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THE FIBRE OF A CELL ATTACHMENT

by STEPHEN HALPERIN and JEAN-MICHEL LEMAIRE
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In view of understanding the Hopf algebra structure of the loop space homology Ht(Q{E (J/e"+')) in terms of
Ht(tlE) and the map /, we consider the homotopy fibre F of the inclusion map (o: E c» £ {Jfe°+1. In [15], the
case when Ht(Clo]) is surjective (the "inert" case) was studied, and in [11] a weaker condition, called "lazy",
was considered. Here we give several new characterizations of inert and lazy cell attachments in terms of
properties of F. We also show how these results extend to the case of the mapping cone £ \Jf CW of an
arbitrary map / : W-*E.
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1. Introduction

In this paper we work over a fixed ground field K of characteristic p^O; in particular
we write //„,( —) = H^( —; K). We restrict consideration to spaces X such that Hk(X; Z(p))
is a finitely generated Z(p)-module for each k.

Now suppose f:S"-*E is a continuous map from the n-sphere to a 1-connected
cw-complex E, with n^.2. The space E[jfe

n+1 is said to be obtained by attaching a
(n+ l)-cell to E along / In this paper we pursue the quest for a better understanding of
the Hopf algebra structure of the loop space homology H^(Q{E[jfe"+i)) in terms of
HJflE) and the map / ; earlier results can be found viz. in [11, 15, 14].

Our approach here is to consider the homotopy fibre F of the inclusion map
Ec+E\Jfe

n + 1. Indeed for any fibration sequence F-*E-*B, there is a homotopy action
v: QBxF->F, often called the holonomy of the fibration. A remarkable feature of the
holonomy action when B=E\Jfe

n+l is that the reduced homology of the fibre H+(F) is
& free module over Htt(Q.(E\Jfe

n+i)): this was observed and proved by Felix and
Thomas [12].

Our first result, proven in Section 1, is that this property characterizes fibrations of
the form F

Proposition 1.1. Let F -4 £-4 B be a fibration sequence of l-connected cw-complexes.
The following statements are equivalent:

(1) As a H J£lB)-module, H+(F) is freely generated by a single element in //n(F), n ^
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296 S. HALPERIN AND J.-M. LEMAIRE

(2) When the fibration sequence is localized at p, there exists a e nn{F) such that the
obvious extension d:E\JXae

n+l-*Bofco is a p-equivalence.

Now consider a fixed attachment E-*E[Jse
n+l, write B=E\Jfe"+1, and let

be the corresponding fibration sequence. In [15] the case when HJSIE)-*HJ(£IB) is
surjective was extensively studied: in that case the attaching map / is said to be p-inert.
Let 8:QB-*F be the connecting map in the Eckmann-Hilton sequence, i.e. the
holonomy evaluated on the base point. A condition weaker than inertia was introduced
in [11]: / is said to be p-lazy (or lazy if p is clear from the context) if
H,(d):H,(nB)^H,(F) is trivial.

There do exist lazy attachments which are not inert, but the only examples we know
are "unreasonable" in the sense that the attachment also kills the attaching map of a
cell of higher dimension in E. This situation will be discussed in a forthcoming paper.
Here we shall establish new characterizations of p-inert and p-lazy attaching maps in
terms of the fibre F.

Let us first recall ([15, Prop. 3.4]) that in the rational case (p = 0), the attaching map
/ is inert iff the fibre F has the rational homotopy type of a wedge of spheres or,
equivalently, if the rational homotopy Lie algebra of F is free. In Section 3 we prove the
following generalization of this result to the case p > 0:

Proposition 1.2. (1) The attaching map f is p-inert if and only if the Pontryagin
algebra H^QF) is a tensor algebra.

(2) The attaching map f is p-lazy if and only if all cup-products in H*(F) vanish.

Remark 1.3. The characteristic property (1) has already been established for p>2 by
Felix and Thomas [14].

Remark 1.4. A space whose loop space homology is a free algebra (in particular a
wedge of spheres) has no non-trivial cup-products. This is a classical and easy
consequence [3] of the theory of Adams-Hilton models, which we shall review below.
Thus Proposition 1.2 provides another way of seeing that inertia implies laziness.

The proof of Proposition 1.2(2) uses the following fact, which we mention here as
having some independent interest.

Proposition 13. Let fenn(QE) be the adjoint of the attaching map f. Then its
Hurewicz image in Hn(QE) vanishes if and only if

is surjective.
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When the attaching map / is inert, the algebra H^(ilF), which is free by 1.2(1), is the
Hopf kernel of the map H^(Sla>):H^{nE)-*H^(ilB). In Section 4, we give an example of
a non-inert map such that Hm(£la>) still has a free Hopf kernel. We also show examples
of non-homotopic inert attachments with homotopic holonomy actions.

Rationally, the map fico:Q£-»QB admits a section iff it induces a surjection in
homology or in homotopy, because rational loop spaces split as products of K(Q, n)'s.
Thus over the rationals the attachment is inert iff 5 is null homotopic. We extend this
observation to a field of any characteristic in terms of Adams-Hilton models: recall [1,
3] that an Adams-Hilton model for a simply-connected space X is a quasi-isomorphism
from a differential graded tensor algebra AH(X) = (T(V),d) to the chain algebra C^(QX).
A continuous map <f>:X-+Y determines a unique DGA homotopy class of chain algebra
morphisms AH(4>);AH(X)->AH(Y), representing C^(Q0). In particular, H{AH{(j>)) =
H^{Q(j)). Now it follows from [2] and [4] that over the rationals <}>~\li if and only if
AH(4>)~AH(\p). Thus over the rationals the attachment is inert if and only if AH(6) is
null-homotopic; we generalise this to any characteristic:

Proposition 1.6. Assume B is 2-connected. The attaching map f is p-inert if and only
if AH(S) is homotopically trivial.

This proposition is proven in Section 5, and it provides another way of seeing that
inertia implies laziness. Indeed if AH(S) is homotopically trivial, then H+(<5) = 0, i.e. / is
p-lazy.

Next, recall that the depth of a connected x-algebra A is either the least integer d such
that Extd

A(K, A) # 0, or else oo if no such integer exists. By extension, if AT is a
1-connected space, we set depth (X\p) =depth H^{QX, Fp).

In Section 6, we prove the following result, which is probably not the best possible:

Proposition 1.7. Assume that B is a finite complex whose cohomology algebra
H*(B: Fp) is not generated—as an algebra—by a single element. If depth(F; p) is finite,
then f is p-lazy.

In a final section, we observe that the notions of inertia and laziness can readily be
extended to maps / : W-*E between arbitrary 1-connected spaces: let B = Cf = E\JfCW
be the mapping cone of /, let F be the homotopy fibre of the inclusion g:Ez+Cj, and let
5:QB->F be the connecting map.

Definition 1.8. We say that / is p-inert (resp. p-lazy) if H^Agy.H^^-tH^QB) is
surjective (resp. 0 = H+(d):H+(QB)-*H+{F)).

In this general setting, H +(F) is still a free //^(QB)-module for any W and /, as
follows from a more recent result of Felix and Thomas [13]. We show that Proposition
1.7 also holds in this context, and that Propositions 1.2 and 1.6 also hold provided W is
a suspension, or more generally an "AH-suspension", i.e. HJ^IW) is a tensor algebra.
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2. Proof of Proposition 1.1

We recall from the introduction that the implication (2)=>(1) is due to Felix and
Thomas [12]. Here we give a simple proof of the converse, namely Proposition 2.1
below; however, we note that, when we communicated this result to Felix and Thomas,
they realized and pointed out to us that it also follows easily from [13, Theorem 1].

Proposition 2.1. Let F -4 £-**• B be a fibration sequence of l-connected p-local
cw-complexes, and assume that H+(F) is a free Hm(QB)-module on a single generator in
Hn(F), « ^ 1 . Then there exists aenJ[F) whose Hurewicz image h(a) is such a generator,
and the extension 6:B' = E\JXae"+1->B of a> is a homotopy equivalence.

The following definition and lemma embody the main idea of the proof. The proof of
the lemma is straightforward and left to the reader.

Definition 2.2. Let g: V^-tW^ be a morphism of graded vector spaces. We say that g
is an almost isomorphism of degree n if either g is surjective with Kerg 1-dimensional
and concentrated in degree n— 1, or else g is injective with Cokerg 1-dimensional and
concentrated in degree n.

Lemma 2.3. If g'V^-*W^ is an almost isomorphism at degree n of differential graded
vector spaces, then H(g) is an almost isomorphism at degree n.

We now recall that any fibration sequence F-*E->B of l-connected spaces gives rise
to a first quadrant Eilenberg-Moore spectral sequence ([19]) such that

Ep , ,= TOr^M>(K,//#(F))^Hp+,(£),

where the H^(niJ)-module structure of Hm(F) is given by the holonomy.
Consider the following morphism of fibration sequences:

OB- 'A r M^i

I "I
fifi •* >B

It induces a morphism of spectral sequences

t i -f
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Lemma 2.4. The map Elq-*E"lq is an almost isomorphism at degree n+l.

Proof. In the extension of //JQB)-modules:

the kernel is a free module on a single generator h(a) of degree n; this extension
determines a long exact sequence for Torf^XK, —) which yields TorJ^"8'^,//^(F)) =

(K, K) for p ̂  2 and whose bottom part reads

ro/f;.(nB)(K,K)

K (X) H<,(F)->K->0

But >c(X)H>(nB)H+(F) = Jc-/t(a). Therefore, the map

To^:iaB)(K, H*(F))^Tor?fnB)(K, K)

is either surjective with one-dimensional kernel in bidegree (0,n) or injective with
one-dimensional cokernel in bidgree (l,n). D

Lemma 2.5. Let g:V-*W be a morphism of filtered vector spaces, and assume both
filtrations are bounded below and cocomplete. Then if E°g is an almost isomorphism, so is
g- •

Proof of Proposition 2.1. Since H+(f)sH,(ftB)®ic.a with aeHn(F), one has
dimHn(F) = 1 and //,{F) = 0 for 0<i<n. Since F is assumed to be p-local and of finite
type, one has H,(F;Z)=0 for 0< i<« and Hn(F) = Hn(F;Z)®K. Therefore there exists
asnn(F) such that h(a)® l # 0 in Hn(F). Now Lemmas 2.4 and 2.5 imply that H^((o) is
an almost isomorphism at degree n + l. But clearly so is H^(E)-*H^(E\JXxie

n't'1). In
particular both maps are isomorphisms for * > n +1 and * < n, and therefore so is HJJ3i).
Thus we are left to show that Hn(0) and Hn+l(0) are isomorphisms.

Recall that B' = E\JXa e"+l, and let F' be the homotopy fibre of the inclusion EcB'.
Consider the morphism of fibre sequences

which induces a morphism of Serre exact sequences

https://doi.org/10.1017/S001309150001909X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001909X


300 S. HALPERIN AND J.-M. LEMAIRE

HM

0->Hn+l(E)->Hn+1(B)

By standard diagram chasing, it suffices to prove that the middle vertical map Hn(y) is
an isomorphism, and since it is a map between vector spaces of dimension 1, that it is
surjective. But a:S"^F factors through F , and so h(a)<S) 1 is in the image of Hn(y). •

3. Inert and lazy attachments and their fibres

In this section we prove Proposition 1.2. For the convenience of the reader, we begin
by recalling some basic facts about Adams-Hilton models and Hopf algebras, which we
shall use in the proof and later.

(3.1). Adams-Hilton models. An Adams-Hilton model AH(X) of a 1-connected space
AT is a differential graded tensor algebra (T(V),d) quasi-isomorphic to the chain algebra
C^CIX). Let T\V) be the fcth tensor power, and let

dt: F—*U T=\V)-Z-^T=l(V)/T^2(V)=V

be the "linear part" of the differential d. Then #(K^i) is naturally isomorphic to the
desuspension of the reduced homology H+(X). If dl = 0, AH(X) is said to be minimal:
one can always replace a non-minimal model by a minimal one, which is then unique
up to isomorphism. Moreover the "quadratic part" d2: V-* V® V of the differential d in
a minimal AH{X) coincides up to suspensions with the reduced diagonal H+(X)-*
H+(X)®H+{X). Finally, when fenn(X) and Y = X{Jfe" + i, one can choose AH(Y) =
T(V@ K.W),D), where D\y = div and Dw is a cycle in T(V) which represents the
Hurewicz image of the adjoint of / .

The following lemma easily follows from the properties of the Adams-Hilton model
and of the bar and cobar constructions:

Lemma 3.2. Let X be a l-connected cw-complex of finite type. The following
conditions are then equivalent:

(i) The Pontryagin algebra Hm(QX) is a tensor algebra.
(ii) The differential in the minimal Adams-Hilton model AH(X) is zero.

(iii) The multiplication in H+(X) is trivial and the DGA, C*(X), is quasi-isomorphic to
H*(X), endowed with the zero differential.

When these conditions are satisfied, one has H,(flX)£r(s"1H+(Jf)). •

Definition 33. A space which satisfies the conditions of Lemma 3.2. is called an
AH-suspension (at p).
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Note that any suspension is an AH-suspension at every prime by the Bott-Samelson
theorem, and so is a co-H-space Z since it is a retract of EQZ. A simply connected
space whose homology (with coefficients in K) is concentrated in odd degrees is an AH-
suspension by (ii), since its Adams-Hilton model is concentrated in even degrees.

(3.4). Hopf algebras. In this paper, a Hopf algebra will always mean a cocommuta-
tive connected graded Hopf K-algebra. We refer to [18,20] for more information about
such Hopf algebras.

A Hopf algebra can be viewed as a group object in the category of cocommutative
connected K-coalgebras, and standard group theoretic notions can be given sense for
Hopf algebras; in particular, each Hopf algebra A admits an inverse map, namely the
unique coalgebra map <r.A-*A such that

where m:A®A-*A is the multiplication, A:A-*A® A is the diagonal and £ is the
augmentation. A map of coalgebras is defined by the composition

>A®A®A A®A<g"T> A® A® A-^A

where T is the interchange map and m3 multiplication of the three factors. It is denoted
a ® b h-» Ad a(b). Note that if a eA is primitive, aa= — a and Ada = [a, — ]. The map
a i-» Ad a is a representation of A into itself, called the adjoint representation.

A sub-Hopf algebra Be A is normal (resp. central) if the operators Ada, aeA +

preserve B (resp. are zero on B).
Given a normal sub-Hopf algebra BczA there is a unique Hopf algebra structure on

A (X)B K such that the surjection is a Hopf algebra morphism; this quotient Hopf algebra
is denoted by A/IB. Given any Hopf morphism <f>:A->A' there is a unique normal sub-
Hopf algebra Be A such that Im <j> = A//B; B is called the Hopf kernel of </>.

With any Hopf algebra A is associated its derived series

of normal sub-Hopf algebras. A Hopf algebra A is solvable if A['] = K for some t. The
radical R of A is the least normal sub-Hopf algebra which contains all normal solvable
sub-Hopf algebras of A.

The following proposition is an enhanced version of Part (1) of 1.2 (compare [14,
Theorems 1 and 2]):

Proposition 3.5. Let F be the fibre of the inclusion £ c» E\Jfe"+1. The following
statements are equivalent:

(i) The algebra HJilF) is a tensor algebra, i.e. F is an AH-suspension.
(ii) The Hopf algebra H^(QF) either has no radical, or is isomorphic to a tensor

algebra on a single generator.
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(iii) The map H^(Qa>) is surjective, i.e. f is p-inert.

Proof, (i) => (ii) because any sub-Hopf algebra of a free Hopf algebra is free.
(ii)=>(iii): let k F-+E be the inclusion of the fibre; we recall ([10]) that the Hopf

kernel K of H,(ftA) is central in HJQ.F). If the latter is a free algebra on more than one
generator, its centre is trivial; hence K = K and HJO.I) is injective. Now by a classical
argument, the Serre spectral sequence of the fibration QF -4 Q.E &* QB collapses at the
E2 level and that map H Jftco) is surjective, i.e. (iii) holds. If H^CIF) s T(a), then by 3.2
one has dim H+(F) = 1, since H +(F) is a free HJQBJ-module, one must have H^(£IB) = K
and (iii) trivially holds.

(iii) => (i) If H^ilco) is surjective, the Serre spectral sequence of the multiplicative
fibration nF-*QF->QB again collapses at the E2 level and thus tf»(QF) is the Hopf
kernel of H^Cla)). By [15] (actually only the characteristic zero case is discussed in this
paper, but the arguments readily apply to cocommutative Hopf algebras over any field),
this kernel is a free Hopf algebra whose module of indecomposables is a free H^(QB)-
module. In particular (ii) holds. •

Thus part (1) of Proposition 1.2 is proven.

(3.6). Proof of Proposition 1.2.
Let X be a 1-connected space. Recall that H^(X) is a commutative coalgebra with

diagonal A. Given a e Hm(X; K), we shall write

with a',a"
Let us assume / is p-lazy, namely that HJQB)-*HJ(F) is trivial. Since H+(F) is a free

f/,(QB)-module, every element in H+(F) can be uniquely written a.a with <xeH^(HB)
and a being the generator in HJ^F). On the other hand, a-1=0 for every <xeH+(ClB).
Since the holonomy H^.(QB) ® H+(F)-*HJ(F) is a map of coalgebras, we have

A(a-a) = (a® 1 + 1 ® a + £ a ' ® a")(a® 1 + 1 ®a)

Therefore every element in H+(F) is primitive.
Conversely, let us assume that every element in H+(F) is primitive, and let us show

that a • 1 =0 for all <xeH+(QB). Otherwise, there would exist an element /? of least degree
such that /?• 1 #0. We get

a) = (0 ® 1 + 1 ® 0+X p ® p"){a ® 1 + 1 ® a)
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Since pa is primitive, one must have /M ® a+( — l)n|/"a ® /SI =0: this can only occur
if /M =Aa for some Aeic and (-l)"l/J | + l=0. But since H+(F) is JJJQB)-free on the
single generator a, the map <5^:#+(QB)->//JF), which is the evaluation on 1, would be
surjective.

By Proposition 1.5, which we shall prove below, this would imply that the element
4> G H^(QE) which corresponds to / is zero. Then the Adams-Hilton model of B would
be isomorphic to T(V) ]jT(b), where T{V) is the Adams-Hilton model of E and db = O,
\b\ = n. Therefore one would have HJfiB) =• H,{QE) JJ T{b). Now let us observe that the
Serre spectral sequence for the principal fibre sequence HE -»QB -4 F must collapse at
the E2 level, because HJS) is surjective (or because HJto) is injective!). Therefore we
have an isomorphism of coalgebras HJ^F) s K (X)H,<n£) HJQB). Using the coproduct
structure of the algebra HJOB), one sees by inspection that the class in Hn(F) of either
b2 or b3 has a non trivial diagonal, which contradicts our hypothesis. •

We are left to prove Proposition 1.5, namely that ^/^(QJJJ-frH^F) is surjective if
and only if the element <j> e HJCIE) which corresponds to / is zero.

Proof. We consider the following morphism of fibration sequences:

QF > * >F

fl£ ^ fiB i , F

and the induced morphism of Serre spectral sequences; in the upper one aeHn(F)
transgresses to the generator of Hn-1(QF), while in the lower one it transgresses to <j>.
Now if Hm(S) is surjective, the lower spectral sequence collapses as we already observed;
hence the transgression is zero and 0=0. Conversely, if 0=0 , a is a permanent cycle
and therefore is in the image of HJ(5); but this means that there exists a e H^(CIB) such
that a • 1 =a, and so H^S) is surjective. •

4. Some examples

By Proposition 1.2(1), the attaching map / is inert if and only if the algebra HJflF)
is free, and then the latter is the Hopf kernel of the map H^(Qco):HJQE)-*H^(QB). One
may ask whether the attachment is inert if the Hopf kernel of HJCko) is free. Here is a
counter-example in characteristic zero. We shall use the notation

n{X) = PHJCIX;Q),P(-) = primitive subspace

for the rational homotopy Lie algebra of the space X, and we shall work up to rational
equivalence.
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Example 4.1. Let M be the coformal space with

n(M) = l(a, ft)/([a, [a, ft]], [ft, [a, ft]]) = L, deg a = deg b = 2.

Its Sullivan model is the cochain algebra on n(M), i.e. is the exterior algebra on
generators x, y, z of degrees 3, 3, 5 with dz = xy. One checks from this that M fibres
over S3 x S3 with fibre S5. The homology decomposition of M is therefore of the form
S3 v S 3 u(e 8 v e ^ u e 1 1 . Moreover the attaching maps of the 8-cells kill the triple
Whitehead products: we can choose them to be / ' = [t',[i',i"]] and / " = [ I" , [ I ' , I" ] ] - Let
B be the 8-skeleton S3 v S3 u (e8 v e8) of M and E be the subcomplex S3 v S3 u r e8.
The Quillen models for the spaces E and B are

LE = l(a, b, u); da = db = 0, du = [a, [a, *]]

LB = L(a, 6, u, v); da = db=0, d« = [a, [a, ft]], </v = [ft, [a, bj]

with \a\ = |ft| = 2, \u\ = |u| = 7.
Since M is coformal, one has gldim(L) = 3 and, using [16], one sees that n(B) =

LJJL(W) with |w| = 9, while n(E) = L(a,ft)/([a,[a,i]]) = L. Therefore the attachment/" to
E is not inert, and one easily checks it is not even lazy. However n (co) factors as
L -** Lc+ LjjL(vv), where the map on the left is the quotient map, and thus its kernel is
the ideal K generated by [ft, [a, ft]] in L. We claim that K is a free Lie algebra, but QK
is not a free C/L-module. This can been seen through a careful analysis of the
Hochschild-Serre spectral sequence of the Lie algebra extension 0->/C-»£-»L->0: this
spectral sequence is described by the following picture

q

• i

0

p P
i p

° basis element in E2 • permanent cycle

To see this, recall that the spectral sequence converges from

to Tor^L\Q, Q). Note that UL has two generators and one relation; the corresponding

https://doi.org/10.1017/S001309150001909X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001909X


THE FIBRE OF A CELL ATTACHMENT 305

three elements in Tor"L' and Tor"L form a basis for all of Tor%L'. The latter maps
injectively to Tor%L(Q,Q) and so these three elements are represented by permanent
cycles in £ ? 0

 a nd E2 0. I* follows that in the spectral sequence d2 maps £§ 0 onto E\A.
Further dim£|,0 = dini Tor^i®,Q)=dimH3(\(x,y,z),d) = 1. Thus dimE\A k 1.

Consider next the [/L-module QX = /C/[K,K]. It is generated by s = [b, [a, bj], which
satisfies the relation a.s = 0. Since dim£2

 t is the minimal number of relations in this
CL-module, a.s=0 is the unique relation and

is a l/L-free resolution of QK. But £*,i = Tor^j(Q,Q) and so £*,, =0 , p ^ 2 .
Finally, since Efo=0, we may conclude that £ l , 0 =0 and hence that TorUK(Q,Q)=0.

This implies that K is free.
We conclude this section with an example which shows that the holonomy action in

homology does not determine the attachment, even in the inert case.

Example 4.2. Let us consider the inclusion

coi.E^S3 v S3^S3xS3 = B1

and the projection on the first factor

co2: E2=(S3 x S3) v S5^S3xS3 = B2.

In both cases, B, is obtained from £, by an inert attachment of a 6-cell. Let F, be the
homotopy fibre of co,; one easily checks that £, and F2 both are homotopy equivalent
to the same wedge of spheres, namely V>>o Vi s i so , ^ where S) is a copy of the
i-sphere and the Betti numbers a{ have generating series Xf=i flif' = (t5/(l ~f2)2)-

Since in both cases the attachment is inert, the holonomy actions are the same in
homology. Actually one can even check that the two holonomy actions ilB( x £,—•£,- are
homotopic as maps. This example shows that in general one cannot tell from the
HJfiB)-structure of H+(F) whether the attachment kills a homology cycle. This
information only shows up as a d2-differential in the Eilenberg-Moore spectral sequence

£2.,= r<,f»>(// ,(F), K) => Hp+j(E)

Indeed the differential d\A is non-zero (resp. zero) for i = 1 (resp. 2) and kills (resp. does
not kill) the (module) generator in H5(F).

5. Inertia and the connecting morphism

In this section we prove Proposition 1.6. We need to consider an Adams-Hilton
model of the map CIB x S"-*F induced by the holonomy (this is why we assume B to be
2-connected, although it should be possible to dispose of this restriction). Note that this
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map extends (5,a):QB v S"-*F, where a lifts J. We first describe the Adams-Hilton
model of a product X x ^ when Y is an AH-suspension. Let X be a 1-connected space
with minimal Adams-Hilton model AH(X)=(T(V),d) and Y be an AH-suspension with
AH(Y)=(T(W),0). We introduce the notation

T(V)^T{W)=T{V @ W®s(V <g> W))

where s is the suspension. For any veV and weW, we denote v\w the corresponding
element in s(K® W). For any we W, we denote .\w: T(V)-*T(V) ® T(W) the derivation
defined by vt-*v\w,veV.

Lemma 5.1. Let D = Dd be the derivation on T(V) |x] T(W) defined by

Dv = dv, Dw = 0, D(v | w) = [v, w] — dv \ w, v e V, w e W.

Then D1 =0, and the map

A: T(V) 0 T(W)^T{V) ® T(W)

defined by vt->D, WI-»W, U|WI-»0 is a surjective quasi-isomorphism. Hence AH(X x y ) s

Proof. It is immediate that D2=0 and that A is a DGA morphism. Let us consider
the spectral sequence arising from the filtration of T(V) |x] T{W) by the degree in V. The
El term of this is T(V)\x\ T(W) with d\v) = 0, d1(w) = 0, d1(v\w) = iv,w], in other words
d1 = D0. Now EiA is a quasi-isomorphism by inspection, and so is A. •

We use this model to obtain the following result, from which the "only if" part of 1.6
will easily follow:

Proposition 5.2. Let f:X-*Y be a continuous map between l-connected spaces. Let us
assume that Y is an AH-suspension with dimH+(Y)> 1 and that the map (/, Y): X v Y-*
Y extends up to homotopy to F:Xx.Y-*Y. Then f is represented by the trivial map

Proof. Let AH(X)=(T(V),d) and AH(Y) = (T(W),0). The map F admits a represen-
tative $:(T(V)g]r(W),D)-*{T(W),Q) such that VweW, <t>(w) = w. Let t>eK of minimal
degree such that <D(i>)#0. Then one has for every we W

W)) = [<D(t>), w] -<&(dv\w).

But since dv is decomposable, dv\w is a sum of monomials each of which contains a
term in V<M, hence <b(dv\w) = 0. Thus VweW, [<&(v),vv] = 0; since dimW^2, one must
have <D(i>) = 0, a contradiction. Therefore O = 0. •
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(5.3). Proof of Proposition 1.6

Let us assume that / is p-inert. Then by Proposition 1.2(1) the algebra H0(CIF) is free,
i.e. F is an AH-suspension. Moreover, H+(F) is a free H^(flB)-module of rank 1. If
H , ( Q B ) = K the map AH(d) is obviously trivial. Otherwise dim//+(F)^2 and, since the
map (<5,F):QB v F->F extends to the holonomy v.QBxF-yF, 8 is represented by the
trivial map AH(QB)^AH(F) by 5.2.

Conversely, assume that AH(8): AH(£IB)-*AH(F) is homotopically trivial. Consider
the composite

QBxS" n B X f l »QBxFAF

which extends (fiJ3, a): QB v S"^F. Now since AH(QB) c, AH(QB) 0 AH(S") is a co-
fibration of chain algebras, the morphism (K,AH(a)):AH{£lB)llAH(S'')-*AH(F) extends
to a morphism

AH(QB) 0 AH(S") = T(s~lH+(nB)) 0 T(xn_ j)-*AH(F).

Since this map is zero on (s~lH+(QB), it factors through the quotient of
T(s-\ilB))ffl T(xn_!) by the ideal generated by s~1J/+(QB). The quotient map has the
form

But since the vector space of indecomposables QAH(-) of AH(-) is naturally
isomorphic to s~lH+(—), the map Qv is an isomorphism, so is v, and therefore the
differential d in AH(F) is trivial. Thus F is an AH-suspension, and / is inert by 1.2(1).

•

6. Finite depth and laziness

Let us first recall the key observation which originally led to the definition of lazy
attachments [11]: if / is not lazy, the short exact sequence of //^(fiB)-modules

defines a non-zero element in Extli"inB)(K, H^(QB)), and therefore

We shall also need the notion of elliptic Hopf algebra, introduced in [7]: a Hopf
algebra H is said to be elliptic if depth(H) < oo and H has polynomial growth, i.e. there
exists constants C,k>0 such that J]IgHdimH1gCni.

We can now prove Proposition 1.7.
Since B has the homotopy type of a finite complex, it has finite depth by the main
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result of [6]. By a result of [10] (or [5] if p=0), the Hopf quotient HJQB)//ImHJjnE)
has polynomial growth. This clearly implies that Hm(QB). 1 <= H^(F) has polynomial
growth. But recall that H +(F) is a free if^ilBJ-module of rank one. Considering its
submodule HJfiB). 1 nH+(F) we get that H,(QB) has a left ideal of polynomial
growth. We shall now distinguish between the cases when HjiQB) is elliptic or not; let
us denote H = HJCIB) for brevity.

Case I: H is not elliptic.
Let a be an element of least degree in H+ such that a -1 /0 . Let /? be that unique

element such that a l = / J a , and let K be the (primitively) generated Hopf subalgebra
generated by those primitive elements in H of degree >|a|. By [8], since H is not
elliptic, the algebra K has growth strictly greater than polynomial.

Since |/?|<|a|, the class of /? in ;c(X)Kff is non-zero, and since H s K (g) (K (X)K H) as
K-modules, Kfi is a free X-module and thus does not have polynomial growth;
consequently neither does K<x- lc=H-1 nH+(F), which is impossible. Thus a-1=0 for
all aeH + , i.e. the attachment is lazy.

Case 2: H is elliptic.
If the attachment is not lazy, then depth(ff) ^ 1 as was recalled above. Because B is

finite, H is infinite and depth H / 0 ; hence depth H = \. But since H is elliptic, Theorem
B in [7] shows that H is isomorphic (as a vector space) to a finitely generated module
over a polynomial algebra on a single generator. Therefore there exists a constant N
such that dimHk^N for all k. But by McCleary's theorem [17], this can only happen if
H*(B; K) is monogenic, which we ruled out.

This achieves the proof of Proposition 1.7.

7. Inert and lazy cofibrations and their fibres

In this final section, we consider an arbitrary map / : W-*E between 1-connected
spaces, and its cofibre g:E-*B = E\JfCW. Let F be the fibre of g, and let S:£IB-*F be
the connecting map. We may consider the following straightforward extensions of the
notions of inertia and laziness:

Definition 7.1. (i) The map / is p-inert if H^(Qg):H^(QE)-^H^(SlB) is surjective.
(ii) The map / is p-lazy if H^nB)-^H^(F) is the trivial map, i.e. H+(5) = 0.

Note that a p-inert map is p-lazy because doQ.g is null-homotopic. We wish to check
whether our results still hold in such a general context. To begin with, it is still
true^—and also essentially due to Felix and Thomas—that H+{F) is a free HJ^SIB)-
module under the holonomy. First note that / : W-*E factors as W ^* F -* E where / is
determined up to homotopy by the contraction of / in B through the cone on W. Now
we have:

Proposition 7.2. The composite map
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H+(F) ±^*H+(F)

is an isomorphism of H\(Q.B)-modules. Conversely, if F' -^ £ -^ B' is anyfibration sequence
of 1 -connected spaces, and if there exists a map / ' : W-*F' such that the composite

is an isomorphism, then the extension 6: E {Jxr CW-*B' is a homology isomorphism.

Proof. Let F" be the homotopy fibre of 0; by Theorem 1 in [13], there is an
extension of H^

O-Co/cer Hm(T)-*Hm{r)-^s Ker H,(T)^0

Thus when 8 = idB, F" is a point, and therefore HJ^T) is an isomorphism; conversely if
the latter is an isomorphism, H+(F") = 0, and by a standard argument 6:B'-*B is a
homology equivalence. •

Let us first discuss Proposition 1.2: since Proposition 3.5 holds for any fibration
sequence, the "if" part of 1.2(1) also holds in general. On the other hand, for any spaces
W and B, the inclusion i: Wc+ W v B is clearly inert. But then W is a retract of the fibre
F of i; hence HJfrW) is a retract of H,(QF): therefore if H^QW) is not a tensor
algebra, neither is H^QF). Thus the 'only if part of Proposition 1.2(1) does not hold
without additional hypotheses, indeed:

Proposition 7.4. The attaching map f is
(1) p-inert if F is an AH-suspension, and the converse holds if W is an AH-suspension;
(2) p-lazy if all cup products in H+(F) vanish, and the converse holds if all cup

products in H+(W) vanish.

Proof. We have just observed that the "if" statement (1) holds. Conversely, if W is
an AH-suspension, AH(W) is the tensor algebra on s~lH+(W) with differential zero. If
(yx)c:AH(E) is the image under AH(f) of a basis (xc) of s~lH+(W), then an
Adams-Hilton model for B has the form AH(E) JJ T(vJ, with dva—ya. If / is p-inert, it
follows as in [15] that (yj represents an inert sequence in Hm(QE). This implies that the
Hopf kernel of H^(Qg) is free. But this coincides with H^(ilF).

For (2), we observe again that the map HJ^T): HJSIB)® HJ_W)-^H^(F) is a map of
coalgebras. If / is p-lazy and every element in H+(W) is primitive, every element in
H+(F) can be uniquely written £a,otj where (a,) is a basis of H+(W), and the proof of
1.2 goes on with the obvious changes.

Conversely, let us only assume that every element in H+(F) is primitive; if
dim//+(F)=l, by 1.1(2) we are led back to the case when W is a sphere, i.e. to
Proposition 1.2. Thus we can assume that //+(F) contains two linearly independent
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elements a and b: choosing again an element /? of least degree in H+(QB) such that
/?. 1 #0, computing A(/?.a) and A(/?.fc) we get /?. 1 = ka = Xb, a contradiction. Hence / is
p-lazy. •

Similarly, Proposition 1.6 readily extends to the case when W is an AH-suspension:

Proposition 7.5. / / B is 2-connected and W is a AH-suspension, f is p-inert if and
only if AH(S) is homotopically trivial.

Proof. It suffices to replace S" by W in the proof of 1.6. •

Finally, we observe that Proposition 1.7 extends to any map without additional
hypotheses:

Proposition 7.6. If the fibre F has finite depth, then the map f is p-lazy.

Proof. Let us recall that //+(F) = 0 a t f # ( f iB) . wa is a free H,,(fiB)-module. If the
submodule H^(ilB). 1 nH+(F) is non-zero, its projection on one of the submodules
H^(QB). wx gives a non-trivial left ideal in HJflB), of polynomial growth. The rest of
the proof coincides with that of 1.7. •
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