THE HAUSDORFF MEANS FOR DOUBLE SEQUENCES
F. Ustina

(received December 7, 1966)

The basic theory of the Hausdorff means for double
sequences was developed some thirty-three years ago by
C.R. Adams [1], and independently by F. Hallenbach [3]. Yet
today, many of the properties of these means remain largely
uninvestigated. The calculations here, although clearly more
complex, for the most part break down into obvious modifications
of the calculations in the one dimensional case,

To bring out this very close analogy between the one di-
mensional case and the two dimensional case, we give here in
summary form an elementary development of the theory of the
Hausdorff means for double sequences. References to the proofs
of the main results (Theorem 41 and 4) are given. The proof of
Theorems 2, 3 and 5 may be found in the author's dissertation
[7]. These proofs involve only the obvious generalizations of
the proofs given by G.H. Hardy [5] or D.V. Widder [8] for the
corresponding theorems in the one dimensional case. The in-
terested reader may also refer to J. Copping [2] and H.J.Hamilton
[4] for the development of a general theory of multiple sequence
transformations.

DEFINITION 1. Let A = (am ) be a four dimensional

nk/
matrix, and let S = (s ) be a two dimensional matrix whose
mn

elements are the elements of the double sequences {smn} . The

two dimensional matrix
(1) T = AS,

3

whose elements are the elements of the double sequence {trnn
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where

(2) t = a s s
mn K, =0 mnkg kit

m,n=20,1,2,...,

is meaningful for every m,n, is a transformation of the double
sequence {smn} . The matrix A is said to transform the

doubl into the double s t
ouble sequence {smn} into the double sequence {mn}

DEFINITION 2. The sequence {smn} is said to be
summable by the matrix A to the sum s if (2) is meaningful

for every m and n, and if

lim t =s< o0,
m, n->

where convergence is in the sense of Pringsheim.
DEFINITION 3. The transformation (1) is said to be
regular if every convergent sequence {smn} is transformed

into a convergent sequence {t_ _} , if t is meaningful for
mn mn

every m,n, and if

(3) lim t = lim s
mn k4
m, n—> oo k,{ =+

The transformation is said to be totally regular if, in addition,
(3) holds whenever {smn} diverges to positive or negative
infinity.
THEOREM 1. In order that the summability of bounded
by th trix A = b 1 it
sequences {smn} y the matrix (amnkl) e regular, i

is necessary and sufficient that

1. lim a =0 k,2 =0,1,2,...;
mmnk/
m, n=> o0
0
. 1i = ;
2 im = amnkl 1 ;
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M8

4. li = =
im [amnkzl 0, k=0,1,2, ;
m,n—>o (=0

0

5. = Ja |[<M<w, m,n=0,1,2,.

K, 0=0 mnk/

Theorem 1 was first proved by Robison [6].

DEFINITION 4. The matrix p = (p ) , whose elements
mnky{
are defined by
k+f ,m,,n

n

P (-1)

mnk/{

0 otherwise,
is called a difference matrix.

THEOREM 2. (cf. Hardy [5], Theorem 196.) The

-1

difference matrix p ) is its own inverse: p =p

= mnk/{

DEFINITION 5. Let {pmn} be a given sequence and
po= (umnkl) be a diagonal matrix whose only non-zero en‘friies
are p o TH_ n” The transformation matrix H = pup is
called a Hausdorff matrix corresponding to the sequence {pmn} .
The sequence {smn} is said to be summable to s in the
Hausdorff sense, corresponding to the sequence {pmn} , if the

:1' {]T]n} ’
I - HS )

approaches s as m,n tend to infinity, and tmn is meaningful

for all m,n .

REMARK. Itis easy to show that Hausdorff matrices are
commutative.

Example. (cf. Hardy [5], §11.2.) Let A =(a ),

mnk/

where
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*mnkf mH+ ‘nHl ’ Sms 2Eh,

=0 otherwise.

To show that this is a Hausdorff matrix, let

1 1

Boo= T T

mn m+1 ° n+1

Then if H = (hm ) = ppp—'1 , we have

nk/

k £

h Xy
o mukl k,

k ¢

y

00 00 00
i_ = f = pmnrs“rsp rsklX

k,

m,n

k,£=0 0,0

Hence
n 1,1 k m-k £ n-/
) ) f u (1-u) v (1-v) dudv
]
0,0
1

= (

m
mnk{ k

L 1<
m+1 " ntt 0 =T AT

0 otherwise.

Hence A = (am ) is a Hausdorff matrix.

nk{

350

https://doi.org/10.4153/CMB-1967-031-1 Published online by Cambridge University Press

1,1 - -
z (rf)(;)xky’l f 0 (- 0™ A (1-9) " dudv.,


https://doi.org/10.4153/CMB-1967-031-1

THEOREM 3. (cf. Hardy [5], Theorem 499.) A matrix
rnnkl) is a Hausdorff matrix corresponding to the sequence

{1 n} if and omnly if its elements have the form
m

A= (a

m-k, n-¢

n ’ r+s,m-k, ,n-¢

1) z (-1) ( r ) s)pk+r,£+s
r,s=0

)

a = (

mnk/

m
k

THEOREM 4. (cf. Hardy [5], Theorem 208 (i).) The
Hausdorff method of summability corresponding to the sequence
{pmn} is regular if and only if

m n_2
(3) pmn—fo u v d gu,v), m,n=0,1,2,... ,

where g(u,v) is of bounded variation in the sense of Hardy-Krause
in the unit square, and

(4) g(u, 0) = g(u, 0+) = g(0+,v) =¢g(0,v) =0, 0<u, v<1,
(5) g(1,1) - g(1,0) - g(0,1) +g(0,0) =1 .

For a proof of this important result, the reader is referred to
Hallenbach [3] and Adams [1].

REMARKS. Relative to the sequence {Hmn} , where the
elements Mo, 2T defined by (3), the Hausdorff method trans-

forms bounded sequences into bounded sequences whenever
g(u,v) is of bounded variation. If it is also true that

+
g(u,0)=g(u,0)=g(0+,v):g(0,v)=k, 0<u, v<1,

then the method is regular for null sequences. If, in addition,
(5) is satisfied, the method is regular. See Hallenbach [3].

THEOREM 5. Given a function g(u,v), of bounded
variation in the unit square, the corresponding Hausdorff trans-
form {tmn} , of a sequence {smn} , may be defined by
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k -k -1 .2
u (1-u)m Vﬂ(i-v)n a g(u,v),
and this transformation is convergence preserving.
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