A COMBINATORIAL INTERPRETATION OF
RAMANUJAN'S CONTINUED FRACTION

G. Szekeres
(received March 1, 1968)
The purpose of the present note is to give a combinatorial

interpretation of the coefficients of expansion of the Ramanujan
continued fraction ([1], p. 295)
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The result is expressed by formula (12) below.

The enumeration of distinct score vectors of a tournament leads
to the following problem: (Erdos and Moser, see Moon [2], p. 68).
Given n> 1, k> 0, determine the number of distinct sequences of
positive integers

(1) a,<a,<...<a =n
satisfying
(2) aizi for 1<i<n
and
n
= k.
(3) a1+ +an_'1 (2)+

Denote by A(n, k) this number and set

(4) A(0,0) = 1.
Clearly
(5) A(n, 0) = A(n, (;)) = 1, A(nk) = 0 for k>(’21).

Let B(n,k), n>1, k> 0 be the number of sequences of integer

(1") b,<b,<...<b =n
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with

(2") bi>i for 1<i<n
and
(34 b +...+b = (M) +k
1 n-1 2
Note that
(5" B(n,k) = 0 for 0<k<n-1 andfor k>(121),
n

B(n,n - 1) = B(n, (2)) = 1,
also
(4" B(1, 0) = 1.

Since b =n from (1') and (2'), d.=b, -1 (1<i< n)
n-1 1 1 -

satisfies the conditions (1), (2) and (3) with n- 1, k - n+1 instead
of n,k, and conversely. Hence

(6) B(n,k) = A(n-1, k-n+1)(k>n-1>0),

and trivially

n
(7) A(n, k) = Z z B(n,, k,)
r=0 n,+...+n = ro
1 r
K +...+k =k
1 r
Set
. n k
(8) F(x,t) = = A(n,k)xt ,
n>0
k>0
(9) f(x, t) = = B(n, k) xntk
0<n-1<k
Then by (6) and (7)
® r 1
F(x,t) = Z (f(x, t))” = Tfx 1)
r=0
406
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f(x,t) = > A(n-1, k-nH+1) xntk
k>n-1>0
= x = A(n-1, k-n+1) (xt)n_1 tk-n-H
k>n-1>0
= x F (xt, t),
giving
1 1 x xt xt
(10) Fot = T o &t - 1o 10 1- 1-
= Z A(n, k) xnk
and
(11) x  xt xto
flx,t) = — X %—

(12) x xt Et_z_

n
22 - > -
1+ 1+ 1+ (-1 Blakxt,

0<n-1<k
where B(n,k) is the number of solutions of (1'), (2') and (3').

Observe that from (10)

N S 1/2
Flx, 1) = 1-x F(x, 1) = 2x (1-(1-4x) );
hence by (8)
S Al k) = ﬁ(i’l)

k>0

which is indeed the total number of integer solutions of

Similarly
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1 _ 1

1-x F(-x,-1) A X
T 14x F(x, -1)

F(x, -1)

1+x F(x, -1) 1 2.1/2
= = - (-142x+(1+4 ;
1-x+x F(x, -1) 2x ( xH(1+ax )s

hence, for n> 0,

= A(2n,2k) - A(2n, 2k+1) = O,
k k

and

= A(2n+1,2k) - = A(2nHl, 2kH) = = (“7y .

n
k k
Generally one can calculate the explicit value of F(x,{) for any

3
root of unity ¢{. For exampleif {~ =14, { # 1 then

3.1/2
_L(1-(1-4x")""7) 1
F(xt) = 2x(1-x) * 1-x °

It would be interesting to find an asymptotic expression for
B(n, k) when k is large and n varies from 1 to k. It seems likely
that for fixed k, B(n, k) increases monotonically to a maximum as
n varies from 1 to some p(k) < k and then decreases monotonically

as n varies from p(k) to k. However not even the approximate value
of p(k) is known.
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