone,
occur in the tropics. Ten tribes occur in both the tropical and
temperate zones (Table 2). S, SU, LF, LU and I were the only
kind of embryo found in 23, 6, 5, 1 and 1 tribe(s), respectively
(Table 2). However, some tribes have more than one kind of
embryo, for example Guettardeae and Dialypetalantheaae have
S, SU and LF, while Spermacoceae have S, SU, LF and LU
embryos. Fifty-four of the 62 tribes (87.1%) have an S and/or
SU embryo, either alone or in combination with LF and/or LU
embryos. LF and LU embryos are the only kind of embryo occur-
ring in 8.1 and 1.6%, respectively, of the 62 tribes and both LF and
LU together in 3.2% of the tribes.

Embryo morphology in subfamilies and tribes of Rubiaceae

For the Dialpetalathoideae as delineated by Razafimandimbison
and Rydin (2024), we found information on embryo morphology
for 36 tribes, and 31 of them have some species with S embryos
(Table 2). Twelve tribes have some species with S embryos and
other species with SU embryos. Two tribes have S, SU and LF
embryos, and two others have S, SU and LU embryos. We
found two tribes with only LF embryos and one with LF and
LU embryos. We note that absence of a kind of embryo in a
tribe may be due to lack of research and not to phylogeny.

For the Rubioideae, as delineated by Razafimandimbison and
Rydin (2024), we found information on embryo morphology
for 23 tribes (Table 2). With the exception of Colletoecemateae
and Schradereae with only LF embryos and Gaertnereae with
only LU embryos, all tribes have S and/or SU embryos. Thus,
both subfamilies have tribes with various combinations of S,
SU, LF and LU embryos, but only the Henriquezieae in the
Dialypetalanthoideae has an I embryo.

We obtained 94 tribe-level records for embryo morphology in
the Rubiaceae: S, 45; SU, 27, LF, 13, LU, 8 and I, 1 (Table 2).
Except for I, which was found only in dry fruits, all kinds of
embryos were found in both dry and fleshy fruits: S, 18 dry and
27 fleshy; SU, 10 dry and 17 fleshy; FL, 7 dry and 6 fleshy and
LU 4 dry and 4 fleshy.
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Table 2. Embryo morphology and seed dormancy in tropical/subtropical and temperate/Arctic regions of subfamilies and tribes of Rubiaceae (following
Razafimandimbison and Rydin (2024)) and information on general distribution of tribes

Subfamily
Alliance
Tribe

General
distribution

Type
of

fruita

Tropical/
subtropical region

embryo

Tropical/
subtropical
regions

ND, MD, MPD
and PD

Temperateb/
Arctic region

embryo

Temperate/
Arctic
regions

ND, MD, MPD
and PD

Tribes unclassified to subfamily

Acranthereae Asia F (Spatulate)

Coptosapelteae Trop./subtrop. Asia D (Spatulate),
linear-ud

MD

Luculieae Himalaya to
southern China

D Spatulate-ud MPD

Dialypetalanthoideae

Cinchoneae alliance

Chiococceae Trop./subtrop.
Amer.

F Spatulate,
spatulate-ud

MD, PD

Chioneae Trop. Amer. F (Spatulate)

Cinchoneae Trop. Amer. D Spatulate,
spatulate-ud

ND, MPD

Guettardeae Trop./subtrop. F Spatulate,
spatulate-ud,
linear-full

ND, MPD, PD Linear-full PD

Hamelieae Trop./subtrop.
Amer.

D, F Spatulate ND

Hillieae Trop. Amer. D (Spatulate)

Hymenodictyeae Trop. Africa and
Asia

D Spatulate ND

Isertieae Trop. Amer. F Spatulate PD

Naucleeae Palaeotropics, Few
species in
Neotropics/
subtrop.

F Spatulate,
(spatulate-ud)

ND, PD Spatulate ND

Rondeletieae Trop. Amer. D Linear-ud,
(spatulate),
(spatulate-ud)

MPD

Strumpfieae Trop. Amer. F (Spatulate)

Dialypetalantheae alliance

Dialypetalantheae Trop. D Spatulate,
(spatulate-ud),
linear-full

ND, PD

Henriquezieae Trop. Amer. D (Investing)

Posoquerieae Trop. Amer. F Spatulate PD

Sipaneeae Trop. Amer. D (Linear-full)

Mussaendeae alliance

Mussaendeae Trop. F (Spatulate),
spatulate-ud

MD, MPD

Sabiceeae Trop. D (Linear-full),
(linear-ud)

Vanguerieae alliance

Aleisanthieae Trop. Pacific D (Linear-full)

Crossopterygeae Trop. Africa D (Spatulate)

Glionnetieae Trop. Africa D ?

(Continued )
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Table 2. (Continued.)

Subfamily
Alliance
Tribe

General
distribution

Type
of

fruita

Tropical/
subtropical region

embryo

Tropical/
subtropical
regions

ND, MD, MPD
and PD

Temperateb/
Arctic region

embryo

Temperate/
Arctic
regions

ND, MD, MPD
and PD

Greeneeae Trop. Asia D Linear-full ND

Ixoreae Trop./subtrop. F Spatulate PD

Scyphiphoreae Trop. F Spatulate ND

Trailliaedoxeae Trop. China D (Spatulate)

Vanguerieae Trop. F Spatulate,
linear-full

ND, PD

Coffeeae alliance

Alberteae Trop. Africa D Spatulate-ud MPD

Augusteae Trop. D Spatulate PD

Bertiereae Trop. F Spatulate PD

Coffeeae Trop./subtrop. F (Spatulate),
spatulate-ud

MD, MPD Spatulate-ud MPD

Cordiereae Trop. Amer. F Spatulate,
spatulate-ud

ND, MD, MPD,
PD

Gardenieae Trop./subtrop. F Spatulate,
spatulate-ud,
(linear-ud)

ND, MD, MPD,
PD

Spatulate ND

Octotropideae Trop. F (Spatulate),
spatulate-ud

MPD

Pavetteae Trop. F Spatulate,
spatulate-ud

MPD, PD

Sherbournieae Trop. Africa F Spatulate ND, PD

Tribes unassigned to alliances

Airospermeae Trop. Asia/Pacific F (Spatulate),
(linear-ud)

Jackieae Trop. Asia/Pacific D (Spatulate)

Retiniphylleae Trop. Amer. F (Spatulate)

Steenisieae Trop. (Borneo) D ?

Rubioideae

Urophylleae alliance

Colletoecemateae Trop. Africa F Linear-full

Ophiorrhizeae Trop./subtrop. Asia D Spatulate,
(spatulate-ud)

ND, PD

Seychelleeae Trop. F (Spatulate-ud)

Temnopterygeae Trop. Africa F ?

Urophylleae Trop. F Spatulate ND, PD

Permameae alliance

Lasiantheae Trop./subtrop. F (Spatulate-ud),
linear-full

PD Linear-full PD

Perameae Trop. Amer. D ?

Psychotrieae alliance

Craterispermeae Trop. Africa F (Spatulate-ud)

Gaertnereae Trop./subtrop. F Linear-ud MD, MPD

Mitchelleae Temp. F Spatulate-ud MPD

(Continued )
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Kinds of seed dormancy in Rubiaceae

Seed dormancy in Rubiaceae is related to embryo morphology
and the time required for dormancy-break and germination. In
seeds with a fully developed S or LF embryo, there is no growth
of the embryo inside the mature seed prior to germination; thus
freshly matured seeds are either ND or have physiological dor-
mancy (PD). Seeds with a fully developed embryo are ND if
they germinate to high percentages, often over a wide range of
environmental conditions within about 4 weeks, and the range

of environmental conditions does not increase after seeds are
given a dormancy-breaking treatment (Baskin and Baskin, 2014;
Supplementary Table S2). Seeds with a fully developed embryo
have PD if they fail to germinate at any set of environmental con-
ditions in about 4 weeks, or they only germinate over a limited
range of conditions that increases after seeds receive a dormancy-
breaking treatment (conditional dormancy). Seeds with PD have a
physiological inhibiting mechanism in the embryo that prevents
the embryo from having enough growth potential to overcome

Table 2. (Continued.)

Subfamily
Alliance
Tribe

General
distribution

Type
of

fruita

Tropical/
subtropical region

embryo

Tropical/
subtropical
regions

ND, MD, MPD
and PD

Temperateb/
Arctic region

embryo

Temperate/
Arctic
regions

ND, MD, MPD
and PD

Morindeae Trop./subtrop. F Spatulate-ud,
linear-full

ND, MPD, PD

Palicoureeae Trop./subtrop. F Spatulate-ud MD, MPD

Prismatomerideae Trop. Asia F (Spatulate-ud)

Psychotrieae Trop./subtrop. F (Spatulate),
spatulate-ud,
(linear-ud)

MD, MPD Spatulate-ud MD, MPD

Schizocoleeae Trop. Africa F ?

Schradereae Trop. F (Linear-full)

Spermacoceae alliance

Aitchisonieae Asia D ?

Anthospermeae Mostly Southern
Hemisphere

D, F Spatulate PD Spatulate ND, PD

Argostemmateae Trop./subtrop. D (Spatulate),
(spatulate-ud)

Cyanoneuroneae Trop. Asia F ?

Danaideae Trop. Africa, Indian
Ocean Islands

D (Spatulate),
(spatulate-ud)

Dunnieae Subtrop. Asia D (Spatulate)

Foonchewieae Asia D ?

Knoxieae Trop./subtrop. D, F (Spatulate),
spatulate-ud

MPD

Paederieae Trop./subtrop. D Spatulate,
linear-full

PD Spatulate PD

Putorieae Trop./subtrop. F Spatulate ND

Rubieae Temp., trop.
mountains

D Spatulate ND, PD Spatulate ND, PD

Spermacoceae Trop./subtrop. D Spatulate,
spatulate-ud,
linear-full,
linear-ud

ND, MD, MPD,
PD

Spatulate,
linear-full

ND, PD

Theligoneae Trop. to temp. F (Spatulate)

Tribe unclassified to alliance

Coussareeae Trop. Amer. F Spatulate,
spatulate-ud

ND, MPD, PD

Amer., America; MD, morphological dormancy; MPD, morphophysiological dormancy; ND, non-dormant; PD, physiological dormancy; subtrop., subtropical; temp., temperate; trop., tropical;
D, mature fruit is dry; F, mature fruit is fleshy; ud, underdeveloped; kind of embryo in parentheses (), have information on the embryo but not on germination; ?, no information is available.
aInformation on type of fruit from Hooker and Hooker (1895), Motley et al. (2005), Backlund et al. (2007), Sonké et al. (2008), Kainulainen et al. (2009), Wen and Wang (2012), Ginter et al.
(2015), Mabberley (2017), Takeuchi and Arifiani (2018), Razafimandimbison et al. (2020), Delprete (2022b) and Razafimandimbison and Rydin (2024).
bCan include the northern edge of the subtropical region.

246 C. C. Baskin and J. M. Baskin

https://doi.org/10.1017/S0960258524000278 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258524000278


the mechanical restriction of the seed coat or other structures cov-
ering the embryo. Dormancy-breaking treatments such as cold
(0–10°C) or warm (≥15°C) moist stratification, or in some species
dry-afterripening, lead to an increase in growth potential of the
embryo and thus dormancy-break (Baskin and Baskin, 2014). It
should be noted that we found no information in the literature
on germination of Henriquezieae seeds, which have an investing
embryo. Based on the large size of the fully developed investing
embryo, however, it is assumed that Henriquezieae seeds are
either ND or have PD.

In seeds of Rubiaceae with an SU or LU embryo, growth of the
small, differentiated (has organs) embryo occurs inside the seed
prior to germination. Seeds with an underdeveloped embryo in
which embryo growth and germination occur in about 4 weeks
or less after seeds are placed on a moist substrate have morpho-
logical dormancy (MD). That is, the delay in germination
(under favourable conditions) is caused by a morphological ‘prob-
lem’, which is overcome after the embryo grows to full size. In
some seeds with an underdeveloped embryo, germination does
not occur within about 4 weeks when seeds are incubated
under favourable conditions; they have morphophysiological dor-
mancy (MPD). In seeds with MPD, the breaking of MD (i.e.
embryo growth) is prevented because the embryo has PD. PD is
broken by warm and/or cold stratification or dry-afterripening,
and depending on the species, the embryo grows after and/or dur-
ing the treatment that breaks PD (Baskin and Baskin, 2014).

Seed dormancy in subfamilies of Rubiaceae

To supplement our database of information on seed dormancy/
germination in the Rubiaceae that we have been accumulating
since the late 1980s, extensive web searches were undertaken
using various combinations of keywords, including names of
the tribes of Rubiaceae, names of countries, grains, seeds, semillas,
sementes, germinação and germinación. Information on seed dor-
mancy/germination was found for 308 species of Rubiaceae, and
261 and 47 of them were from tropical/subtropical (hereafter
tropical) and temperate/high latitude regions (hereafter temper-
ate), respectively (Supplementary Table S2). If freshly matured
seeds with a fully developed embryo germinated to a high per-
centage in about 4 weeks or less and dormancy-breaking treat-
ments did not increase germination, the species was counted as
having ND seeds. However, if seeds that germinated to a high per-
centage in about 4 weeks or less belonged to a genus/species with
an underdeveloped embryo (and a dormancy-breaking treatment
did not increase the range of conditions for germination), the spe-
cies was counted as having MD. If seeds germinated to a low per-
centage, or not at all, and germination increased when seeds were
given a dormancy-breaking treatment, they were listed as having
dormant seeds. If the dormant seeds had a fully developed
embryo, the species was listed as having PD. However, if the dor-
mant seeds had an underdeveloped embryo, the species was listed
as having MPD. In the case of PD, it was assumed that the seeds
had non-deep PD, in which the excised embryo will grow and
GA3 promotes germination (Baskin and Baskin, 2014).
However, see ‘Concluding thoughts’ for the possibility of deep
PD in some tropical Rubiaceae.

An examination of the information in Table 2 reveals strong
evidence that much research remains to be done on seed dor-
mancy/germination of the Rubiaceae. Of the 71 tribes listed in
Table 2, we found no information on embryo morphology or
seed dormancy for eight of them (Aitchisonieae,

Cyanoneuroneae, Foonchewiee, Glionnetieae, Perameae,
Schizocoleeae, Steenisieae and Temnoperygeae). For 23 tribes,
we found information on embryo morphology but not on seed
dormancy. For 12 tribes (Coffeeae, Coptosapelteae,
Dialypetalantheae, Gardenieae, Knoxieae, Lasiantheae,
Mussaendeae, Naucleeae, Octotropideae, Ophiorrhizeae,
Psychotrieae and Rondeletieae), we found information on embryo
morphology, but information on seed dormancy is incomplete.
For example, in Coptosapelteae, S (Pitard, 1922–1933) and LU
(Stoffelen et al., 1996) embryos have been reported, but the
only information for seed dormancy for a member of this tribe
comes from a study by Mensbruge (1966) on seeds of
Corynanthe pachyceras. Based on presence of a LU embryo in
seeds of Corynanthe sp. (Stoffelen et al., 1996) and germination
of C. pachyceras seeds to 80–90% (without treatment) in 8–20
days, we assume that seeds of this species have MD. It is likely
that ND and/or PD occur in seeds of members of this tribe that
have an S embryo.

In tropical regions, only MD and MPD have been reported in
Coptosapelteae and Luculieae, while ND, MD, MPD and PD are
found alone or in various combinations in 24 tribes of
Dialypetalanthoideae and 14 tribes of Rubioideae (Table 2). In
temperate regions, ND, MD, MPD and PD have been reported
in 4 and 7 tribes of Dialypetalanthoideae and Rubioideae, respect-
ively. In temperate Dialypetalanthoideae, seeds of Guettardeae
have PD; Naucleeae, ND; Coffeeae, MPD and Gardenieae, ND.
In temperate Ruboioideae, 3, 1, 1 and 2 tribes have ND/PD,
MPD, MD/MPD and PD, respectively.

Some tribes have only ND (e.g. Greeneeae, Hamelieae and
Scyphiphoreae), only PD (e.g. Bertiereae, Isertieae and Ixoreae)
or both ND and PD (e.g. Naucleeae, Sherbournieae and
Vanguerieae). It is expected that as more research is done on
seeds of Rubiaceae the number of tribes with both MD and
MPD as well as the number of tribes with both ND and PD
will increase.

In tropical regions, each of the two subfamilies of Rubiaceae
has ND seeds, or they have MD, MPD and PD, depending on
the species (Table 2). However, in temperate regions,
Dialypetalanthoideae is represented by species whose seeds are
ND or have PD and MPD. In temperate regions, Rubioideae is
represented by species whose seeds are ND, or they have MD,
MPD and PD.

Seed dormancy profiles: biogeography and life forms

In the seed dormancy profile for Rubiaceae that includes all vege-
tation zones and life forms, 20.8% of the species had ND seeds,
and 6.8, 22.1 and 50.3% had MD, MPD and PD, respectively
(Table 3). Trees, shrubs, herbs and climbers account for 137.
98, 17 and 9 species, respectively, in tropical regions but for
only 3, 19, 24 and 1 species, respectively, in temperate regions.
Overall, 27.0% of the tropical tree species had ND seeds, and
8.0, 16.1 and 48.9% had MD, MPD and PD, respectively, with
the most species in the rainforest. No trees with ND seeds were
found for the tropical montane region, and MD was not found
for tropical savanna and montane trees or MPD for tropical
deciduous trees. MD and/or MPD occur in seeds of trees in the
five vegetation regions, but overall MPD is more common than
MD.

For tropical shrubs, 12.2% had ND seeds, and 8.3, 37.8 and
41.8% had MD, MPD and PD, respectively (Table 3). We found
no shrubs in dry tropical deciduous forests with MD or PD or
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any savanna or montane shrubs with ND seeds. Among the trop-
ical shrubs in general, MPD was more likely to occur than MD. In
tropical herbs and climbers, some species had ND seeds, others
had MPD or PD but none had MD.

Information for only a few temperate region species of
Rubiaceae was found; thus, we constructed a life form dormancy
profile for the whole region, with no consideration given to the
vegetation zone. Some trees, shrubs and herbs in the temperate
region have seeds with PD. ND seeds occur in some shrubs and
herbs but have not been observed in any trees or climbers.
Some trees, shrubs and herbs have seeds with MPD, but MD
was found only for shrubs and climbers. It should be noted
that the ‘vivipary’ reported for seeds of the herbs Ophiorrhiza
mungos (Dintu et al., 2015) and O. tomentosa (Tan and Rao,
1981) are cases of ND orthodox seeds germinating in fruits dur-
ing the rainy season and not true vivipary. That is, continuous
rainfall promoted the germination of the ND seeds before they
were dispersed (see Lu et al., 2022; Baskin and Baskin, 2023).

Flower sexual morphology and seed dormancy/germination

Flowers of Rubiaceae mostly are bisexual, but some species are
dioecious or rarely polygamo-dioecious or monoecious
(Robbrecht, 1988). Many species of Rubiaceae have heterostylous
flowers, and Darwin (1877) observed that heterostyly is very com-
mon in this family. However, many Rubiaceae flowers are homo-
stylous (e.g. Delprete, 2017). The heterostylous flowers of

Rubiaceae are distylous, and Naiki (2012) reported that 109 of
563 genera of Rubiaceae are distylous. In distyly, one flower
morph (pin) has a long style and short stamens, and the other
morph (thrum) has a short style and long stamens (Sobrevila,
1983; Naiki, 2012). Barrett and Richards (1990) concluded that
the basic characteristics of heterostyly are the same in temperate
and tropical regions. They noted that woody heterostylous
Rubiaceae are not represented by trees (and by only a few shrubs)
in the temperate region, but many heterostylous trees and shrubs
are found in tropical forests. In the tropics, the flowers may be
pollinated by bees, butterflies, flies, hummingbirds and moths
(e.g. Barrett and Richards, 1990; Machado and Loiola, 2000;
Massinga et al., 2005; Mendonça and Anjos, 2006).

Many pollination studies have been conducted on distylous spe-
cies of Rubiaceae (e.g. Ferrero et al., 2012; Watanabe et al., 2015;
Ornelas et al., 2020; Furtado et al., 2021, 2022), and the results of
some of them have included information on fruit/seed set but not
seed germination (e.g. Sobrevila, 1983; Murray, 1990; Ree, 1997;
Massinga et al., 2005; Silva et al., 2010, 2014; Hernández-Ramírez,
2012; Martén-Rodríguez et al., 2013; Raju and Radhakrishna,
2018; Xu et al., 2018). The general conclusion from these studies
is that the distylous flowers promote cross-pollination in self-
incompatible species. Pollen from long stamens results in fertiliza-
tion of ovules of flowers with a long style, and pollen from short sta-
mens results in fertilization of ovules of flowers with a short style.

In a study that did include seed germination, seeds of the dis-
tylous, self-incompatible Psychotria suterella were collected from

Table 3. Dormancy profile for Rubiaceae in relation to biogeography and life form

Region/Life form Total species ND MD MPD PD

Rubiaceaea 308 20.8% 6.8% 22.1% 50.3%

Tropical

Trees 137 27.0 8.0 16.1 48.9

Rainforest (RF) 69 36.2 14.5 11.6 37.2

Semi-evergreen RF 40 17.5 0 12.5 70.0

Tropical deciduous 8 12.5 12.5 0 75.0

Savanna 9 33.3 11.1 33.3 22.2

Montane 11 0 0 63.6 36.4

Shrubs 98 12.2 8.3 37.8 41.8

Rainforest (RF) 34 20.6 11.8 17.6 50.0

Semi-evergreen RF 31 12.9 3.2 64.5 19.4

Tropical deciduous 2 50.0 0 50.0 0

Savanna 15 0 13.3 20.0 66.7

Montane 16 0 6.3 43.8 50.0

Herbs 17 41.2 0 11.8 47.0

Climbers 9 22.3 0 44.4 33.3

Temperate

Trees 3 0 0 33.3 66.7

Shrubs 19 10.5 5.3 5.3 78.9

Herbs 24 16.6 0 4.2 79.2

Climbers 1 0 100 0 0

aDormancy profile for 308 species of Rubiaceae, including all vegetation zones and life forms.
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both flower morphs from plants growing in a non-fragmented
(continuous) forest, isolated forest fragments and forest fragments
connected by corridors in the Atlantic Forest in Brazil (Lopes and
Buzato, 2007). Seeds were planted in a greenhouse, and germin-
ation was monitored. The authors did not analyse differences in
seed germination between the flower morphs because germin-
ation did not differ significantly between the three kinds of habi-
tats. Thus, from a plant reproduction perspective, P. suterella
showed resilience to habitat fragmentation.

Among Rubiaceae species with hermaphroditic (perfect) homo-
stylous flowers, self-pollination can be prevented by protandry. In
Ferdinandusa speciosa, the male phase of flowering precedes the
female phase by 1 day, but the species is self-compatible (de
Castro and de Oliveira, 2001). Seeds from cross-pollinated flowers
had greater mass than those from self-pollinated flowers, and they
germinated to 91.7 and 43.3%, respectively. Freshly matured seeds
collected from plants of the annual weed Hedyotis corymbosa grow-
ing in open disturbed habitats in tropical, summer–dry regions of
India were dormant (Raju and Krishna, 2018). Styles and stamens
in flowers of this species are the same length, and the species is self-
compatible and auto-selfing but weakly protandrous. Seed dor-
mancy is broken during the dry season, and germination occurs
with the onset of monsoon rains. Flowers of the shrubs Pavetta
tomentosa (Raju and Rao, 2016a) and Tarenna asiatica (Raju and
Rao, 2016b) growing in the Eastern Ghats Forest in India are herm-
aphroditic, protandrous and are both self- and cross-compatible.
Freshly matured seeds of P. tomentosa are ND, but germination
in the field does not occur until soil moisture becomes non-
limiting. Seed germination of T. asiatica was not evaluated, but ger-
mination in the field occurred with onset of the monsoon rains.

The somewhat dioecious species Antirhea borbonica has polli-
niferous flowers and female flowers (Litrico et al., 2005).
Polliniferous flowers can produce a low number of seeds, but
female flowers do not produce pollen. The polliniferous flower
morph has a longer corolla tube, longer stamens, shorter style
and produces more pollen but fewer seeds than the female flower
morph. Seeds from female and polliniferous flowers germinated
to 88 and 46%, respectively, and seedling survival was 95 and
50%, respectively. Thus, the sexual morphology of Rubiaceae
flowers, in particular heterostylous flowers, has received much
research attention from pollination biologists. Further, seed set
from various kinds of crosses has been determined, but no
detailed studies have been conducted on dormancy-break and
germination of the resulting seeds. Thus, the effects (if any) of
the diversity of pollination strategies in the Rubiaceae on seed
dormancy/germination are not known.

Dormancy-break and germination requirements

One indication of the presence of non-deep PD in seeds is that
treatments resulting in the disruption of the mechanical restric-
tion of the seed coat allow the embryo, which has low growth
potential, to germinate. Treatments of seeds of Rubiaceae that
may increase germination include mechanical scarification
(Msanga and Kalaghe, 1993; Parreira et al., 2011; Valente et al.,
2019) and acid scarification (Sadeghi et al., 2009). Further, mech-
anical scarification of Oldenlandia corymbosa seeds removed the
light requirement for germination; also, GA3 substituted for the
light requirement in this species (Corbineau and Côme, 1980/
81). Soaking seeds of Rubia tinctorum in hot water (90°C) can
promote germination (Sadeghi et al., 2009); however, depending
on the species, temperature and soaking time, hot water can kill

the seeds (Garwood, 1986; Sadeghi et al., 2009). Soaking seeds
of Rubiaceae with PD in GA3 (Dhiman et al., 2022) or KNO3

solutions (Valente et al., 2019) or soaking seeds with MPD in
these solutions (Campos-Ruíz et al., 2016) can promote germin-
ation, presumably by increasing the growth potential of the
embryo and/or weakening the seed coat (Bewley et al., 2013).

In temperate regions, PD in seeds of Rubiaceae is broken by
cold stratification during winter followed by germination in
spring (Farmer, 1979; Roberts, 1986; Masuda and Washitani,
1992; Hölzel and Otte, 2004), or it is broken in summer followed
by germination in autumn (e.g. Brenchley and Warington, 1930;
Baskin and Baskin, 1988). Also, in temperate regions, the PD
part of MPD may be broken during cold stratification during win-
ter, for example Mitchella repens (Barton and Crocker, 1945),
allowing seeds to germinate in spring. In seasonally wet–dry trop-
ical regions, PD in seeds of some species of Rubiaceae is broken
during the dry season followed by germination at the onset of
the wet season (Raju and Krishna, 2018). PD likely is broken dur-
ing the dry season via afterripening, since it is known that
dry-storage promotes dormancy-break and increases germination
percentages of some Rubiaceae (Grijpma, 1967; Kasera and Sen,
1987; Lugo and Figueroa, n.d.).

In tropical regions that receive rain throughout the year, ger-
mination of Rubiaceae seeds with MD can begin in 5–25 days
after seed dispersal, and it may be extended for up to 50–60
days, depending on the species (Table 4). Embryo growth in
seeds of Coffea arabica incubated on a water-moistened substrate
at 30°C was detected after 1 day, and as the embryo grew the
puncture force required to break the enclosing endosperm
decreased (da Silva et al., 2004). ABA could inhibit an increase
in pressure potential of the embryo, and the authors suggested
that it also controlled the second step of endosperm cap weaking
that occurs prior to germination (radicle emergence).

Germination of seeds of Rubiaceae with MPD can begin in 5–8
weeks, but depending on the species, it can continue for 14–75
weeks (Table 4). In general, the level of MPD in seeds of
Rubiaceae has not been determined. However, seeds of
Psychotria nigra and P. zeylandica from the tropical montane for-
ests in Sri Lanka have non-deep simple epicotyl MPD (Athugala
et al., 2016). Warm stratification promoted radicle emergence in
53 and 100 days for P. nigra and P. zeylandica, respectively, but
50 and 80 additional days of warm stratification, respectively,
were required for the shoot to emerge. In contrast, seeds of
Gaertnera walkeri, also from the tropical montane forests of Sri
Lanka, have non-deep simple epicotyl MPD but required only c.
10 days for radicle emergence and another≥ 28 days for the
shoot to emerge (Athugala et al., 2018).

Germination of Rubiaceae seeds with PD in tropical regions
that receive rain throughout the year generally begins in 2–6
weeks after dispersal but continues for 7–43 weeks, depending
on the species (Table 4). Since the species grow in regions
where soil moisture generally is not limiting for germination,
we assume that dormancy-break is slow and seeds germinate as
soon as they become ND. The slow breaking of PD in seeds
with only PD and in those with MPD is an effective way to spread
the germination of seeds in a cohort over time (see Baskin et al.,
2005). Another possibility for the extended germination season of
some species is that the freshly matured seed cohort is a mixture
of ND seeds and those with PD. For example, a seed collection of
Calycophyllum candidissimum from Cuba consisted of 41% ND
seeds, 36% physiologically dormant seeds and 23% non-viable
seeds (Gutiérrez et al., 2020).
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Frequently, seeds germination studies of Rubiaceae species
have been conducted under ambient temperature conditions in
nurseries/shade houses (Supplementary Table S2) or in the field
(Lebrón, 1979; Raich and Khoon, 1990). For tropical species
that have been tested in incubators, the mean (±SE) temperature
at which seeds germinated to a high percentage was 23.7 ± 0.7°C.
In 21 of the studies on tropical species, seeds were tested in both
light and dark: 6 species, seeds required light; 7, germinated
equally in light and dark; 7, germinated to higher percentages
in light than in dark and 1, germinated to a higher percentage
in dark than in light (Supplementary Table S2). Seeds of the
hot desert herb Plocama pendula germinated to a higher percent-
age in dark than in light (Pita, 1996). For temperate species tested
in incubators, the mean temperature at which seeds germinated to
a high percentage was 17.7 ± 1.1°C. In 13 of the studies on tem-
perate species, seeds were tested in both light and dark: 1 species,
seeds required light; 1, germinated equally in light and dark and

11, germinated to higher percentages in light than in dark
(Supplementary Table S2).

Soil seed banks

If soil samples are collected after the seed germination season has
ended in the field but before dispersal of new seeds, they are likely
to contain seeds that are a part of the persistent soil seed bank. We
found 60 such studies in which seeds of Rubiaceae were present
(Table 5). Soil seed banks have been reported for 74 species in
42 genera and 17 tribes of Rubiaceae. Shrubs/trees, herbs and
climbers accounted for 61.9, 33.3 and 4.8%, respectively, of the
genera and for 45.9, 50.0 and 4.1%, respectively, of the species.
In the tropical region, the plant group with the most records
for seed banks was shrubs > herbs > trees > climbers, and in the
temperate region, the plant group with the most records for
seed banks was herbs > shrubs with only one record each for

Table 4. Examples of the time required for dormancy-break and germination of Rubiaceae species in tropical/subtropical regions with no definite dry season for
seeds sown under natural temperature regimes in nurseries or shade houses

Species Time span for dormancy-break and germination References

Morphological dormancy

Coffea arabica 5−15 d da Silva et al. (2004)

Diplospora malaccense 18−42 d Ng (1992)

Genipa americana 25−60 d Francis (1993)

Genipa americana 12−20 d Carvalho et al. (1998)

Genipa americana 27−99 d Sautu et al. (2006)

Oxyceros longiflorus 21−52 d Ng (1992)

Morphophysiological dormancy

Amaioua corymbosa 5−14 wk

Amaracarpus nematopodus 8−25 wk RFK code 3472

Eumachia frutescens 12−13 wk RFK code 3169

Gynochthodes retropila 11−16 wk RFK code 2506

Psychotria flava 10−13 wka Paz et al. (1999)

Psychotria limonensis 17−26 wka Paz et al. (1999)

Psychotria loniceroides 6−75 wk RFK code 3177

Physiological dormancy

Bobea sandwicensis 4−12 wk Stratton et al. (1998)

Faramea occidentalis 13−43 wk Sautu et al. (2006)

Gardenia brighamii 4−5 wk Stratton et al. (1998)

Gardenia carinata 4−7 wk Ng (1980)

Gardenia tubifera 4−39 wk Ng (1980)

Guettarda foliacea 9−26 wk Sautu et al. (2006)

Morinda citrifolia 5−30 wk Ng (1980)

Nauclea maingayi 2−20 wk Ng (1980)

Nauclea sudita 2−8 wk Ng (1980)

Porteranda scortechinii 6−11 wk Ng (1980)

Posoqueria latifolia 4−41 wk Sautu et al. (2006)

Psydrax odoratus 4−24 wk Stratton et al. (1998)

aTime to 50% germination.

250 C. C. Baskin and J. M. Baskin

https://doi.org/10.1017/S0960258524000278 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258524000278


Table 5. Seed banks for Rubiaceae

Species
Life
form Tribe Type of vegetation Country Seeds m−2 Reference

Aidia canthioides S/T Gardenieae Seasonal
rainforest

China (Trop.) + Zhu et al. (2006)

Aidia micrantha S/T Gardenieae Rainforest Republic of the
Congo (Trop.)

1.1 Douh et al. (2018)

Aidia yunnanensis S/T Gardenieae Dipterocarp
rainforest

China (Trop.) 75 Tang et al. (2006)

Alseis blackiana T Dialypetalantheae Rainforest Panama (Trop.) 1–22 Dalling et al. (1997);
Dalling and Denslow
(1998)

Breonia chinensis T Naucleeae Rainforest Papua New
Guinea (Trop.)

8 Saulei and Swaine
(1988)

Breonia chinensis T Naucleeae Dipterocarp
rainforest

China (Trop.) 245 Tang et al. (2006)

Asperula gunnii H Rubieae Alpine summit Mt. Stirling in
Victoria
(Australia)
(Temp.)

3.3–16.7 Venn and Morgan
(2010)

Asperula gunnii H Rubieae Alpine herb field Australia
(Temp.)

+ Hoyle et al. (2013)

Asperula tinctoria H Rubieae Grassland Hungary
(Temp.)

3.3 Csontos et al. (1996)

Asperula tinctoria H Rubieae Calcareous
grassland

Estonia (Temp.) + Kalamees and Zobel
(1997)

Bertiera bicarpellata S Bertieae Recently logged
rainforest

Cameroon
(Trop.)

3.4 Daínou et al. (2011)

Cephalanthus occidentalis S Naucleeae Riverine swamp South Carolina
(USA) (Temp.)

8 Schneider and
Sharitz (1986)

Chassalia laxiflora S Psychotrieae Successional
rainforest

Côte d’Ivoire
(Trop.)

1–15 de Rouw and van
Oers (1988)

Coprosma quadrifida S/T Anthospermeae Nothofagus forest Tasmania
(Temp.)

33.3 Howard (1973)

Cordylostigma virgatum H Spermacoceae Semi-arid
shrubland

South Africa
(Temp.)

1–27 Mndela et al. (2019)

Corynanthe macroceras T Naucleeae Rainforest Republic of the
Congo (Trop.)

2.2 Douh et al. (2018)

Dimetia capitellata S Spermacoceae Rainforest Malaysia (Trop.) 14 Putz and Appanah
(1987)

Exallage auricularia S Spermacoceae Dipterocarp forest Sri Lanka (Trop.) 7 Putz and Appanah
(1987)

Galianthe palustris S Spermacoceae Pasture Brazil (Trop.) 4,272 Calegari et al. (2013)

Galium album H Rubieae Calcareous
grassland

Estonia (Temp.) + Kalamees and Zobel
(1997)

Galium aparine H Rubieae Arable soil United Kingdom
(Temp.)

1,368 Brenchley and
Warington (1930)

Galium aparine H Rubieae Woodland United Kingdom
(Temp.)

+ Warr et al. (1994)

Galium aparine H Rubieae Coniferous forest Idaho (USA)
(Temp.)

21 Kramer and
Johnson (1987)

Galium aparine H Rubieae Mediterranean old
field

France (Temp.) 2 Lavorel et al. (1993)

Galium aparine H Rubieae Post-volcanic
succession

Mt. Tarawera in
New Zealand
(Temp.)

25 Clarkson et al.
(2002)

(Continued )
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Table 5. (Continued.)

Species
Life
form Tribe Type of vegetation Country Seeds m−2 Reference

Galium australe H/S Rubieae Regenerating
Eucalyptus forest

Victoria
(Australia)
(Temp.)

7 Wang (1997)

Galium boreale H Rubieae Calcareous
grassland

Estonia (Temp.) + Kalamees and Zobel
(1997)

Galium divaricatum H Rubieae Burnt heathland Spain (Temp.) 3 Valbuena and
Trabaud (2001)

Galium lucidum H Rubieae Mediterranean old
field

France (Temp.) 2 Lavorel et al. (1993

Galium microphyllum H Rubieae Quercus-Pinus
forest

Baja California,
Sur (Mexico)
(Temp.)

+ Arriaga and
Mercado (2004)

Galium mollugo H Rubieae Woodland Spain (Temp.) 4 Amezaga and
Onaindia (1997)

Galium palustre H Rubieae Young beaver
pond

Quebec
(Canada)
(Temp.)

+ Le Page and Keddy
(1998)

Galium palustre H Rubieae Baltic coastal
grassland

Finland (Temp.) 237.8 Jutila (2003)

Galium parisiense H Rubieae Temporary pools France (Temp.) + Metzner et al. (2017)

Galium philistaeum H Rubieae Coastal sand dune Israel (Trop.) + Yu et al. (2008)

Galium saxatile H/S Rubieae Pasture United Kingdom
(Temp.)

266 Chippindale and
Milton (1934)

Galium saxatile H/S Rubieae Pasture United Kingdom
(Temp.)

4,158 Milton (1936)

Galium saxatile H/S Rubieae Woodland United Kingdom
(Temp.)

+ Warr et al. (1994)

Galium saxatile H/S Rubieae Montane
grassland

United Kingdom
(Temp.)

33 Miller and Cummins
(2003)

Galium simense S Rubieae Dry Afromontane
forest

Ethiopia (Trop.) 54.4 Birhanu et al. (2022)

Galium simense S Rubieae Dry Afromontane
forest

Ethiopia (Trop.) 159 Teketay and
Granström (1995)

Galium trifidum H Rubieae Marsh Manitoba
(Canada)
(Temp.)

25 Pederson (1981)

Galium triflorum S Rubieae Coniferous forest British Columbia
(Canada)
(Temp.)

4 Kellman (1974a)

Galium triflorum S Rubieae Coniferous forest Idaho (USA)
(Temp.)

126 Kramer and
Johnson (1987)

Galium uliginosum H Rubieae Baltic coastal
grassland

Finland (Temp.) 825.1 Jutila (2003)

Galium verrucosum H Rubieae Arable soil England (Temp.) 309 Brenchley and
Warington (1930)

Galium verum H Rubieae Calcareous
grassland

Estonia (Temp.) + Kalamees and Zobel
(1997)

Galium verum H Rubieae Baltic coastal
grassland

Finland (Temp.) 111.9 Jutila (2003)

Hamelia patens S/T Cinchoneae Dry forest Belize (Trop.) 9 Kellman (1974b)

Hedyotis fruticosa S/T Spermacoceae Dipterocarp
rainforest

Sri Lanka (Trop.) 3 Singhakumara et al.
(2000)

Hedyotis fruticosa S/T Spermacoceae + Ekasari et al. (2021)

(Continued )
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Table 5. (Continued.)

Species
Life
form Tribe Type of vegetation Country Seeds m−2 Reference

Burned site in
montane

West Java
(Indonesia)
(Trop.)

Hedyotis philippensis S Spermacoceae Rainforest Malaysia (Trop.) 169 Putz and Appanah
(1987)

Hexasepalum teres H Spermacoceae Pinus plantation Brazil (Trop.) + Gonçalves et al.
(2008)

Isertia hypoleuca T Isertieae Secondary
rainforest

Brazil (Trop.) + Silva et al. (2021)

Kohautia coccinea H Spermacoceae Eroded hills Tanzania (Trop.) 46 Lyaruu and Backéus
(1999)

Manettia reclinata S/V Spermacoceae Secondary tropical
premontane forest

Costa Rica
(Trop.)

30 Young (1985)

Manettia reclinata S/V Spermacoceae Successional
forest

Costa Rica
(Trop.)

220 Young et al. (1987)

Mitracarpus hirtus H Spermacoceae Pasture Brazil (Trop.) 1024 Calegari et al. (2013)

Mitracarpus hirtus H Spermacoceae Rainforest Republic of
Congo (Trop.)

12.2 Douh et al. (2018)

Mussaenda sanderiana S Mussaendeae Seasonal
rainforest

China (Trop.) 10 Cao et al. (2000)

Mycetia bracteata S Argostemateae Dipterocarp
rainforest

China (Trop.) 180 Tang et al. (2006)

Nauclea diderrichii T Naucleeae Rainforest Republic of the
Congo (Trop.)

34.4 Douh et al. (2018)

Nertera granadensis S Anthospermeae Post-volcanic
succession

Mt. Tatawera in
New Zealand
(Temp.)

45 Clarkson et al.
(2002)

Oldenlandia corymbosa H Spermacoceae Eroded hills Tanzania (Trop.) 38 Lyaruu and Backéus
(1999)

Oldenlandia corymbosa H Spermacoceae Disturbed alluvial
forest

Brazil (Trop.) 15–309 Mesquita et al.
(2014)

Oldenlandia lancifolia H/S Spermacoceae Agroforestry
systems

Brazil (Trop.) 59 Lacerda et al. (2016)

Oldenlandia nematocaulis H Spermacoceae Eroded hills Tanzania (Trop.) 3 Lyaruu and Backéus
(1999)

Opercularia echinocephala H Anthospermeae Rehabilitated
bauxite mining
site

Western
Australia
(Australia)
(Temp.)

21.9 Grant and Koch
(1997)

Paederia foetida H/V Paederieae Old field
undergoing
succession

Japan (Temp.) + Numata et al. (1964)

Palicourea guianensis S/T Palicoureeae Successional
forest

Costa Rica
(Trop.)

29 Young et al. (1987)

Palicourea guianensis S/T Palicoureeae Rainforest Panama (Trop.) 1.3 Dalling et al. (1997)

Palicourea guianensis S/T Palicoureeae Secondary
rainforest

Brazil (Trop.) + Silva et al. (2021)

Pentodon pentandrous H/S Spermacoceae Lake sediments Florida (USA)
(Temp.)

784 Fiore and Putz
(1992)

Porterandia anisophyllea T Gardenieae Rainforest Malaysia (Trop.) 32 Putz and Appanah
(1987)

Richardia brasiliensis H/S Spermacoceae Pinus plantations Brazil (Trop.) + Gonçalves et al.
(2008)

(Continued )
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Table 5. (Continued.)

Species
Life
form Tribe Type of vegetation Country Seeds m−2 Reference

Richardia brasiliensis H/S Spermacoceae Restored forest Brazil (Trop.) 1–11 Moressi et al. (2014)

Richardia brasiliensis H/S Spermacoceae Burned site in
montane

West Java
(Indonesia)
(Trop.)

+ Ekasari et al. (2021)

Rudgea sessilis S/T Palicoureeae Seasonal
rainforest

Brazil (Trop.) 0.3 Neto et al. (2007)

Sabicea amazonensis V Sabiceeae Secondary
rainforest

Brazil (Trop.) + Silva et al. (2021)

Sabicea aspera V Sabiceeae Agroforestry
systems

Brazil (Trop.) 16 Lacerda et al. (2016)

Sabicea brasiliensis S Sabiceeae Savanna Brazil (Trop.) 5 Andrade and
Miranda (2014)

Schizoussaenda henryi S/T Mussaendeae Dipterocarp
rainforest

China (Trop.) 725 Cao et al. (2000)

Schizoussaenda henryi S/T Mussaendeae Seasonal
rainforest

China (Trop.) 185 Tang et al. (2006)

Scleromitrion diffusum H Spermacoceae Seasonal
rainforest

China (Trop.) 105 Cao et al. (2000)

Scleromitrion galioides H Spermacoceae Pasture Australia
(Temp.)

460 McIvor and
Gardener (1991)

Sherardia arvensis H Rubieae Mediterranean old
field

France (Temp.) 2 Lavorel et al. (1993)

Spermacoce alata H Spermacoceae Burned site in
montane

West Java
(Indonesia)
(Trop.)

+ Ekasari et al. (2021)

Spermacoce brachystema H Spermacoceae Pasture Australia
(Temp.)

100 McIvor and
Gardener (1991)

Spermacoce brachystema H Spermacoceae Tropical savanna Australia
(Temp.)

+ Williams et al.
(2005)

Spermacoce capitata S Spermacoceae Savanna Brazil (Trop.) 19 Andrade and
Miranda (2014)

Spermacoce capitata S Spermacoceae Restored forest Brazil (Trop.) + Neto et al. (2014)

Spermacoce latifolia S Spermacoceae Pinus plantations Brazil (Trop.) + Gonçalves et al.
(2008)

Spermacoce latifolia S Spermacoceae Agroforestry
systems

Brazil (Trop.) 37 Lacerda et al. (2016)

Spermacoce latifolia S Spermacoceae Restored forest Brazil (Trop.) + Neto et al. (2014)

Spermacoce ocymoides H/S Spermacoceae Arable soil Belize (Trop.) 88 Kellman (1974b)

Spermacoce ocymoides H/S Spermacoceae Secondary
rainforest

Brazil (Trop.) + Silva et al. (2021)

Spermacoce senensis H Spermacoceae Semi-arid
shrubland

South Africa
(Temp.)

1–14 Mndela et al. (2019)

Spermacoce tenuior H Spermacoceae Successional
forest

Costa Rica
(Trop.)

264 Young et al. (1987)

Spermacoce verticillata S Spermacoceae Tropical savanna Venezuela
(Trop.)

5.6 Pérez and Santiago
(2001)

Spermacoce verticillata S Spermacoceae Pasture Brazil (Trop.) 160 Calegari et al. (2013)

Spermacoce verticillata S Spermacoceae Restored forest Brazil (Trop.) + Neto et al. (2014)

Spermacoce verticillata S Spermacoceae Agroforestry
systems

Brazil (Trop.) 1,074 Lacerda et al. (2016)
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trees and climbers. Seed banks of tribes Anthospermeae and
Paederieae were found only in temperate regions; those of
Naucleae, Rubieae and Spermacoceae in both temperate and trop-
ical regions; and those of the other 12 tribes only in the tropical
region.

The Spermacoceae had the highest representation in the seed
bank studies with 14 genera and 25 species (8 in the genus
Spermacoce), followed by Rubieae with 3 genera and 18 species
(15 in the genus Galium). In both the Spermacoceae and
Rubieae, there are woody and herbaceous species. The
Naucleeae had five genera and five (four woody and one climb-
ing) species, and Anthospermeae had three genera and three
(two woody and one herbaceous) species with seed banks. Soil
seed banks of tribes Argostemateae, Bertieae, Dialypetalantheae,
Gardenieae, Guettardeae, Isertieae, Mussaendeae, Palicoureeae,
Psychotrieae and Urophylleae were represented by one or two
genera and species that were woody; Paederieae by one herb-
aceous genus and species and Sabiceae by one genus with two
species of climbers and one shrub.

Although soil seed bank studies provide information on the
presence of seeds of Rubiaceae in the soil, they do not tell us
how old the seeds are or how long they can live in the soil. A
few studies have been done for species of Rubiaceae in which
seeds were buried in soil in the field and their viability monitored
over a period of time. Seeds of the rare Gardenia actinocarpa and
the common G. ovularis were placed in nylon-mesh bags and bur-
ied at a depth of 3–7 cm in a rainforest in northern Queensland
(Australia) (Osunkoya and Swanborough, 2001). Seed viability
was monitored at 3-month intervals for 12 months. The time
for 50% of the seeds of G. actinocarpa and G. ovularis to become
non-viable was about 2 and 3 months, respectively, and 0 and
20% of the seeds, respectively, were viable at 12 months.

Seeds of Palicourea sessilis (syn. Psychotria vellosiana) were
placed in nylon-mesh bags and buried at depths of 5 and 15 cm
in open and in shaded sites in cerrado vegetation in Brazil
(Araújo and Cardoso, 2006). After 308 days of burial, seed viabil-
ity ranged from 20 to 80%, with the highest viability for seeds in
the shaded site at 5 cm. After about 100 days of burial, seeds
began to germinate in the bags, probably in response to increased
rainfall. In another study, seeds of Palicourea marcgravii and
Palicourea hoffmannseggiana (syn. Psychotria hoffmannseggiana)
were placed in nylon-mesh bags and buried at depths of 5 and
15 cm in open and in shaded sites in cerrado vegetation in
Brazil (Araújo and Cardoso, 2007). After 308 days of burial,
seed viability of P. marcgravii ranged from 15 to 60% with the
highest viability of seeds in the open site at 15 cm, and seed via-
bility for P. hoffmannseggiana ranged from 30 to 53% with the
highest viability for seeds in the shaded site at 5 cm.

Fruits (natural dispersal unit) of the invasive vine Paederia foe-
tida were placed in nylon-mesh bags on the soil surface and
lightly covered with plant litter in forest interior, forest edge
and open grassland in Hillsborough County, Florida (USA) (Liu
and Pemberton, 2008). In the forest interior, forest edge and
grassland, seed viability after 1 year was 38, 1.2 and 1.1%, respect-
ively; after 2 years 3.3, 0.3 and 0%, respectively; and after 3 years
0.2, 0.1 and 0%, respectively. Seeds of Asperula arvensis and
Galium tricornutum were placed in nylon-mesh bags and buried
at a depth of 10 cm in southeastern France, which has a
Mediterranean climate (Saatkamp et al., 2009). After 2.5 years,
0 and 6% of the A. arvensis and G. tricornutum seeds, respectively,
were viable. For A. arvensis, seed viability decreased from 100% in
early autumn to 10% the following spring, possibly due in part to
in situ germination.

Some information about persistence of seeds on/in soil can be
obtained by monitoring the germination of seeds in long-term
germination phenology studies. Seeds of Galium mollugo and
Sherardia arvensis sown outdoors in Wellesbourn, England, ger-
minated in years 1, 2 and 3, with only 0.1 and 0.2% (of the
sown seeds), respectively, germinating in year 3 (Roberts, 1986).
We collected seeds of eight species of Rubiaceae from
Kentucky-Tennessee (USA) and immediately planted them on
the soil surface in a non-heated glasshouse in Lexington,
Kentucky. The seeds were exposed to natural seasonal tempera-
ture cycles (Baskin et al., 2019) and simulated summer–wet/dry
and winter–wet soil moisture conditions. Germination was mon-
itored at weekly intervals until at least 1 year after the appearance
of the last seedling. Seedlings were removed during each monitor-
ing, and there was no input of new seeds during the study. Seed
germination of the five winter annuals occurred only in autumn,
and depending on species and year of planting, seeds germinated
over a 2- to 5-year period (Table 6). Seeds of the summer annual
Hexasepalum teres germinated only in spring. Seeds of this species
planted in 1978 germinated over a 3-year period, but those
planted in 1979 germinated over a 5-year period. Seeds of the
two polycarpic perennials germinated only in the first year
(spring) after planting in autumn. Although we do not know
why some seeds of annual species were delayed for 2–5 years,
the delay in germination does show that seeds remained viable
and thus formed at least a short-lived persistent soil seed bank
(Thompson et al., 1997).

Concluding thoughts

In the two subfamilies of Rubiaceae and in both tropical and tem-
perate regions, we find seeds that are ND, as well as those with
MD, MPD and PD. However, the diversity of life forms in

Table 5. (Continued.)

Species
Life
form Tribe Type of vegetation Country Seeds m−2 Reference

Timonius timon S/T Guttardeae Rainforest Papua New
Guinea (Trop.)

+ Enright (1985)

Uncaria elliptica V Naucleeae Dipterocarp
rainforest

Sri Lanka (Trop.) 13–40 Singhakumara et al.
(2000)

Urophyllum arboretum S/T Urophylleae Rainforest Malaysia (Trop.) 71 Putz and Appanah
(1987)

+, species present but no number given for seeds, m−2; H, herb; H/V, herb/vine; S, shrub; S/T, shrub/tree; S/V, shrub/vine; T, tree; V, vine/liana; temp., temperate region; trop., tropical/
subtropical region.
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temperate regions with ND, MD, MPD and PD is lower than that
in the tropics, with only temperate-region shrubs having seeds with
MD, MPD or PD as well as ND seeds. Herbs are the second most
diverse life form of Rubiaceae in the temperate region, and they
have seeds with MPD and PD seeds as well as ND seeds. Thus,
the overall diversity of seed dormancy (including ND) is the
same in tropical and temperate regions, but in temperate regions,
ND and MD, MPD and PD are not represented by all life forms.
With an increase in distance from the Equator or increase in eleva-
tion on mountains, the number of life forms and kinds of dor-
mancy decrease. At the high latitude/elevation limits of
distribution of Rubiaceae, boreal and tundra species of this family
are herbs, and their seeds have PD (Supplementary Table S2).

The Rubiaceae is diverse in terms of embryo morphology (I, S,
SU, LF and LU), seed dormancy (ND and MD, MPD and PD)
and life forms, and this diversity is centred in tropical regions
of the world. In particular, large numbers of trees and shrubs
whose seeds are ND or have MD, MPD or PD grow in tropical
rainforest and in semi-evergreen rainforests. It is interesting to
contrast the diversity of embryo morphology and seed dormancy
of Rubiaceae and Asteraceae. Although Rubiaceae has five mor-
phological kinds of embryos and ND seeds as well as those
with MD, MPD and PD, the extent of its world distribution is
much less than the extensive worldwide distribution of
Asteraceae with one kind of embryo (S) and either ND or PD
seeds (cypselae) (Baskin and Baskin, 2023).

Both Rubiaceae and Asteraceae have species that are trees,
shrubs, herbs and climbers, with trees in both families restricted
to the tropics. In the Rubiaceae, species diversity is mostly attrib-
uted to trees and shrubs in the tropics, while the Asteraceae has
high diversity of shrubs and herbs in tropical and temperate
regions, as well as trees in the tropics. Dormant cypselae of
Asteraceae have non-deep PD, and all six known types of non-
deep PD are found among species of Asteraceae. The great diver-
sity of Asteraceae species, in part has been attributed to the diver-
sity of types of non-deep PD, which provide great lability for

adaptation to new environments and ultimately species diversifi-
cation (Baskin and Baskin, 2023).

Little research has been done to determine the level of PD
(non-deep, intermediate and deep) and types of non-deep PD
(1, 2, 3, 4, 5 and 6) in Rubiaceae. For temperate-zone herbaceous
species of Rubiaceae that undergo dormancy-break in summer
(e.g. Galium aparine, Houstonia pusilla and Sherardia arvensis)
or winter (Hexasepalum teres) and germinate in the subsequent
autumn and spring, respectively, it seems reasonable that the
seeds have non-deep PD. However, little work has been done to
investigate changes in temperature requirements for germination
during dormancy-break of species of Rubiaceae. Our preliminary
studies on dormancy-break in seeds of H. teres during cold strati-
fication indicated that the minimum temperature at which seeds
can germinate decreases, that is type 2 of non-deep PD.
Further, the germination of seeds of the winter annuals Galium
parisiense and G. virgatum and the summer annual
Hexasepalum teres over a 4- to 5-year period in a non-heated
greenhouse (Table 6) where seeds were exposed to seasonal tem-
perature changes in Kentucky (USA) hints that dormancy cycling
may occur in seeds of these species. Dormancy cycling is known
to occur only in seeds with non-deep PD or those with non-deep
simple MPD (Baskin and Baskin, 2014).

Unlike the Asteraceae with only non-deep PD, the prolonged
period of incubation required for seed germination in some trop-
ical species of Rubiaceae, for example Faramea occidentalis
(13–43 weeks) and Guettarda foliacea (9–26 weeks) (Table 4),
may indicate the presence of deep PD. One example of a tropical
species with deep PD is Leptecophylla tameiameiae (Ericaceae)
from Hawaii (USA). Seeds germinated over a period of 16–162
weeks, but when the study was terminated some viable seeds
remained (Baskin et al., 2005). If seeds have deep PD, the excised
embryo does not grow or if it grows a dwarf plant results (nan-
ism). Also, GA3 does not promote the germination of seeds
with deep PD (Baskin and Baskin, 2014, 2022). Studies on
seeds of tropical Rubiaceae that take a long time to germinate

Table 6. Germination of seeds of Rubiaceae planted on soil in the non-heated greenhouse in Lexington, Kentucky (USA)

Species Tribe Life cycle Year planted Final germination (%)
Year(s) seeds
germinated

Galium aparine Rubieae Winter annual 1971 64.0 3

Galium laevipes Rubieae Winter annual 1971 32.8 2

Galium parisiense Rubieae Winter annual 1970 59 5

Galium parisiense Rubieae Winter annual 1971 48.8 2

Galium virgatum Rubieae Winter annual 1970 36.3 4

Gallium virgatum Rubieae Winter annual 1971 62 4

Hexasepalum teres Spermacoceae Summer annual 1978 55.5 3

Hexasepalum teres Spermacoceae Summer annual 1979 56.0 5

Houstonia purpurea var.
calycosa

Spermacoceae Polycarpic
perennial

1969 46.5 1

Houstonia pusilla Spermacoceae Winter annual 1970 34.8 3

Houstonia pusilla Spermacoceae Winter annual 1971 54.8 2

Stenaria nigricans Spermacoceae Polycarpic
perennial

1969 41.8 1
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potentially would add much to our understanding of the variation
in PD in tropical regions.

The diversity of embryo morphology and seed dormancy in
Rubiaceae is associated with high species richness, especially
trees and shrubs, in the tropics but not in temperate regions.
However, various kinds of embryos and seed dormancy are
found in Rubiaceae growing in temperate regions, suggesting
that the low species richness of Rubiaceae in temperate regions
is not due to lack of diversity of embryo morphology or seed dor-
mancy per se. Since the Rubiaceae was widely distributed on earth
by the Paleocene–Eocene (Graham, 2009), much tribe/genus
diversification of this family occurred when the climate was
warm. According to Graham (2009), the Miocene was also a per-
iod of great diversification of Rubiaceae, but by this time temper-
ate climates with cold winters had developed in some parts of the
world due to global cooling at the Eocene–Oligocene boundary
(Toumoulin et al., 2022). Any new species of Rubiceae that
diverged in vegetation regions with cold winters would have
been cold tolerant, which was mostly herbs. Further, since PD
is the most labile class of dormancy (Willis et al., 2014), it
seems reasonable that newly formed species of Rubiaceae in
regions with cold winters would have seeds with PD. Thus,
today herbs whose seeds have PD are the only Rubiaceae found
at high latitudes in boreal/tundra plant communities.

Supplementary material. To view supplementary material for this article,
please visit: https://doi.org/10.1017/S0960258524000278.
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