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Abstract

We study a particular example of a recursive distributional equation (RDE) on the unit
interval. We identify all invariant distributions, the corresponding ‘basins of attraction’,
and address the issue of endogeny for the associated tree-indexed problem, making use
of an extension of a recent result of Warren.
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1. Introduction

Let M be a random variable taking values in N = {1, . . . ; ∞}, and let ξ be an independent
Bernoulli(p) random variable.

We consider the following simple recursive distributional equation (RDE):

Y = ξ

M∏
i=1

Yi + (1 − ξ)

(
1 −

M∏
i=1

Yi

)
. (1.1)

Viewing (1.1) as an RDE, we seek a stationary distribution, ν, such that, if the Yi are independent
and identically distributed (i.i.d.) with distribution ν and are independent of (M, ξ), then Y also
has distribution ν.

We term (1.1) the noisy veto-voter model since if each Yi takes values in {0, 1} with value
0 being regarded as a veto then the outcome is vetoed unless either (a) each voter i ‘assents’
(Yi = 1 for each 1 ≤ i ≤ M) and there is no noise (ξ = 1) or (b) someone vetos, but is reversed
by the noise (ξ = 0).

The system was originally envisaged as modelling a representative voting system applied
to a veto issue. Thus, each representative votes according to their constituency if ξ = 1 or
reverses the decision if ξ = 0. An alternative interpretation is as a model for a noisy distributed
error-reporting system. Here a 0 represents an error report from a subsystem. Thus, there is an
error in the system if there is an error in any subsystem (hence the veto structure). Noise can
reverse the binary (on–off) report from any subsystem. The system is substantially different
from the standard voter model introduced by Holley and Ligget [6] (and independently by
Clifford and Sudbury [3]), where voters change their mind, influenced by the current voting
positions of neighbours. Cox and Griffeath [4] gave a survey of results about this model and
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The noisy veto-voter model 671

established key results about clustering. For recent developments on heterogeneous graphs,
see [8] and the references therein.

In this paper we look for solutions to the RDE (1.1) taking values in [0, 1].
As observed by Aldous and Bandhapadhyay [1], and as we shall explain in a little more

detail in Section 2, we may think of (families of) solutions to the RDE as being located at the
nodes of a (family) tree (for a Galton–Watson branching process). Actually, for some purposes,
we shall find it more convenient to embed this family tree into T, the deterministic tree with
infinite branching factor of size ℵ0.

The generic setup in such circumstances is to find distributional fixed points of the recursion

Xu = f (ξu; Xui, i ≥ 1), (1.2)

where Xu and ξu respectively denote the value and the noise associated with node u, and ui

denotes the address of the ith daughter of node u.
With this model, it is of some interest not only to find solutions to the RDE (1.2) but also to

answer the question of endogeny:

Is (Xu; u ∈ T) measurable with respect to (ξu; u ∈ T)?

If this measurability condition holds then X· is said to be endogenous.
In the context of the error-reporting model, endogeny represents the worst possible situation

—the top-level error report is based entirely on the noise and is uninfluenced by the error state of
low-level subsystems. Similarly, in the veto-voter paradigm, endogeny represents the situation
where the voice of the ‘little man’ is completely swamped by reversals by officials.

In this paper we shall first show how to transform (1.1) into the new RDE:

X = 1 −
N∏

i=1

Xi (1.3)

for a suitable random variable N , independent of the Xi . Then we shall not only find all
the solutions to this RDE on [0, 1], their basins of attractions, and the limit cycles of the
corresponding map on the space of distributions on [0, 1], but also give necessary and sufficient
conditions for the corresponding solutions on T to be endogenous.

The fundamental technique we use, which we believe is entirely novel, is to consider the
distribution of a solution conditional upon the noise and to identify endogeny by showing that
this conditional distribution is concentrated on {0, 1}.

2. Notation and a transformation of the RDE

2.1. Tree-indexed solutions

We seek distributions ν on [0, 1] such that if the (Yi; 1 ≤ i) are independent with distribution
ν then the random variable Y satisfying (1.1) also has distribution ν. More precisely, writing
P for the set of probability measures on [0, 1], suppose that M has distribution d on Z+ and
define the map

T ≡ Td : P → P .

Then we set T (ν) to be the law of the random variable Y given by (1.1), when the Yi are i.i.d.
with distribution ν and are independent of N , and seek fixed points of the map T . The existence
and uniqueness of fixed points of this type of map, together with properties of the solutions, are
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addressed in [1] (the reader is also referred to [2], [7], and the references therein). The linear
and min cases are particularly well surveyed, though we are dealing with a nonlinear case to
which the main results do not apply.

A convenient generalisation of the problem is the so-called tree-indexed problem, in which
we think of the Yi as being marks associated with the daughter nodes of the root of T , a family
tree of a Galton–Watson branching process. We start at some level m of the random tree. Each
vertex v in level m − 1 of the tree has Mv daughter vertices, where the Mv are i.i.d. with
common distribution d , and has associated with it noise ξv , where the (ξu; u ∈ T ) are i.i.d. and
are independent of the (Mu; u ∈ T ).

By associating with daughter vertices independent random variables Yvi having distribution
ν, we see that Yv and Yvi, 1 ≤ i ≤ Mv , satisfy (1.1).

In this setting the notion of endogeny was introduced in [1]. Loosely speaking, a solution
to the tree-indexed problem (which we shall define precisely in the next section) is said to be
endogenous if it is a function of the initial data or noise alone, so that no additional randomness
is present.

It is convenient to work on a tree with infinite branching factor and then think of the random
tree of the previous paragraph as being embedded within it. An initial ancestor (in level zero),
which we denote ∅, gives rise to a countably infinite number of daughter vertices (which form
the members of the first generation), each of which gives rise to an infinite number of daughters
(which form the members of the second generation), and so on. We assign each vertex an
address according to its position in the tree: the members of the first generation are denoted
by 1, 2, . . . , the second generation by 11, 12, . . . , 21, 22, . . . , 31, 32, . . . etc, so that vertices
in level n of the tree correspond to sequences of positive integers of length n. We also write
uj, j = 1, 2, . . . , for the daughters of a vertex u. We write T for the collection of all vertices
or nodes (i.e. T = ⋃∞

n=0 N
n) and think of it as being partitioned by depth, that is, as being

composed of levels or generations, in the way described, and we define the depth function | · |
by |u| = n if vertex u is in level n of the tree. Associated to each of the vertices u ∈ T are
i.i.d. random variables Mu with distribution d, telling us the (random) number of offspring
produced by u. The vertices u1, u2, . . . , uMu are thought of as being alive (relative to ∅) and
the {uj : j > Mu} are thought of as being dead. We can now write our original equation as a
recursion on the vertices of T:

Yu = ξu

Mu∏
i=1

Yui + (1 − ξu)

(
1 −

Mu∏
i=1

Yui

)
, u ∈ T. (2.1)

The advantage of the embedding now becomes clear: we can talk about the RDE at any vertex
in the infinite tree and yet, because the product only runs over the live daughters relative to u,
the random Galton–Watson family tree is encoded into the RDE as noise.

2.2. The transformed problem

It is a relatively simple matter to transform the RDE (2.1) into the following, simpler, RDE:

Xu = 1 −
Nu∏
i=1

Xui, u ∈ T, (2.2)

where Nu is a new family size to be defined shortly. To do so, first note that if we colour red
all the nodes, v, in the tree T for which ξv = 0 then it is clear that we may proceed down each
line of descent from a node u until we hit a red node. In this way, we either ‘cut’ the tree at a
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collection of nodes which we shall view as the revised family of u, or not, in which case u has
an infinite family. Denote this new random family size by Nu. Then

Yu = 1 −
Nu∏
i=1

Y
ûi

if u is red, where ûi denotes the ith red node in the revised family of u. Now condition on node
u being red. Then with this revised tree we obtain the RDE (2.2). It is easy to see that if the
original tree has family size probability generating function (PGF) G then the family size in the
new tree corresponds to the total number of deaths in the original tree when it is independently
thinned, with the descendants of each node being pruned with probability q. It is easy to obtain
the equation for the PGF, H , of the family size Nu on the new tree:

H(z) = G(pH(z) + qz). (2.3)

3. The discrete and conditional probability solutions

We begin with some notation and terminology. We say that the random variables in (2.1)
are weakly stationary if Xu has the same distribution for every u ∈ T. The stationarity of
the Xu corresponds to Xu having as distribution an invariant measure for the distributional
equation (2.2).

Definition 3.1. We say that the process (or collection of random variables) X = (Xu; u ∈ T)

is a tree-indexed solution to the RDE (2.2) if

(i) for every n, the random variables (Xu; |u| = n) are mutually independent and indepen-
dent of (Nv; |v| ≤ n − 1);

(ii) for every u ∈ T, Xu satisfies

Xu = 1 −
Nu∏
i=1

Xui,

and the (Xu; u ∈ T) are weakly stationary.

Note that these conditions determine the law of X. This means that a tree-indexed solution
is also stationary in the strong sense, that is, a tree-indexed solution is ‘translation invariant’
with respect to the root (if we consider the collection Xv = (Xu; u ∈ Tv), where Tv is the
subtree rooted at v, then Xv has the same distribution as X for any v ∈ T). Furthermore, we
say that such a solution is endogenous if it is measurable with respect to the random tree (i.e. the
collection of family sizes) (Nu; u ∈ T). As we remarked in the introduction, in informal terms
this means that the solution depends only on the noise with no additional randomness coming
from the boundary of the tree. See [1] for a thorough discussion of endogeny together with
examples.

The following lemma is easy to prove.

Lemma 3.1. Let (Xu; u ∈ T) be a tree-indexed solution to the RDE (2.2). Then the following
statements are equivalent:

(i) X is endogenous;

(ii) X∅ is measurable with respect to σ(Nu; u ∈ T);
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(iii) Xu is measurable with respect to σ(Nv; v ∈ T) for each u ∈ T;

(iv) Xu is measurable with respect to σ(Nv; v ∈ Tu) for each u ∈ T.

Remark 3.1. Note that if a tree-indexed solution to (2.2) is endogenous then property (i) of
Definition 3.1 is automatic: for every u ∈ T, Xu is measurable with respect to σ(Nv; v ∈ Tu)

and, hence, is independent of (Nv; |v| ≤ n − 1).

Lemma 3.2. There exists a unique probability measure on {0, 1} which is invariant under (1.3).

Proof. Let X be a random variable whose distribution is concentrated on {0, 1} and which
is invariant under (1.3). Let µ1 = P(X = 1). We then have P(X = 0) = 1 − µ1 and

P(Xi = 1; for i = 1, . . . , N) =
∑
n

P(Xi = 1; for i = 1, . . . , n | N = n) P(N = n)

= H(µ1).

Now, X = 0 if and only if Xi = 1 for i = 1, . . . , N . Hence, a necessary and sufficient
condition for invariance is

1 − µ1 = H(µ1). (3.1)

Now let K(x) := H(x) + x − 1. Since H is a generating function and H(0) = 0, we have
K(0) = −1 < 0 and K(1) > 0, so that K is guaranteed to have a 0 in (0, 1), and it is unique
since the mapping x 	→ H(x) + x is strictly increasing.

We can now deduce that there exists a tree-indexed solution on {0, 1}T to the RDE (2.2) by
virtue of Lemma 6 of [1].

Theorem 3.1. Let S = (Su; u ∈ T) be a tree-indexed solution on {0, 1}T to the RDE (2.2)
(i.e. the Su have the invariant distribution on the two point set {0, 1}), which we shall henceforth
refer to as the discrete solution. Let Cu = P(Su = 1 | Nv; v ∈ T). Then C = (Cu; u ∈ T) is
the unique endogenous tree-indexed solution to the RDE.

Proof. We write N = (Nu; u ∈ T) and Nu = (Nv; v ∈ Tu). To verify the relationship
between the random variables, we have

Cu = P(Su = 1 | N)

= E[1(Su=1) | N ]
= E[Su | N ]

= E

[
1 −

Nu∏
i=1

Sui

∣∣∣∣ N

]

= 1 − E

[ Nu∏
i=1

Sui

∣∣∣∣ N

]

= 1 −
Nu∏
i=1

E[Sui | N ]

= 1 −
Nu∏
i=1

Cui,
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since the Sui are independent and N is strongly stationary. To verify stationarity, let

Cn
u = P(Su = 1 | Nv; |v| ≤ n).

Then the sequence (Cn
u)n≥1 is a uniformly bounded martingale and so converges almost surely

(a.s.) and in L2 to a limit which must in fact be Cu. Now, we can write Cn
u as

Cn
u = 1 −

Nu∏
i1=1

Cn
ui1

= 1 −
Nu∏

i1=1

(
1 −

Nui1∏
i2=1

(
· · ·

(
1 −

Nui1i2 ···in−2−|u|∏
in−1−|u|=1

(1 − (µ1)
Nui1i2 ···in−1−|u| )

)
· · ·

))

→ Cu a.s. (3.2)

This corresponds to starting the distributional recursion at level n of the tree with unit masses
at µ1. Now, (Cn

u; u ∈ T) is stationary since each Cn
u is the same function of Nu, which are

themselves stationary. Since Cu is the (almost sure) limit of a sequence of stationary random
variables, it follows that C = (Cu; u ∈ T) is stationary. Note that the conditional probability
solution, C, is automatically endogenous since Cu is σ(Nv; v ∈ Tu)-measurable for every
u ∈ T and, hence, (Cu; |u| = n) is independent of (Nu; |u| ≤ n− 1). The independence of the
collection (Cu; |u| = n) follows from the fact that the ((Su, Nu); |u| = n) are independent.

Finally, note that if (Lu; u ∈ T) solve the RDE (2.2) and are integrable then m := E[Lu] must
satisfy (3.1) and, hence, must equal µ1. It now follows that Ln

u := E[Lu | Nv; |v| ≤ n] = Cn
u ,

since at depth n, Ln
u = µ1, so that Ln

u also satisfies (3.2) and, hence, must equal Cn
u . Now

Ln
u → Lu a.s. and so if L is endogenous then it must equal C. This establishes that C is the

unique endogenous solution.

Remark 3.2. Note that if S is endogenous then C = S a.s., so that if S and C do not coincide
then S cannot be endogenous.

4. The moment equation and uniqueness of solutions

Many of the results proved in this paper rely heavily on the analysis of (4.1), below.

Theorem 4.1. Any invariant distribution for the RDE (2.2) must have moments (mn)n≥0 sat-
isfying the equation

H(mn) − (−1)nmn =
n−1∑
k=0

(
n

k

)
(−1)kmk, (4.1)

where m
1+1/n
n ≤ mn+1 ≤ mn and m0 = 1.

Proof. Let X be a random variable whose distribution is invariant for the RDE, and write
mk = E[Xk]. Applying the RDE (2.2) to (1 − X)n we have

E[(1 − X)n] = E

[ N∏
i=1

Xn
i

]
= H(mn).
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On the other hand, by expanding (1 − X)n we obtain

E[(1 − X)n] = E

[ n∑
k=0

(
n

k

)
(−1)kXk

i

]
=

n∑
k=0

(
n

k

)
(−1)kmk,

so that

H(mn) =
n∑

k=0

(
n

k

)
(−1)kmk.

The condition mn+1 ≤ mn follows from the fact that the distribution is on [0, 1]. The other
condition follows from the monotonicity of Lp norms.

As an example, if the random variable N has generating function H(x) = x2 (i.e. N ≡ 2),
the moment equation tells us that

m2
1 + m1 − 1 = 0,

so that m1 = (
√

5 − 1)/2. For m2, we have

m2
2 − m2 − (2 − √

5) = 0,

so that m2 = m1 or m2
1 and so on. In fact, the two possible moment sequences turn out to be

m0 = 1, mn = (
√

5 − 1)/2 for n ≥ 1 or m0 = 1, m1 = (
√

5 − 1)/2, mn = mn
1 for n ≥ 2.

We suppose from now on that H(0) = 0 and H is strictly convex (so that P(2 ≤ N < ∞) >

0).
We now state the main result of the paper.

Theorem 4.2. Let S = (Su; u ∈ T) and C = (Cu; u ∈ T) respectively denote the discrete
solution and corresponding conditional probability solution to the RDE (2.2). Let µ1 =
E[Su]. Then

(i) S is endogenous if and only if H ′(µ1) ≤ 1;

(ii) C is the unique endogenous solution;

(iii) the only invariant distributions for the RDE (2.2) are those of S∅ and C∅.

The proof of the theorem relies on several lemmas. For (i), we extend a result in [9] by first
truncating N and then taking limits.

First, however, we give some consequences of the moment equation, (4.1).

Lemma 4.1. There are at most two moment sequences satisfying (4.1). Moreover, the first
moment m1 is unique and equal to µ1, 1 > m1 > 1

2 , and in the case that H ′(m1) ≤ 1 there is
only one moment sequence satisfying (4.1).

Proof. Uniqueness of µ1 (the root of f (m1) = 1, where f : t 	→ H(t) + t) has already
been shown in Lemma 3.2. Now set

g(x) = H(x) − x.

Then g is strictly convex on [0,1] with g(0) = 0 and g(1−) = H(1−) − 1 ≤ 0. Thus, there
are at most two solutions of g(x) = 1 − 2m1. Since m1 itself is a solution, it follows that
1 − 2m1 ≤ 0 and there is at most one other solution. There is another solution with m2 < m1
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if and only if m1 is greater than µ∗, the argmin of g, and this is clearly true if and only if
g′(m1) > 0, which is equivalent to H ′(m1) > 1.

Suppose that this last inequality holds, so that there is a solution, m2, of g(x) = 1 − 2m1

with m2 < µ∗ < m1. There is at most one solution of

f (x) = 1 − 3m1 + 3m2,

and if it exists, take this as m3. Similarly, there is at most one solution of g(x) = 1 − 4m1 +
6m2 − 4m3 to the left of µ∗ and this is the only possibility for m4. Iterating the argument, we
obtain at most one strictly decreasing sequence m1, . . . .

4.1. The case of a bounded branching factor

Recall that the random family size N may take the value ∞.

Lemma 4.2. Define Nn = min(n, N), and denote its generating function by Hn. Then Nn is
bounded and

(i) Hn(s) ≥ H(s) for all s ∈ [0, 1];
(ii) Hn → H uniformly on compact subsets of [0, 1);

(iii) H ′
n → H ′ uniformly on compact subsets of [0, 1).

We leave the proof to the reader.
The following lemma will be used in the proof of Theorem 4.3, below.

Lemma 4.3. Let C
(n)
u = P(Su = 1 | Nn

u ; u ∈ T) denote the conditional probability solution
for the RDE (2.2) with N replaced by Nn. Let µk

n = E[(C(n)
u )k] denote the corresponding kth

moment, and let µk = E[(Cu)
k]. Let µ∗

n denote the argmin of gn(x) := Hn(x) − x, and let
µ2

n,m denote that root of the equation

gn(x) = 1 − µ1
m − µ1

n, (4.2)

which lies to the left of µ∗
n (i.e. the lesser of the two possible roots). Then µk

n → µk for k = 1, 2
and µ2

n,m → µ2 as min(n, m) → ∞.

Proof. For the case in which k = 1, consider the graphs of the functions Hn(x) + x and
H(x) + x. We have Hn(x) ≥ H(x) for all x ≥ 0 and all n ≥ 1, so that µ1

n is bounded above
by µ1 for every n, since µ1

n and µ1 are respectively the roots of

Hn(x) + x = 1 and H(x) + x = 1.

Furthermore, since Hn decreases to H pointwise on [0, 1), it follows that the µ1
n are increasing.

The µ1
n must therefore have a limit, which we shall denote µ̂.

It follows from Lemma 4.2 that, since µ1 < 1, Hn(µ
1
n) → H(µ̂). Hence,

1 = Hn(µ
1
n) + µ1

n → H(µ̂) + µ̂,

so that µ̂ is a root of H(x) + x = 1. It follows, by uniqueness, that µ̂ = µ1.
For the case in which k = 2, we consider the graphs of gn(x) and g(x). We first show that

µ2
n → µ2 and then that µ2

n,m → µ2 as min(n, m) → ∞.
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To show that µ2
n → µ2, we argue that µ2 is the only limit point of the sequence (µ2

n)n≥1.
Note that, since µ1

n → µ1 and µ2
n satisfies

Hn(µ
2
n) − µ2

n = 1 − 2µ1
n,

the only possible limit points of the sequence (µ2
n)n≥1 are µ1 and µ2. Now, either µ1 ≤ µ∗, in

which case µ1 = µ2, or µ2 ≤ µ∗ < µ1 < 1. In the latter case, it is easy to show that µ∗
n → µ∗

(by uniform continuity of g′
n), and so, since µ1

n → µ1, it follows that

µ1
n > µ∗

n

for sufficiently large n, and, hence,
µ2

n ≤ µ∗
n

for sufficiently large n. In either case, the only possible limit point is µ2; since the µ2
n are

bounded they must, therefore, converge to µ2.
We conclude the proof by showing that µ2 is the only limit point of the sequence (µ2

n,m).
Since µ1

m, µ1
n → µ1 as min(n, m) → ∞ and µ2

n,m satisfies (4.2), the only possible limit points
of the sequence (µ2

n,m)m,n≥1 are µ1 and µ2.
Once more, consider the following two cases:

µ1 ≤ µ∗ and µ1 > µ∗.

In the first case, µ1
n = µ2

n for sufficiently large n, so that µ2 is the only limit point; in the second
case,

µ1 = lim inf
n

µ1
n > µ∗ = lim sup

n
µ∗

n,

and since µ2
n,m ≤ µ∗

n, µ1 cannot be a limit point. Thus, in either case, µ2 is the unique limit
point and, hence, is the limit.

Remark 4.1. Note that the method of the proof can be extended to prove that µk
n → µk for

any k.

Theorem 4.3. C
(n)
u converges to Cu in L2.

Proof. Let n ≥ m. Define Em,n = E[(C(m)
u − C

(n)
u )2]. Expanding this, we obtain

Em,n = µ2
m + µ2

n − 2rm,n,

where rm,n = E[C(m)
u C

(n)
u ]. On the other hand, by applying the RDE (2.2) once, we obtain

Em,n = E

[( Nn
u∏

i=1

C
(n)
ui −

Nm
u∏

i=1

C
(m)
ui

)2]

= Hm(µ2
m) + Hn(µ

2
n) − 2 E

[Nm
u∏

i=1

C
(m)
ui

Nn
u∏

i=1

C
(n)
ui

]
.

We can bound Em,n above and below as follows: since each Ck
ui is in [0,1], omitting terms

from the product above increases it, while adding terms decreases it. Thus, since n ≥ m,

https://doi.org/10.1239/jap/1222441822 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1222441822


The noisy veto-voter model 679

Nn
u ≥ Nm

u , and so replacing Nn
u by Nm

u in the product above increases it, while replacing Nm
u

by Nn
u decreases it. Thus, we obtain

Hm(µ2
m) + Hn(µ

2
n) − 2Hm(rm,n) ≤ Em,n ≤ Hm(µ2

m) + Hn(µ
2
n) − 2Hn(rm,n).

Using the upper bound, we have

2Hn(rm,n) ≤ Hm(µ2
m) + Hn(µ

2
n) − Em,n = Hm(µ2

m) + Hn(µ
2
n) − µ2

m − µ2
n + 2rm,n.

The moment equation, (4.1), tells us that Hm(µ2
m) − µ2

m = 1 − 2µ1
m and that Hn(µ

2
n) − µ2

n =
1 − 2µ1

n. Hence,

2Hn(rm,n) ≤ 1 − 2µ1
m + µ2

m + 1 − 2µ1
n + µ2

n − µ2
m − µ2

n + 2rm,n,

so that, on simplifying,
Hn(rm,n) − rm,n ≤ 1 − µ1

m − µ1
n.

Recall that the equation Hn(x) − x = 1 − µ1
m − µ1

n has (at most) two roots, the lesser of
which we denoted µ2

m,n. Let µ1
m,n be the other (larger) root (or 1, if the second root does

not exist). Then, since Hn(x) − x is convex, µ2
n,m ≤ rm,n ≤ µ1

n,m for all m, n and, hence,
lim infm→∞ rm,n ≥ µ2 since µ2

n,m → µ2 by Lemma 4.3.
On the other hand, Holder’s inequality tells us that rm,n ≤ √

µ2
mµ2

n, and so it follows that
lim supm→∞ rm,n ≤ µ2 since µ2

m, µ2
n → µ2 by Lemma 4.3. Hence, rm,n → µ2 as n → ∞ and

Em,n → lim
m,n→∞ µ2

m + µ2
n − 2rm,n = µ2 + µ2 − 2µ2 = 0,

showing that (C
(n)
u ) is Cauchy in L2. It now follows, by the completeness of L2, that

C
(n)
u converges. Since C

(n)
u is σ(N)-measurable, the limit Lu of the C

(n)
u must also be

σ(N)-measurable for each u and the collection (Lui)i≥1 must be i.i.d. on [0, 1] with common
mean µ1 < 1. Moreover, by strong stationarity of the C(n)s, the Lus are strongly stationary.

To verify that L∅ is the conditional probability solution, note that

1En C
(n)
∅

=
(

1 −
Nn

∅∏
i=1

C
(n)
i

)
1En =

(
1 −

N∅∏
i=1

C
(n)
i

)
1En,

where En = {N∅ ≤ n}. As n → ∞, En ↑ E := (N < ∞); furthermore, since the C
(n)
i

converge in L2, they do so in probability. We may therefore assume, without loss of generality,
that C

(n)
i converges a.s. for each i so that, in the limit,

1E L∅ = lim 1En C
(n)
∅

= lim 1En

(
1 −

N∅∏
i=1

C
(n)
i

)
= 1E

(
1 −

N∅∏
i=1

Li

)
a.s. (4.3)

It is easy to show that
∞∏
i=1

Li = 0 a.s.,

while

1Ec C
(n)
∅

= 1Ec

(
1 −

(n)∏
i=1

C
(n)
i

)
→ 1Ec a.s.,
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so that
1Ec L∅ = lim 1Ec C

(n)
∅

= 1Ec . (4.4)

Thus, adding (4.3) and (4.4) we see that

L∅ =
(

1 −
N∅∏
i=1

Li

)
,

and so L is an endogenous solution to the RDE. It follows from uniqueness that L must be the
conditional probability solution C.

4.2. Proof of Theorem 4.2

We are now nearly in a position to finish proving Theorem 4.2. To recap, we have shown in
Lemma 4.1 that there are at most two distributions which solve the RDE (1.3), corresponding to
the ‘moment sequences’ µ1, µ1, . . . and µ1, µ2, . . . . The first of these is the moment sequence
corresponding to the distribution on {0, 1} with mass µ1 at 1. The second may or may not be
a true moment sequence and is equal to the first if and only if H ′(µ1) ≤ 1. Moreover, there is
only one endogenous solution, and this corresponds to the conditional probability solution C;
thus, if we can show that C is not discrete (i.e. it is not equal to S) whenever H ′(µ1) > 1 then
we shall have proved the result.

We need to recall some theory from [9]. Consider the recursion

ξu = φ(ξu0, ξu1, . . . , ξu(d−1), εu), u ∈ �d,

where the ξu take values in a finite space S, the ‘noise’ terms εu take values in a space E, �d is
the deterministic d-ary tree, and φ is symmetric in its first d − 1 arguments. We suppose that
the εu are independent with common law ν and that there exists a measure π which is invariant
for the above recursion (i.e. π is a solution of the associated RDE). Let u0 = ∅, u1, u2, . . .

be an infinite sequence of vertices starting at the root, with un+1 being a daughter of un for
every n. For n ≤ 0, define ξn = ξu−n . Then, under the invariant measure π , the law of the
sequence (ξn; n ≤ 0), which, by the symmetry of φ, does not depend on the choice of sequence
of vertices chosen, is that of a stationary Markov chain. Let P 2 be the transition matrix of a
Markov chain on S2, given by

P 2((x1, x
′
1), A × A′)

=
∫

S

∫
E

1(φ(x1,x2,...,xd ,z)∈A,φ(x′
1,x2,...,xd ,z)∈A′) dν(z) dπ(x2) · · · dπ(xd).

Let P − be the restriction of P 2 to nondiagonal terms, and let ρ be the Perron–Frobenius
eigenvalue of the matrix corresponding to P −.

The following theorem gives a necessary and sufficient condition for endogeny of the tree-
indexed solution corresponding to µ. This is a small generalisation of Theorem 1 of [9].

Theorem 4.4. The tree-indexed solution to the RDE associated with

ξu = φ(ξu0, ξu1, . . . , ξu(d−1), εu),

corresponding to the invariant measure π , is endogenous if dρ < 1; it is nonendogenous
if dρ > 1. In the critical case, dρ = 1, let H0 be the collection of L2 random variables
measurable with respect to ξ∅ and let K denote the L2 random variables measurable with
respect to (εu; u ∈ �d). Then endogeny holds in this case provided that P − is irreducible and
H0 ∩ K⊥ = {0}. See [9] for full details.
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Theorem 4.5. Consider the RDE

Xu = 1 −
Nn

u∏
i=1

Xui. (4.5)

Then, by Lemma 3.2, there exists an invariant probability measure on {0, 1} for (4.5). Let µ1
n

denote the probability of a 1 under this invariant measure. Then the corresponding tree-indexed
solution is endogenous if and only if H ′

n(µ
1
n) ≤ 1.

Proof. Let N∗ = ess sup N < ∞ be a bound for N . We can then think of the random tree
with branching factor N as being embedded in an N∗-ary tree. Each vertex has N∗ daughter
vertices and the first N of these are thought of as being alive (the remaining are thought of as
being dead). In this context our RDE reads

X = 1 −
∏

live u

Xu.

We now compute the transition probabilities from the previous theorem. First consider the
transition from (0, 1) to (1, 0). The first coordinate automatically maps to 1 and the second
maps to 0 provided that all of the inputs not on the distinguished line of descent are equal
to 1. The conditional probability of the vertex on the distinguished line of descent being alive
is N/N∗, since there are N∗ vertices, of which N are alive. The probability of the remaining
N −1 vertices each taking value 1 is (µ1

n)
N−1, and so the probability of a transition from (0, 1)

to (1, 0), conditional on N , is just

1(N≥1)

(µ1
n)

N−1N

d
.

Taking expectations, the required probability is

E

[
1(N≥1)

(µ1
n)

N−1N

N∗

]
= E[1(N≥1) N(µ1

n)
N−1]

N∗ = H ′
n(µ

1
n)

N∗ .

The probability of a transition from (1, 0) to (0, 1) is the same by symmetry. Hence, P − is
given by

P − =

⎛
⎜⎜⎝

0
H ′

n(µ
1
n)

N∗

H ′
n(µ

1
n)

N∗ 0

⎞
⎟⎟⎠ ,

and the Perron–Frobenius eigenvalue ρ is H ′
n(µ

1
n)/N

∗. By Theorem 4.4, the criterion for
endogeny is N∗ρ ≤ 1, i.e. H ′

n(µ
1
n) ≤ 1, provided that, in the critical case, H ′

n(µ
1
n) = 1, we

verify the stated nondegeneracy conditions.
It is easily seen that P − is irreducible. For the other criterion, let X ∈ H0 ∩ K⊥, so that

X = f (X∅) for some L2 function f and E[XY ] = 0 for all Y ∈ K . Taking Y = 1, we obtain
E[X] = 0. Writing X as

X = a 1(X∅=1) +b 1(X∅=0),

where a and b are constants, we obtain

X = a 1(X∅=1) − aµ1
n

1 − µ1
n

1(X∅=0) .
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For convenience, we shall scale by taking a = 1 (we assume that X �= 0):

X = 1(X∅=1) − µ1
n

1 − µ1
n

1(X∅=0) .

Now, for each k, take Yk = 1(N∅=k) ∈ K . Then

E[XYk] = E

[
1(N∅=k)

(
1(X∅=1) − µ1

n

1 − µ1
n

1(X∅=0)

)]

= P(N = k)

[
1 − (µ1

n)
k − (µ1

n)
k+1

1 − µ1
n

]

= P(N = k)

(
1 − (µ1

n)
k

1 − µ1
n

)
.

Now if we sum this expression over k, we obtain 1 − Hn(µ
1
n)/1 − µ1

n = 0. So either each
term in the sum is 0, or one or more are not. But at least two of the probabilities are nonzero
by assumption (at least for sufficiently large n), whilst the term (1 − (µ1

n)
k/1 − µ1

n) can only
disappear for at most one choice of k. Hence, at least one of the terms is nonzero and this
contradicts the assumption that X ∈ H0 ∩ K⊥.

Proof of the remainder of Theorem 4.2. We prove that H ′(µ1) > 1 implies that S is not
endogenous so that C cannot equal S.

By Theorem 4.5 we know that the RDE (4.5) has two invariant distributions if and only if
H ′

n(µ
1
n) > 1. But we know that C

(n)
u converges to Cu in L2 and, hence, µ2

n → µ2 �= µ1, so
that Su and Cu have different second moments. It now follows that Su does not have the same
distribution as Cu. Since [0, 1] is bounded, this sequence of moments determines a unique
distribution which is therefore that of Cu: see Theorem 1 of Chapter VII.3 of [5].

5. Basins of attraction

Now we consider the basin of attraction of the endogenous solution. That is, we ask for
what initial distributions does the corresponding solution at root, X∅, converge (in law) to the
endogenous solution.

Definition 5.1. Let ς be the law of the endogenous solution. Suppose that we insert i.i.d.
random variables with law ν at level n of the tree and apply the RDE to obtain the corresponding
solution Xn

u(ν) (with law T n−|u|(ν)) at vertex u.
The basin of attraction B(π) of any solution is given by

B(π) = {ν ∈ P : T n(ν)
w−→ π}

(where ‘
w−→’denotes weak convergence), which is, of course, equivalent to the set of distributions

ν for which Xn
u(ν) converges in law to a solution X of the RDE, with law π .

5.1. The unstable case: H ′(µ1) > 1

Lemma 5.1. Suppose that H ′(µ1) > 1. Then Xn
u(ν)

L2−→ Cu, the endogenous solution, for any
ν with mean µ1 other than the discrete measure on {0, 1}.
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Proof. Let Ek = E[Xn
u(ν)2], where k = n − |u|, and let rk = E[CuX

n
u(ν)]. Then

E[(Xn
u(ν) − Cu)

2] = Ek − 2rk + µ2.

Now,

Ek = E

[
1 − 2

Nu∏
i=1

Xn
ui(ν) +

Nu∏
i=1

Xn
ui(ν)2

]
= 1 − 2H(µ1) + H(Ek−1).

This is a recursion for Ek with at most two fixed points (recall that the equation H(x) − x =
constant has at most two roots). Recalling the moment equation, (4.1), these are easily seen to
be µ1 and µ2, the first and second moments of the endogenous solution. We have assumed that
ν is not the discrete distribution and so its second moment (i.e. E0) must be strictly less than µ1.
Now, under the assumption that H ′(µ1) > 1, µ1 and µ2 lie either side of the minimum µ∗ of
H(x) − x and H ′(µ∗) = 1, so that H ′(µ2) < 1. Hence, µ2 is the stable fixed point and it now
follows that Ek converges to µ2.

The recursion for rk is essentially the same as that for Ek:

µ2 − rk = H(µ2) − H(rk−1).

This has µ1 and µ2 as fixed points and, since

r0 = E[CuXu(ν)] ≤
√

E[C2
u] E[Xu(ν)2] <

√
µ1µ1 = µ1,

we are in the same situation as with Ek . That is, we start to the left of µ1 and, because
H ′(µ1) > 1, we conclude that µ1 is repulsive and it follows that rk converges to µ2 under the
assumptions of the lemma. Hence,

E[(Xn
u(ν) − Cu)

2] = Ek − 2rk + µ2 → 0.

Theorem 5.1. Let δ denote the discrete distribution on {0, 1} with mean µ1. Then

B(ς) =
{
ν ∈ P :

∫
x dν(x) = µ1 and ν �= δ

}
.

That is, B(ς) is precisely the set of distributions on [0, 1] with the correct mean (except the
discrete distribution with mean µ1).

Proof. We have already shown that{
ν ∈ P :

∫
x dν(x) = µ1 and ν �= δ

}
⊆ B(ς).

Since the identity is bounded on [0, 1], we conclude that

E[Xn
u(ν)] → E[Cu] if ν ∈ B(ς),

so that ν ∈ B(ς) only if the mean of T n(ν) converges to µ1. From the moment equation, (4.1),
the mean of Xn

u(ν) is obtained by iterating the map f n times, starting with the mean of ν. This
mapping has a unique fixed point µ1 and, since H ′(µ1) > 1, it is repulsive. It follows that the
only way we can have convergence in mean is if we start with the correct mean, that is, if ν has
mean µ1. Hence,

B(ς) ⊆
{
ν ∈ P :

∫
x dν(x) = µ1 and ν �= δ

}
.
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5.2. The stable case: H ′(µ1) ≤ 1

Theorem 5.2. Let b(µ1) be the basin of attraction of µ1 under the iterative map for the first
moment, f : t 	→ 1 − H(t). Then

B(ς) =
{
ν ∈ P :

∫
x dν(x) ∈ b(µ1)

}
.

Once again consider E[(Xn
u(ν) − Cu)

2]. Let mθ
k = E[Xn

u(ν)θ ], where k = n − |u|. Then

m2
k = E

[
1 − 2

Nu∏
i=1

Xn
ui(ν) +

Nu∏
i=1

Xn
ui(ν)2

]

= 1 − 2H(m1
k−1) + H(m2

k−1).

Recalling that rk = E[CuX
n
u(ν)], we have

rk = E

[(
1 −

Nu∏
i=1

Cui

)(
1 −

Nu∏
i=1

Xn
ui(ν)

)]

= E

[
1 −

Nu∏
i=1

Cui −
Nu∏
i=1

Xn
ui(ν) +

Nu∏
i=1

CuiX
n
ui(ν)

]

= 1 − H(µ1) − H(m1
k−1) + H(rk−1).

We now turn our attention to analysing the dynamics of m2
k and rk . We will concentrate on the

equation for m2
k , as the equation for rk is essentially the same. By assumption, m1

k converges
to µ1 and so we may approximate m1

k , for k ≥ kε (say), by µ1 ± ε for some small ε > 0.

Lemma 5.2. The trajectory lk of the dynamical system defined by the recursion

lk = 1 − 2H(µ1 + ε) + H(lk−1), lkε = m2
kε

,

is a lower bound for m2
k for all k ≥ kε, where kε is a positive integer chosen so that

|m1
k − µ1| < ε for k ≥ kε.

The proof is obvious.

Lemma 5.3. Let

fε(x) = 1 − 2H(µ1 + ε) + H(x), x ∈ [0, 1].
Then, for sufficiently small ε > 0, fε has a unique fixed point µ1(ε) for which µ1(ε) < µ∗.
Moreover, as ε → 0, µ1(ε) → µ1.

Proof. This follows from uniform continuity, the fact that H(µ1 + ε) < H(µ1), and the
fact that H ′(µ1) ≤ 1 implies that µ1 ≤ µ∗.

Lemma 5.4. lk converges to µ1(ε).
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Proof. We have lk = f
k−kε
ε (lkε ), and so we need verify only that lkε is in the basin of

attraction of µ1(ε) and that µ1(ε) is stable. We know that

fε(µ
1 + ε) < µ1 + ε,

since 1−H(µ1 +ε) < 1−H(µ1) = µ1, and so it must be the case that µ1 +ε ∈ (µ1(ε), p(ε)).
It now follows that lkε < p(ε), since lkε ≤ m1

kε
< µ1+ε. In the strictly stable case, H ′(µ1) < 1,

the stability of µ1(ε) follows from the fact that µ1(ε) converges to µ1 as ε tends to 0 (by the
previous lemma) and, therefore, µ1(ε) can be made arbitrarily close to µ1 by choosing ε to be
sufficiently small. This means that, for sufficiently small ε, H ′(µ1(ε)) < 1 by the continuity
of H ′. In the critical case, H ′(µ1) = 1, we have µ1(ε) < µ1, so that (by strict convexity)
H ′(µ1(ε)) < 1. In either case it now follows that f

k−kε
ε (lkε ) converges to µ1(ε).

Proof of Theorem 5.2. The preceding lemmas tell us that

lim inf
k→∞ m2

k ≥ lim
k→∞ lk = µ1(ε).

Letting ε tend to 0, we obtain
lim inf
k→∞ m2

k ≥ µ1.

The fact that m2
k ≤ m1

k for every k gives us the following corresponding inequality for the
lim sup:

lim sup
k→∞

m2
k ≤ lim

k→∞ m1
k = µ1.

We conclude that m2
k converges to µ1.

Now,
E[(Xn

u(ν) − Cu)
2] = m2

k − 2rk + µ2,

so that E[(Xn
u(ν) − Cu)

2] → 0, remembering that in the stable case the discrete solution and
endogenous solution coincide (i.e. µ1 = µ2). We have now shown that

{
ν ∈ P :

∫
x dν(x) ∈ b(µ1)

}
⊆ B(ς),

and the necessity for convergence in mean ensures that we have the reverse inclusion. This
completes the proof.

6. Outside the basin of attraction of the endogenous solution

In this section we examine what happens if we iterate distributions with mean outside the
basin of attraction of the endogenous solution.

Definition 6.1. Recall that a map f has an n-cycle starting from p if f n(p) = p, where f n

denotes the n-fold composition of f with itself.

It is easily seen that the map for the first moment f : t 	→ 1 − H(t) can have only one- and
two-cycles. This is because the iterated map f (2) : t 	→ 1 − H(1 − H(t)) is increasing in t

and, hence, can have only one-cycles. Also, note that the fixed points (or one-cycles) of f (2)

come in pairs: if p is a fixed point then so too is 1 − H(p).
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We consider the following iterated RDE:

X = 1 −
N∅∏
i=1

(
1 −

Ni∏
j=1

Xij

)
. (6.1)

This corresponds to the iterated map on laws on [0,1], T 2, where T is given at the beginning
of Section 2. We denote a generic two-cycle of the map f (2) by the pair (µ1+, µ1−).

Theorem 6.1. Suppose that (µ1+, µ1−) is a two-cycle of f (2). There are at most two solutions
of the RDE (6.1) with mean µ1+. There is a unique endogenous solution C+, and a (possibly
distinct) discrete solution, S+, taking values in {0, 1}. The endogenous solution C+ is given
by P(S+ = 1 | T) (just as in the noniterated case). The solutions are distinct if and only if
H ′(µ1−)H ′(µ1+) > 1, i.e. if and only if µ1+ (or µ1−) is an unstable fixed point of f (2).

Proof. This uses the same method as the proofs of results in Section 4.
First, it is clear that S+ is a solution to (6.1), where P(S+ = 1) = µ1+ = 1−P(S+ = 0). Now

take interleaved tree-indexed solutions to the RDE on the tree T, corresponding (on consecutive
layers) to means µ1+ and µ1−. Then we define

C+
(n) = P(S+

∅
= 1 | Nv; |v| ≤ 2n) = 1 −

N∅∏
i1=1

(
1 −

Ni1∏
i2=1

(· · · (1 − (µ1+)
Ni1i2 ···i2n−1 ) · · · )

)
.

It follows that C+
(n) converges a.s. and in L2 to C+ and that this must be the unique endogeneous

solution (since if Z is any solution with mean µ1+ then E[Z∅ | Nv; |v| ≤ 2n] = C+
(n)).

As in Lemma 4.1, we establish that there are at most two solutions by showing that there are
at most two possible moment sequences for a solution and that if µ1+ is stable (for f (2)) then
the only possible moment sequence corresponds to the discrete solution S+.

To do this, note that, denoting a possible moment sequence starting with first moment µ1+
by (µk+), we have

H(µk−) = H

( k∑
j=0

(−1)j
(

k

j

)
H(µ

j
+)

)
=

k∑
j=0

(−1)j
(

k

j

)
µ

j
+.

Then we look for solutions of

H

(k−1∑
j=0

(−1)j
(

k

j

)
H(µ

j
+) + (−1)kH(t)

)
=

k−1∑
j=0

(−1)j
(

k

j

)
µ

j
+ + (−1)kt, (6.2)

in the range where the argument of H on the left-hand side is nonnegative and less than 1. In
this range H is increasing and convex, so there are at most two solutions.

Suppose that µ1+ is a stable fixed point. Then the unique moment sequence is constant, since
the other solution of

g(t) := H(1 − 2H(µ1+) + H(t)) − (1 − 2µ1+ + t) = 0

must be greater than µ1+ (because g′(µ1+) = H ′(µ1+)H ′(µ1−) − 1 ≤ 0).
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If µ1+ is unstable then there are potentially two solutions for µ2+, one of which is µ1+. Taking
the other potential solution, and seeking to solve (6.2), one of the solutions will give a value
for µk− greater than µ∗ > µ2−, which is not feasible, so there will be at most one sequence with
µ2+ �= µ1+.

Now, as in the proof of Theorem 4.5, we can show that if µ1+ is unstable then, in the
corresponding RDE with branching factor truncated by n, the two solutions to the RDE are
distinct for large n, and the endogenous solution converges to C+ in L2 as n → ∞. It follows
that there are two distinct solutions in this case.

Given a fixed point µ1+ of f (2), denote the law of the corresponding conditional probability
solution by ς+. Denote the corresponding basin of attraction (under T 2) by B(ς+), and denote
the basin of attraction of µ1+ under the map f (2) by b2(µ1+). Then we have the following
theorem.

Theorem 6.2. The following dichotomy holds:

(i) if H ′(µ1+)H ′(µ1−) > 1 then

B(ς+) = {π : π has mean µ1+ and π is not concentrated on {0, 1}};
(ii) if H ′(µ1+)H ′(µ1−) ≤ 1 then

B(ς+) = {π : π has mean m ∈ b2(µ1+)}.
Proof. This can be proved in exactly the same way as Theorems 5.1 and 5.2.

7. Examples

We conclude with some examples.

Example 7.1. We first consider the case where N is geometric(α), so that P(N = k) = βk−1α

and H(s) = αs/(1 − βs) (with β = 1 − α). It follows that

f (2)(s) = s,

so that every pair (s, (1 − s)/(1 − qs)) is a two-cycle of f and the unique fixed point of f is
1 − √

α. It also follows that s is a neutrally stable fixed point of f (2) for each s ∈ [0, 1]. Thus,
we see that the unique endogenous solution to the original RDE is discrete and the value at the
root of the tree is the almost sure limit of

1 −
N∅∏
i1=1

(
1 −

Ni1∏
i2=1

(· · · (1 − (1 − √
α)Ni1···in ) · · · )

)
.

Moreover, for any s, there is a unique solution to the iterated RDE with mean s and it is discrete
and endogenous and is the almost sure limit of

1 −
N∅∏
i1=1

(
1 −

Ni1∏
i2=1

(· · · (1 − s
Ni1···i2n−1 ) · · · )

)
.
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Example 7.2. Consider the original noisy veto-voter model on the binary tree. It follows
from (2.3) that

H(z) = (pH(z) + qz)2 �⇒ H(z) = 1 − 2pqz − √
1 − 4pqz

2p2 .

This is nondefective if and only if p ≤ 1
2 (naturally), i.e. if and only if extinction is certain in

the trimmed tree from the original veto-voter model. It is fairly straightforward to show that
H ′(µ1) > 1 is equivalent to p < 1

2 . Thus, the endogenous solution is nondiscrete precisely
when the trimmed tree is subcritical.

Example 7.3. In contrast to the case of the veto-voter model on the binary tree, the veto-voter
model on a trinary tree can show a nonendogenous discrete solution even when the trimmed
tree is supercritical. More precisely, the trimmed tree is supercritical precisely when p > 1

3 ,
but the discrete solution is nonendogenous if and only if

p < p(3)
e := 3.

√
3 − 4

3.
√

3 − 2

and p
(3)
e > 1

3 .

Acknowledgement

The authors are grateful for many fruitful discussions with Jon Warren on the topics of this
paper.

References

[1] Aldous, D. and Bandyopadhyay, A. (2005). A survey of max-type recursive distributional equations. Ann.
Appl. Prob. 15, 1047–1110.

[2] Bandyopadhyay, A. (2006). A necessary and sufficient condition for the tail-triviality of a recursive tree process.
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