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Abstract

Two problems involving the "best" solution X for a matrix equation
VXV* = M are discussed, together with methods for their solution, and a
generalization of one of the methods beyond matrix equations.

1. The two problems

Suppose V and M to be given kxn and kxk matrices respectively, and consider
the equation

VXV* = M (1)

(where * indicates complex conjugate transpose—in general, the matrices will be
taken over C).

In typical cases, this equation arises with k < n, and there is no diagonal solution
X, the matrix M being a "distortion" of a result derived from a supposed diagonal
matrix, the "distortion" being due to noise or some other factor. For a particular
case in signal processing, see, for example, [1].

Two problems arise:

Problem (a). Select, from the set of all solutions Xof{\), that particular matrix X
for which the quantity

s l*«l2
iXtln
j=l...n

is least.
(If such a solution exists, we will term it the "tightest" solution of (1): one may

reasonably describe it as being the solution which is "closest to being diagonal".
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[2] Two related estimation problems 203

In typical cases, the matrix V is usually arranged from experimental data, and is
of rank k; in this circumstance (1) has solutions and so the problem makes sense.
For a substantial discussion of further circumstances under which solutions may
exist, see Rao [2].)

Problem (b). Select, from the set of all diagonal nxn matrices, D, that particular
one D such that the quantity \ VDV*—M\ is least, where \A\ denotes

(One may reasonably describe it as "the diagonal which is closest to giving M".
Even if (1) has no solutions, this problem still makes sense, and then may be the
most appropriate one for some signal processing estimation tasks (d'Assumpcao
[I])-)

In each case, it is clear that a necessary condition for the problem to be well-posed
is that the equation

VKV* = 0 (2)

admits no diagonal non-zero solutions—for, if "K — D'" was such a solution,
then whenever "X= S" solved (a), then so would "X= S+D"\ and, whenever
"D = J5" solved (b), then so would "D = B+D"'. Consequently, in assuming
that the problems are well-posed, we assume that

If VKV* = 0kxk and K is diagonal, then K = 0n x n. (3)

(We shall return to some analysis of the conditions under which (3) holds, in
Section 4.)

2. Solution of Problem (a)

We assume that (1) does not lack solutions, and adopt the point of view that (1),
(2) and (3) are referring to the linear map <f> from the space of nxn matrices to the
space of k x k matrices, where

<f>(A)= VAV*.

Consequently, the solution set of (2) is the kernel of <f>, statement (3) is a property
of that kernel, and we are considering a search amongst all matrices of the form

X = P+K,

where P is a particular matrix such that <j>(P) = M, and K is such that <f>(K) = 0.
Let G be any "generalized inverse" for V; that is, let G be one of the many

nxk matrices such that
VGV= V (4)

https://doi.org/10.1017/S0334270000001570 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001570


204 W. Brisley [3]

(and hence also
y*G*V*=V*). (4')

The matrix G has only to satisfy (4) for the following, so any of the "generalized
inverses" defined in the literature will suffice (see, for example, Rao [3], pp. 24-26
and also Noble and Daniel [4]). The equation (4) implies that

Kk = 0 ifandonlyifk = ( / -GF)r (4")

for some arbitrary vector r and

if Vx = b has solutions, then

x = Gb is one of them. (4")

It follows from (4"") that GMG* is a particular solution for (1). Letting AT denote
any solution of (2) (that is, Keker<f>), we have from (4") that KV* = (I-GV)A
for some arbitrary nxk matrix A, and hence (using (4") again) that

K = (I-GV)AG*+B(I-V*G*), (5)

where A and B can be any nxk and nxn matrices. Adopting P = GMG*, we need
only select K, which we do using a Fourier technique, as follows.

Suppose V has rank r. Then the subspace of Cn {k|Kk = 0} has a basis
{k^ka, ...,ky} with v = n—r (note that a suitable basis will have already appeared
in the calculation of G). Let Cti denote the nxn matrix which has k̂  entered as
column i, and zero for all other entries. Then clearly any matrix of the form

, (6)
i l n i l . . . n
}=1...U J-1...U

will be a solution of (2). Since (5) displays each such K as a sum

K = R + S withKR = 0 and SV* = 0 (5')

it follows that ker<£ is spanned by the set Jf"u Jf *, where

{Qj)il...n {Q}il...n
1-1...0 j=l...V

On the space of all n x n matrices, set up the inner product <;> by defining that

V (7)

It is clear that this is an inner product, that it is not positive definite, but also that:

when restricted to ker<£, under assumption (3), <; > is a positive definite
inner product on ker<£.
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One can then define || X\\ to mean J((X; X}) and note that || X\\ is 0 if and only if
X is diagonal.

Although J/Tu Jf* is not necessarily a linearly independent set, it will yield (by,
for example, a modified Gram-Schmidt process) an orthonormal basis for
say

{KX,K%,...,KJ with <Ai,^> = 8fl, m^lnv.

Then any solution of (1) reads

m

"X=S where S = P+?,<xiKt"
i=l

and Problem (a) is reduced to selecting the ĉ  to minimize ||S||. Since P has been
adopted already, and hence the numbers <\P; Py and ft = <7>; K^ are fixed, we
calculate that

77i tn tn

<S; 5> = {P; Py+ 2 ^ + -L^ifi
i l l

m

Thus, a minimum for|| 5|| is achieved if and only if each ĉ  is —ft, and the solution
to problem (a) appears as

m

"X=S with S = P-Tl{P;Ki}Ki". (8)
t=i

(That the result is independent of the particular choice of P is clear, since if
Sj = Pj-TiiLi(Pji Ki>K-i(J= 1.2) then, since P1-P2ekeT<f>, and hence

we have Sl — Sz = 0. It is equally "standard" that the result is independent of the
particular orthonormal basis chosen for ker <f>. Thus, it does make sense to speak
of the tightest solution X = S given by (8).)

Some further remarks are of interest:

(i) If M of (I) is Hermitian, then the "tightest" solution is also Hermitian.

This can be seen as follows: from (6), we have

m
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But since (A; B} = </4*; 2?*>, the set {K[*, .-,K*} is also an orthonormal
basis for ker ̂ , and since P * is also a particular solution of (1) when Mis Hermitian,
then S* is merely the "tightest solution" usingP* and {K* K*}. Hence S = S*.

(ii) // can be arranged that each K( is Hermitian, and hence, if M is Hermitian,
that each <P; K^ be real.

We note that the Gram-Schmidt process preserves "Hermitian", since it only
involves calculations such as Aj\A; A} and A — \A; B}B, and </i; £} is real
if both A and B are Hermitian. If then, we use, instead of Jfujf *, the spanning
set w..n

i=\...v

(which consists entirely of Hermitian matrices) and apply the Gram-Schmidt
process, the resulting {K1,...,Kt^ will consist entirely of Hermitians. If, further,
M= M*, and we use P = GMG*, then P* =P, and hence

(iii) In the special case that V, M are real, and M is symmetric, we need only
consider real symmetric matrices, in which case the dimension ofker<f> is no greater
than nv.

For, by remark (ii), we have collapse from "Hermitian" to "symmetric" where-
ever appropriate. If K is in ker<£, it can be written as some linear combination

v=X...n t=l...n.
}=X...v

But also K=KT = YipiiCi}+Yl<HjC% whence K=?lyi£Cii+C§) where
Yij- £(<*#+Aj)- Hence, we may take {(Cw+C^)}i=1..n as a spanning set. That

dimension nv can be attained is demonstrated by the following example.
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3. Solution of Problem (b)

Here, we take the view that V affords a linear map <p from the space of all
diagonal nxn matrices into the space of all k x k matrices, by

ifi(D) = VDV*. (9)

Condition (3) assures us that ifi is of rank n, and Problem (b) is solved by finding
that matrix Q in Image ip which is "closest" to M, and then setting D = ip~\Q).
In this case, the relevant inner product on the space of k x k matrices is

defined as 2

(so that the corresponding norm | - j is as in Problem (b)). Calculating

for an appropriate linearly independent set of diagonals gives a basis for Image ifi,
hence an orthonormal basis for Image ip, say {5Ji=1) >n, and then Q is determined
uniquely as

(By arguments similar to previous ones, we may take the B{ to be Hermitian, and
so if M is Hermitian, all the «Af; Btyy are real, and Q is Hermitian.)
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The equation

can be rewritten as
= Q (10)

(10')

where d is the diagonal of D, q is a suitable "unwrapping" of Q and N is k2 x n.
Since N is of rank n by (3), we have d = Zq whenever Z is a generalized inverse
for iV. Equation (10) and condition (3) are discussed below.

As a matter of comparison with Problem (a), the process applied to the same
V, M in the illustration given yields
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4 0
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as a solution for Problem (b).

4. The "well-posing" of the problems

Condition (3) is clearly necessary for the problems to be well-posed. Since, with
it, they each have unique solutions, it is also sufficient for them to be well-posed,
as long as, in Problem (a), we assume the existence of at least one solution X
to equation (1). The equations (10) and (10') (and hence condition (3)) can be
explicitly written in numerous ways: one such is to "unwrap" Q as the column
whose entries read in order

In this case (the diagonal d reading dn, d22,..., dnn) one has N consisting of A:2 rows,
the rth block of A: rows reading:

..,vinvln,
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For condition (3), that is, for N to be rank n, we clearly need at least, that n ^ k2.
(If N is of rank «, with n = k2, then equation (1) has a unique diagonal solution,
and both problems become, trivially, "solve Nd = m where m is M unwrapped".)
If M is Hermitian, then the Q of (10) is Hermitian, and so •/<£>) = Q implies that
D must be real; since the rows of N occur in complex conjugate pairs, this leaves
just %k(k+1) equations to solve, k of them being real: although this does not alter
the bound on the necessary rank of iV, it does provide a smaller matrix than N
for the computation of the appropriate generalized inverse.

Two special cases are worthy of mention. In at least one type of application,
each entry in V is of modulus 1, so that iV has at least k rows with each entry 1.
In this case, then, one has "k2—k+1 ^ « " as a necessary condition for each of the
problems to be well-posed, and M not having equal diagonal entries is then a
sufficient condition for there to be no diagonal solution to equation (1).

In applications where all matrices are real, there will be at most \k(Jc + \)
distinct rows in N, so a necessary condition for the problems to be well-posed is
that n^\k(k + \). If, further, M is symmetric, n being \k(k+\) will render both
problems trivial, in that (1) will then have a unique diagonal solution.

Further discussion of the relations between the rank of N and properties of V
can be found in [2].

5. Generalization of Problem (a) and its solution

The Problem (a) is a special case of the following: given the linear map <f>: U-+ V,
with S a subspace of the vector space U, and g in V,find that solution x of<f>(x) = g
such that x is "closest possible" to being a member of S.

If we take it that <; > is a positive definite inner product on U, so that U splits
as S@S± (each u in U being written u = j(u)+r(u) uniquely, with s(u)eS,
r(u)e5x), the obvious measure is to define

«u;v»"=<r(u);r(v)>,

so that « ; » is a positive definite inner product on the factor space U/S and,
also, on K/Kn S where K is the kernel of <f>. Taking {klt k2, • • •} (modulo Kn S)
as an orthonormal basis for K/KnS, with respect to « ; » , it follows (as in the
particular case of Section 2) that of all possible solutions of ^(x) = g, that solution
with « x ; x » least possible is

x = p - 2 « p ; k i » k i (moduloKnS),

where p is any particular solution to <£(p) = g.
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Perhaps the simplest examples (other than the more obvious signal processing-
parameter estimation problems) are in control problems; as two samples which
are simple enough for scratch pad checking, we have:

(i) Find the input y{t) with least R.M.S. over 0<f ^ 1, such that y-y = t2-2t.
(Here £ is zero, K is spanned by the single function e1, and the required function is

(ii) Find the input y(t), which is closest to being linear such that y—y' = t2 — 2t
in the interval 0 < / ^ 1. (Here one takes S as the subspace of all linear functions,
with </; g} being jlfgdt, so that the required function is y(i) = t2—(1/3(3-e))e'.)

The usefulness of the method, in this context, increases with the degree of the
relevant differential equation, since it merely involves the projection of a new
particular solution on to the fixed space K/Kn S each time a "new" target function
is presented, rather than re-solving a "new" minimization problem. In practice,
the parameters needed are immediately available by quadrature, whereas the
corresponding ab initio minimization problem involves not only quadratures
but also the solution of a set of simultaneous equations which are often, because
of their source, fairly badly conditioned.
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