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POLYNOMIAL INVARIANTS OF FINITE LINEAR GROUPS 
OF DEGREE TWO 

W. CARY HUFFMAN 

1. I n t r o d u c t i o n a n d n o t a t i o n . Recently invariant theory of linear groups 
has been used to determine the structure of several weight enumerators of 
codes. Under certain conditions on the code, the weight enumerator is invar iant 
under a finite group of matrices. Once all the polynomial invariants of this 
group are known, the form of the weight enumerator is restricted and often 
useful results about the existence and structure of codes can be found. (See 
[5], [8], [14], and [15]. ) Many of the groups in these applications are of degree 2 ; 
in this paper all the invariants of finite 2 X 2 matrix groups over C are deter­
mined. 

We begin with some definitions and theorems. Let Xi, . . . , xn be independent 
variables and C[xi, . . . , xn] the ring of complex polynomials in Xi, . . . , xn. 
Let A = (cxij) be an n X n complex matrix. If jT Ç C[xi, . . . , xn], define 

( n n \ 

X ) "ifiji • • • » X ) <*njXj ) • 

If B is another n X n matrix, then B o (A o f) = (AB) of. Let ré be a finite 
group of n X n matrices over C and %• & —> C a homomorphism. T h e n / is a 
relative invariant of ^ with respect to x if A o f = x(A)f for all A G ^ ; if 
X = 1, / is an absolute invariant of 5^. We denote by SDÎ(^, %) the set of all 
relative invariants of & with respect to x- So 95?(^> 1) is a C-algebra and 
SD?(^> x) is an SDî(^, 1)-module and a graded Z-module. The object of this 
paper is to obtain a simple description of 5DÎ(^, x) when n = 2. We remark 
tha t Burnside [2], Blichfeldt [1], DuVal [4], Klein [7], and possibly others 
completed a simpler version of this problem by describing invariants wi thout 
regard to the characters x a n d examining the groups projectively. Such a 
separation was necessary in the coding theory applications mentioned pre­
viously. Also invariants of groups generated by reflections were studied by 
Shephard-Todd [13] and Stanley [16]; recently results were obtained by 
Riemenschneider [12] which deal with absolute invariants of groups of degree 2 
containing no reflections. We remark tha t in this paper any finite group of 
degree 2 and any linear character x is covered. 

We can write 2 f t ( ^ , x ) = ©T=o S » ( ^ , x)< where 

9 f t ( ^ , x)i = {/ 6 2W(^, x ) | / i s homogeneous of degree i}. 
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318 W. CARY HUFFMAN 

Let ip(@, x)(X) = Z?=o d i m c ( 2 ) ? ( ^ , x)«)X' be the Molten series of CS with 
respect to \. Then 

T H E O R E M 1.1. (Molien [11]; see [2, p . 300] and [15]) 

A&, x)(x) = | | | E d-t~7/4xT)-

where bar denotes complex conjugation. 

In our si tuation we will be able to wrrite <p(&, x) hi the form 

<p(&,x)M = ^ jr for some/ 

and correspondingly write 9ft (^> x) = 0 / L i 7*;C[/i, / 2 ] where / i , / 2 are 
algebraically independent and elements of 9ft (â^, l) r f l , 9ft ( ^ , l)d2 and 
T/c G 3 K ( ^ , x)bk- (See [6], [9], [14], [15] for discussion and conjectures regarding 
the forms'of the IVIolien series and their relationship to the form of 3ft (&, %)•) 

In Section 2, we give generators and characters of the finite groups of degree 
2. In Section 3 the invar iants for the monomial groups are determined, and in 
Section 4 the invariants for the primit ive groups are given. 

2. G r o u p s of degree 2. Let & be a finite linear group of degree 2 over C. If 
tf = N~l&N then 9ftpT, x) = i V o 9 f t ( ^ , X

N)\ so we consider ^ up to 
change of basis. As is well known we m a y assume S^ is uni ta ry . Such groups 
have been enumera ted by DuVal [4] and Coxeter [3] using quaternions . We 
now give generators for the groups in the form we will need them later as well 
as the linear characters . I t is straightforward to convert , say, Coxeter 's list 
[3, Chapter 10] to those listed here. Wi th each lemma we give the groups as 
in Coxeter 's list [3] as well as the corresponding projective group in Blichfeldt 
[1]. Zk is the cyclic group of order k, Z the integers, and Z(&) the center of rS. 

L E M M A 2.1. (Type 1 of [3] ; T y p e A of [1]) Let & = % be abelian of exponent 
e = p}

(li . . . pt
at with pi, . . . , pt distinct primes. Let e be a primitive eth root of 1. 

Then 21 ^ Ze X Zf where g = e/f G Z. Also 
i) 21 = (Bu B2)^ (Bi) X (B2 ) where 

Bl=U £)™^=(o I) 
with 

V! = pf . . . pq
a% v2 = jps

as . . . pr, q < s, gcd 0", e) = l,d = pQ+1 . . . 

X ps-i. 

ii) If g ~ p\l . . . pt
Tt, we may assume 0 < at ^ rt for i = 1, . . . , q and 

i = s, . . . , /. 
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POLYNOMIAL INVARIANTS 319 

iii) A character x on 31 must have values x(Bi) = eni and x(B2) = egn2 for 
some nu n2. We may assume 0 ^ n2 < f (which we do in Section 3). 

LEMMA 2.2. (Type 2,3,3',4 of [3]; Type B of [1]) Let & be monomial and 
nonabelian with diagonal subgroup % c^± Ze X Zf of index 2 and exponent 
e = piai . . . pt

at where g = e/f = p\l . . . pt
Tt. Let e be a primitive eth root of 1. 

We may assume & = (SI, F) where 31 = (A1} A2) ~ (^ i ) X (A2) and 

- ( ; j )^- ( i? ) - ' - ( : - i ) 
with \F\ = 26+1 awd a a primitive 2b+l root of 1. 7/ 2|e, /e/ £i = 2. PFe tf/s0 obtain 

i) i / p , = 2, 6 ^ ax and if 2 \ e, b = 0; 
ii) i /£ i = 2andr1 > ax - b then j = 1 mod 2r i~(ai-&) ; 

iii) gcd (j, e) = 1; 
iv) 72 = 1 mod g. 
v) Let C\ — gcd (7 — 1, d). A character % on & must have values x(Ai) = 

€ni, x(Ai) = eçn\ x(F) = <xn* where 

n\ = (j + l)n2 mod (e/ci) and n^ = nx + n2(l — j) mod 2b. 

We remark that the first condition on n\ and n2 in v) comes from the two 
facts that F~lA\F, F~lA2F Ç 31 plus some straightforward calculations involv­
ing C\. The second condition on ri\, n2, nz comes from F2 Ç 31, as does ii). 

LEMMA 2.3. (Types 5,6 of [3] ; Type C of [1]) Let & be primitive and &/Z{&) 
c^ A 4. Then & is either 

»fer«^=-i-("J + * _ J l ; ) . 0 - ( ( _ " J).(ô _°.))««K««««^-
nion group of order 8, M t's a primitive dth root of 1, and in ^2, a is a primitive 3 r 

root of 1 (r ^ 1) and 3 \ d. A character % of & must satisfy x(T) ~ 1 for 

T £ (?> x( n I = Mw where 2\n if 2\d, x(A) = 1, co, or w where œ is a primitive 

cube root of 1 if & = @u and x M ) = am if & = <S\. 

LEMMA 2.4. (Types 7,8 of [3] ; Type D of [1]) Let <g be primitive and ^ / Z ( ^ ) 
o^ S4. Then & is either 

and in &2, 1$ is a primitive 2r root of 1 ( r i 2) and 2 \ d. A character % of 

where Q,A are as in Lemma 2.3, B = —7= I . J ,v is a primitive dth root of 1, 
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must satisfy x(r) = 1 for all T Ç (Q,A),X\() I = vn where 2\n if 2\d,x(B) = 

±lif@ = &uandx(&B) = pm where 2\m if & = CS*. 

LEMMA 2.5. (Type 9 of [3]; Type E of [1]) Let <g be primitive and ^ / Z ( ^ ) 
~ A 5. Then ^ = &jfor j = 1 or 2 wfeere 

Y-i+V5\ , . / - i 
7 i = <52 = i l I , 72 = ôi = t\ 4 / ' " ^ "\ 4 

nw(i n is a primitive dth root of 1, using the notation of Lemma 2.3. A character 

xof& must satisfy x(r) = I for all r £ (Q,̂ 4,C7- ) arad xl n I = Mn wfeere 21 w 
z/2|d. l ° M/ 

3. Relative invariants of the monomial groups. Theorems 3.1 and 3.10 
give the invariants of the abelian and nonabelian monomial groups. 

THEOREM 3.1. Using the notation of Lemma 2.1 let m = e/vi, n = ej/v2, 
fi = xm, and f2 = yn. Then there exists an integer w such that (v2 — dv\)w = 1 
mod/^i. Let 

2 = {l\l = (m — n2V\)w mod/z^i and 0 ^ / < n). 

If I £ 2, there exists a unique integer k(l) such that k(l)v\ = n\ — lv2 mod e where 
0 ^ k(l) < m.Letyl = xk{l)yl. Then 

2W(8l,x) =®ie*yiC[f1J2]and 

Ç \k(l)+l 

*c», x)(x) = ^r-%a"-~py • 
Proof. First, w exists because Lemma 2.1 ii) implies fv\\e and primes dividing 

e divide precisely one of v2 and dvx giving gcd (fv\, v2 — dv\) = 1. If / £ S, 
then l(v2 — dvi) = n\ — n2V\ modfv^ which implies n\ — lv2 = 0 mod V\ and so 
k(l) exists a s w = e/vi] k(l) is unique as k'v\ = k{l)v\ mod e implies k' = &(/) 
mod w. 

As 21 is diagonal, every element of 9ft(31, x) is a sum of monomials xky] £ 
9ft (21, x)- Examining Bt o xfcy, xkyl £ 9ft(21, x), if and only if, 

(*) kvi + lv2 = wi mod e and fe + /d = n2 mod/. 

Letting n\ = n2 = 0,fi,f2 £ 9ft(21, 1) using Lemma 2.1 ii). We are finished if 
we show that 

a) i f /G 2, 7 * e 2tt(8t,x); 
b) if * V g 9ft(2t,x), t h e n * V 6 £ K 8 T A / I . M ; 
c) ] C K 8 7 Z C [ / I , / 2 ] is a direct sum. 
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For a) by definition of k(l), k(l)vi + lv2 = n\ mod e. Ksfvi\e, 

k(l)vi + h2 = nx mod /^ i . 

For / G £, l(v2 — dvi) = Wi — n-2̂ 1 mod cfei whence 

^2^1 — / ^ i = ni — h2 = ^ ( / ) ^ i m o d / ^ i 

implying (*). For b) let / = h + ^ and k = ki + jm where 0 ^ /i < w and 
0 S ki < w. Then 

s*?1 = Tn/ i f t* if h G 8 and fex = &(/:). 

As /z/i|e, using (*) we obtain ri\ — lv2 + ldv\ = n2Vi mod fv\ which implies 

I = (rii — n2V\)w mod fv\. 

By Lemma 2.1 ii), fvi\n implies / = h mod fv\ giving h G ?. Clearly &z/i = 
&iZ>i mod ^ and /z/2 = ^ 2 mod c giving k\V\ = kv\ = n\ — lv2 = nx — l\V2 mod e 
and so ki = k(l\). Finally, for c) , as powers of y in yiC[f\,f2] are congruent to 
/ mod n, the sum is direct. 

For the remainder of this section let @ be as in Lemma 2.2. Clearly poly­
nomials in $)l(&, x) are linear combinations of xlyl and xkyl + f3xlyk when 
k ^ I 

LEMMA 3.2. We have in the notation of Lemma 2.2. 
i) a26 = 1 and gcd (j,e) = 1; 

ii) xkyl G 9JÎ(3t, x) if «w^ 0 ^ if k = ni — jl mod e awrf / = n2 mod / ; 
iii) xkyl G 9M(?l, x) if and only if xlyk G 3ft(21, x ) ; 
iv) if xkyl G 5D?(?t, x ) , / / ^ ^3 = k + I mod 2&; 
v) xlyl G Wl(&, x) if and only if xlyl G 2W(Sl, x) « ^ ^3 = 2/ mod 2*+1; 

vi) if k ^ I, then xkyJ + ftT'/ G 9W(^> x) if «wd <mty i / x V G SDî(2t, x) 
and fi = a2l~nK 

Proof, i) , ii), v ) , and vi) follow directly from Lemma 2.2. As 31 is also 

generated by I I and I I , iii) is clear. For iv) we are done if 2 \ e 

by Lemma 2.2; so we assume b ^ a\. By ii) we obtain k + / = n\ + (1 — j)l 
mod 2b and / = n2 mod 2ai~ri giving iv) if b ^ ax — rx by Lemma 2.2 v ) . If 
b > «i — ri} by Lemma 2.2 ii), 

1 - 7 = 0 mod 2ri-<ai-&> 

which implies (1 — j) (I — n2) = 0 mod 2b and so 

k + / = n\ + (1 — j)w2 = ^3 mod 2b 

by Lemma 2.2 v ) . 

LEMMA 3.3. Let m be the minimal positive integer such that (1 + j)fm = 0 
mod e and 2b\fm. Then 
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i) m exists andfm\e (i.e. tn\g)', 
ii) if (1 + j)fmf = 0 mod e and2b\fm', thenm\m'\ 

iii) / i = xe + 3>e and f2 = (x^) /m are algebraically independent elements of 

Proof. The homomorphism ^: Z —* Ze given by x^ = (1 + j)fx mod g has 
kernel (wi) with e// G (mi). The homomorphism 0: (mi) —^Z2

b given by 
xd = fx mod 2b has kernel (m ) containing <?// also by Lemma 2.2 i) giving i) 
and ii). Letting nx — n2 = w3 = 0, / i , / 2 G 9JÎ(^, 1) and iii) follows easily. 

From now on we may assume 0 ^ n2 < f; let d = e/fm. Let l(n) = fn + n2 

and let &(w) be such that 0 ^ k(n) < e where k(n) = n\ — jl(n) mod e. Let 
Jx = {w|0 g « < m and k(n) > l(n)\ and A ^ j w Ç J i\k(n) <fm). 

LEMMA 3.4. Let 0 ^ n, n* < m with n G J\. Assume k(n) = l(n*) mod fm, 
i.e., k(n) = fmq + l(n*) with 0 S q < d (as 0 ^ l(n*) < fm). Then we have 

i) ifn* G Ju ^en q > 0; 
ii) ifq>0, then k(n*) = fm(d — q) + l(n). 

Proof. By Lemma 3.2 ii) and iii), l(n) ~ n\ — jk(n) = m — jfmq — jl(n*) 
mod e. As k(n*) = n\ — jl(n*) mod e and (1 + j)fm = 0 mod e, 

l(n) = k(n*) + fmq mod e. 

If ç = 0 as 0 ^ /(«), fe(n*) < e, l(n) = jfe(w*) and k(n) = l(n*). As Z(w*) = 
k(n) > l(n), n* > n. If n* G ^ i , /(n) = &(w*) > l(n*) which implies n > n*, 
a contradiction giving i). If q > 0, then 

0 g l(n) <fm S fmq + k(n*) < 2e; 

as l(n) = fe(w*) + fmq mod e, Z(w) = /mg + k(n*) — e, giving ii). 

LEMMA 3.5. If 0 ^ n, n' < m w ^ &(w) = &(V) mod /m, then n = wr. For 
each n ^ J \ with f m ^ &(w) there is a unique n* G J\ such that k(n) = l(n*) 
mod fm. Also k(n*) = /(w) mod fm. If k(n) < fm and n G ^ i , / ^ ^ /feere is 
no n* G */i m/& k(n) = l(n*) mod fm. 

Proof. If k(n) = &(V) mod /m, as /m|e, j/(w) = jl(n') mod fm whence 
/(n) = l(n') mod/m by Lemma 3.2 i). So n = n' mod m and n = nf. 

\î n G J^i with/m ^ k(n) then as fe(w) = n2 m o d / b y Lemma 3.2, 

k(n) = fmq + fn* + n2 with 0 ^ n* < m and 0 < q < d. 

By Lemma 3.4 ii), fe(w*) = /m(d — g) + /(w) ^ /m and thus w* G */i . If also 
for some 0 ^ wr < m, k(n) = /(nr) mod/m, then l(n') = l(n*) mod/m and so 
n' = n* mod m and nr = n*. The last statement follows from Lemma 3.4 i). 

Now let 

An(x, y) = xk{~n)yKn) + a
2l{~n)-n"xl^y^n) îov n G Jx and 

Bn(x, y) = xkwylw+e + a
2l(>n)-n3xm+eykw for w ^ i 2 . 
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By Lemma 3.2 and 3.3 i), An, Bn G $ft(^, x). From now on let gk,i = xkyl + 
a2l-n*xlyk. 

LEMMA 3.6. Let 5ft = £ 7nC[/i,/2] w/^e {7n} = U r | r G A } V {Br\r £ J2}. 
Let 0 ^ / < k < e and assume gktl G 2ft(2^, x)- 77^^ J = /w£ + l(n) where 
0 ^ n < m and either i) k — fmp + k(n) or ii) & = fmp + fe(w) — e. Also 
gkri G 31 and in case i) gk,i+e £ ft and in case ii) gk+etl G 5ft. 

Proof. By Lemma 3.2 ii) / = /m£ + Z(w) where 0 ^ n < m. Also 

k = ni — jl ^ ni — jfrnp — jl{n) = £(w) + /m£ mod e 

as (1 + j)fm = 0 mod g and k(n) = m — jl(n) mod e. So as 0 g Jwp, fe(w) < 
e, i) or ii) holds. 

Assume i) holds. Then k > I implies k(n) > l(n) and n G J\. Then 

gk,l = f2Pgk(n),l(n) £ $ft 

as a2/m = 1 since 2h\fm. Also 

^A;, Z+e = f2Pgk(n),l(n) + e G 9Î 

if £(w) < /w. Assume &(w) è /w. Let ̂ * G J^i be as in Lemma 3.5. Then by 
Lemma 3.4, k(n) = /mg + l(n*) and &(ra*) = fm(d — g) + (̂w) which implies 
Z(w) + e = fmq + &(w*). So 

Z*.l+e =ffg*(n).«n) + e = a 2 * " * ^ 2 * W > , I ( n . ) G 5ft, 

the last equality requiring 21 (n*) + 2k(n*) = 2n% mod 2&+1, which holds by 
Lemma 3.2 iv). 

Assume ii) holds. As p S d — 1 and k ^ 0, &(w) ̂  /m. So n G </r, let 
n* G J^i be as in Lemma 3.5. Then k(n) = fmq + l(n*) and &(w*) = /m(d — q) 
+ /(n) which implies k = fm(p + q — d) + Z(w*) and / = /m(£ + q — d) + 
k(n*), the former implying^» + </ — ^ ^ 0 as 0 :g l(n*) < /w. So 

g*tl = *mn*)-ni*v+q-dgm*),Kn*) e 5ft 

again using 2Z(w*) + 2fe(w*) = 2^3 mod 2&+1. Also 

g*;+e,Z — f'2Vgk{n),l{n) G 5ft, 

giving the lemma. 

Now let 0 ^ w be the minimal integer such that 

(1 +j)Z(w) = n\ mod e and n% = 2Z(w) mod 2Ô+1. 

Let 0 ^ ^ be the minimal integer such that (1 + j)l(v) = n\ mod e and nd je 
21 (v) mod 2&+1. Note that v or w may not exist; define J3 to be the elements of 
{p, w\ which do exist. 

LEMMA 3.7. For z G J^r3, 0 ^ 2 < m. If' v\ or w\ satisfy the equations defining 
v or w respectively, then v = v\ mod m and w = w± mod m. 
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Proof. Assume z ^ m. Then (1 +j)(l(z — m)) = (1 +j)(l(z) — fm) = 
(1 +j)l(z) = ni mod e. As 2/ra = 0 mod 2&+1, 2/(z) = 2/(z - ra) mod 2&+1, 
contradict ing the choice of z. 

Now (1 + j)l(wi) = (1 + i ) / ( ^ ) mod g which implies (1 + j ) / ( ^ i — w) = 0 
mod e; also 2l(w\) = 21 (w) mod 2&+1 and so f(wi — w) = 0 mod 2& giving 
w | ^ i — w by Lemma 3.3 ii). As above (1 + j)f{v\ — v) = 0 mod e. By Lemma 
3.2, 

n3 = 2/(^0 = 2/(^) mod 2\ 

As 2/(^i) = 2V + rizj 21 (v) = 2bs + %z and by choice of v, V\, both r and 5 are 
odd. Hence 

2l(vi) - 21 (v) = 2f(v1 -v)=0 mod 2&+1, 

again yielding m\v\ — Î;. 

Remarks. 1. If z G J^3, /(z) = ife(z). 
2. If both z;,w exist, then |y — w\ = ni/2 because 0 < 2\v — w\ < 2m and 

2\v — w| satisfies the conditions for m. 

Now define Cw (x, 3O = (x;y) /(w) if w exists and 

Cv(x,y) = x1wy^v)+e + a2IW-n3x^v)+ey^v) 

if y exists. By Lemma 3.2, Cw, Cr G SM(&, x)-

LEMMA 3.8. Le* 2H = E 7«C[/ i , / 2 ] where {yn\ = \Ar\r G A j U {/Jr|r G ^ 2 ! 
U { Cr\r G -^3}. 7"/^w //?£ a&0ye sum is direct. 

Proof. In A rC[/ i , / 2 ] , B,-C[/i, / 2 ] , and CrC[j\, f2] the powers of x are congruent 
to k(r) and /(r) mod fm. Now k(w) = /(w) ^ £(7;) = /(z;) mod / r a . Let n G , / i 
and r G ^ 3 . If fe(w) = &(r) mod fm, n = r by Lemma 3.5, a contradict ion. If 
/ (n) = k(r) mod fm, then /(w) = l(r) modfm and sow = r, a contradict ion. So 
by Lemma 3.5, we only need to prove tha t 

i) if k(n) ^ fm and n ^ w*, then ^ w C[7i , / 2 ] + ,4w*C[/i, / 2 ] is direct; 
ii) if jfe(tt) < / w , then ^ n C [ / i , / 2 ] + ^ H C [ / i , / 2 ] is direct. 
Let a(x, y) = Y, <Xr,sfirf2s and b(x, y) = Y, Pr,sfirf2s- T o prove i) assume 

(1) a(x,y)An + b(x,y)An. = 0. 

By Lemmas 3.4 and 3.5, k(n) + l(n) = fm(2a — d) + l(n*) + £(n*) where 
0 < q < d. Tak ing homogeneous components of degree z in (1), we obtain 

( 2 ) 0 = £ a r , , / l / 2 ^ » + Z Pr.sflfJAn* 

w h e r e ^ 1 = {(r, s) |rd + 25 + (2g - d) = zx) a n d 5 ^ 2 = {(r, s)\rd + 2.v = s^ 
when zi = (1/fm) (z — (k(n*) + /(w*))). The degrees of x in the j ^ \ sum are 
congruent to &(w) and /(w) mod / m and in the J^ 2 sum are congruent to 
k(n*) = /(w) mod / m and /(n*) = k(n) mod / m . Spli t t ing into these two 
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degrees (as k(n) ^ l{n) mod fm since n 9^ n*) and letting y = 1, we obtain 

(3) Z «r,s(*c + l )Vm (*+ ï ) + «*«->— ^ ^r,s(xe + 1)Vm* = 0 

(4) a2I(n)-*« X «r,,(*e + 1)rxfm{s+q) + £ f3r,s(x
e + l)rxfm{s+d) = 0. 

Combining we obtain 

(5) a
2«»*>-»' £ /3ri,(Zd + l) rX5 - a

2*<»>-«» £ ^ ( x * + iyX
s+d = 0 

where x /w - X. But (Xd + l) rZ6 ' , (Xrf + l)rXs+d have degrees zx - 5 and 
zi — s + d. Clearly /3r>s = 0 for all (r, s) G y2. Similarly using (3), ar>s = 0 
for all (r, 5) G 5^2. We obtain ii) in an analogous manner, the crucial fact 
needed to obtain two equations being k(n) ^ l(n) mod fm since 0 ^ l(n) < 
k(n) < fm. 

A straightforward induction yields 

LEMMA 3.9. Let y Ç {(/1, J>)|/X, *> are nonnegative integers) = y . Assume 
(0, 0 ) Ç y and either ( l , 0 ) o r ( 0 , 1) Ç y . Assume also 

i) Ox, „), ( M + D ^ ^ H I , ^ y 7 ; 

ii) (,*,„), t + l , ^ y ^ ( M + 1) Ç ^ ; 

hi) (v,p) ey => (n + i,v + 1) e y> 
Then y = 3T. 

THEOREM 3.10. 2 t t (^ , x) = ® 7»C[/i,/2] where {yn\ = \An\n G J1} U 
{5n|n G ^ 2 j U {Cn|w G J*). 

Proof. As 4 n , £n , Cn e m(&, x) we only need to show 3W(^, x ) S 2ft where 
S0Î = © T W C[ / I , / 2 ] by Lemma 3.8. Clearly it suffices to show by examining the 
action of Ai, A2, F on a polynomial in 9)?(^, x) the following: 

i) xlyl e m(&, x) => xJyl e 2W and 
ii) if ^ 5* / ,&. ,£ 2 R ( ^ , x ) = > ^ , ^ S0Î-

For i), / = /rag + /(w) by Lemmas 3.2 and 3.7 implying x ? y = Cwf2
Q G 3)c. 

For ii) let k = \x*e + fei, / = *̂g + h with 0 ^ ku h < e. As 

ëk.i = <x2l-n'gltk 

we may assume h ^ &i. Let 

y = {(^v)\g,e+kuve+h G 2»}. 

We are clearly finished if we satisfy the hypotheses of Lemma 3.9. We note that 

f\gne+k\,ve+l\ — è(n+l)e+ki,ve+h + gne+ki,( v+1) e+ h 

using a2e = 1 implying i) and ii) of Lemma 3.9. Also 

ft gne+ki,ve+h = g(M+De+A;i,0+l)e+/i 

giving iii) of Lemma 3.9. 
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By Lemma 3.6, if h < ku (0, 0 ) ^ and either (0, 1) G y or (1, 0) G y . 
If h = fei and w3 = 2h mod 26+1, by Lemma 3.7, kx = h = fmq + l(w). As 
gZltil = 2x V 1 = 2f2

QCw e 9)2 using 1 = a2l'~n\ we obtain (0, 0) Ç y7 . Now as 

(1, 0) G $2. Finally if Zx = ifei and n3 ^ 2/x mod 26+1, by Lemma 3.2, w3 = 2/i 
mod 2&, giving a2 Zl~n3 = - 1 . As gZl, Zl = 0 G 9)2, (0, 0) Ç ^ . By Lemma 3.7, 
kl = lY = fmq + l(v) which implies gkuh+e = /2

ffCD G 992 and (0, 1) G y . 
In all cases Lemma 3.9 holds, completing the proof of the theorem. 

Remark. The form for the Molien series in Theorem 3.10 is 

<P(B?, x)(x) = ^ (f±-x^r=-x5-7™) ' 

4. Relative invariants of the primitive groups. In this section we 
describe the relative invariants of the groups of Lemmas 2.3-2.5. Define the 
following polynomials: 

ipA = x4 — 2 \ / 3 i x2y2 + y4 

<p& = xr°y — xyh 

<ps = X8 + UXY + y* = <p^x 

<p12 = x12 - 33(x8;y4 + x4y8) + / 2 

\pl2 = 22\/5<£62 + 0(fi2 

2̂0 = 3<£>8<£i2 — SSVS^ÔVS 

1̂30 = 6696<£6
5 + 225^6^83 — S S O v ^ e V ^ . 

Also define ^ as the involution in the Galois group of Q(i, \ / S ) / Q M sending 
V5 —> — VS and — is complex conjugation. 

We use the notation of Lemmas 2.3, 2.4, 2.5. Let ^ } — (Q, œjA ) where 
a? = e27rin. The characters of Jifj can be determined by Xi,;(wM) = co* where 
i = 0, 1, 2. Let J f = (Q, yl, 2* ). The characters of J f are determined by 
Xi(B) = ( - l ) ' f o r i = 0, l . L e t ^ , = (<2, ,4, C, ) for7 = 1, 2. The characters 
of «if j- are trivial. The groups ffl h J^ , «if :/ are respectively isomorphic to 
SL2(3), GL2(3) and SL2(5). The following lemma describes the 9)2 ( ^ , x) for 

LEMMA 4.1. The following table is valid: 

Proof. This is a straightforward application of Theorem 1.1. The polynomials 
<P4, cpe, <ps, ^12, ^12, ^20, ^30 have also been obtained by other authors. For 
instance they are found in Sections 36, 37 of DuVal [4] where they were de­
noted by P, S, Q, R, V 5 / , D, T respectively. (DuVal's study first considered 
the groups protectively (Sections 36, 37) and secondly considered the absolute 

https://doi.org/10.4153/CJM-1980-024-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-024-6


POLYNOMIAL INVARIANTS 327 

<3 X w,x) v(&,x) 

W Xo,o C[<^6, <^8] © <£>12C[<p6, <^8] 
1 + X12 

<?€ 0 Xo,o C[<^6, <^8] © <£>12C[<p6, <^8] 
( 1 - X C ) ( 1 - A 8 ) 

-up 

j r 0 

Xi.o 

X2,0 

^ 4 C[<^6, ^8 l © V?4 C[<^6, <^8] 

cp4C[cp6, <P%] © ^4 C[^6, <£s] 
I x4 + x8 

/ (1 - X6)(l - X8) 

JT 2 

Xo.i 

X0,2 C[<£>4, <£e] 
1 J 
M i - x 4 ) ( i - x 8 ) 

3 ^ 
X i . i 

X2.2 

(p4 C[<^4, <^6] 

C/>4 C[<^4, <^6] 

1 x! 
» ( 1 - X 4 ) ( 1 - X 6 ) 

X2,l 

Xl,2 

<̂ 4C[<̂ 4, <Pe] 
^4C[cp4, <PG] 

I x4 

^ 2 

X2,l 

Xl,2 

<̂ 4C[<̂ 4, <Pe] 
^4C[cp4, <PG] f ( 1 - A 4 ) ( 1 - X ° ) 

J f Xo C[<fe, (ps] 
1 

Xo C[<fe, (ps] 
( l - X ° ) ( l - \ 8 ) 

J f Xi (fnClcpQ, (pg] 
X12 

Xi (fnClcpQ, (pg] 
( 1 - X 6 ) ( 1 - X 8 ) 

^ 2 

1 
1 

C[\pl2, ^20] © ^3()C[^12, T^2O] 

C[^12, ^2o] © ^3oC[^12, ^2o] 

I 1 + x30 

/ ( l - X12)(l - X20) 

invariants (Section 39). The present table is thus more extensive because it 
separates out the relative invariants.) 

We now state a theorem giving the invariants of 8̂ 1 of Lemma 2.3. 

THEOREM 4.2. Using the flotation of Lemma 2.3, let m\ — d/gcd(Q,d), 
m2 = d/gcd (S,d),andy = {(j, fe)|0 ^ j < W i , O ^ K m2}.Let 

J t = \ 0\ &) e ^ | 6 j + 8& + 4/ = « mod d} /or * = 0, 1, 2, 3. 

Define {Y?-} according to the following 

x(A) i74 

1 { V .WI0" . * ) € •/<>} yj {<P»W<PI*\U, k) e . / , } 

CO {^eW^IO' . * ) € ^ i l U {^eVsWIC/,*) € ^ j 

CO {^.W^IC;. fc) e Ji\ u j^VsWKi, *) e «/2} 
Then 

1 
<P ( ^ 1 , X) = (1 - X b m i ) ( l - X8™2) Z x 

i(z) 

where d(i) is the degree of yt. 
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Proof. By Lemma 4.1, £ T ^ C I W " 1 , ^ W 2 ] is direct and <p6
Wl, ^sW2 are alge­

braically independent. We examine x(A) = 1, the others being similar. By 
examining WlÇ^fo, %o,o) of Lemma 4.1, a homogeneous / = fi + / 2 i s i n 93 î (^ i , x) 

where fx = cpeVs* and f2 = <Pv2<P6r<Pss if and only if ( o / j = Mn/i or 

equivalently 67 + 8& = n mod d and 6r + 85 + 12 = n mod d. Clearly the 
result holds. 

We now examine CS 2 of Lemma 2.3. 

T H E O R E M 4.3. Using the notation of Lemma 2.3, let b = 3 r if r > 1 «w^ b = 1 
if r = 1. Le£ c = 3 r _ 1 . Define mi = db/gcd (4, d&), m2 = ^^/gcd (6, rfô), and 
y = {(j, fe)|0 g>j<mu0^k< m2}. Fort = 0, l, 2 define 

J t = \ 0 \ k) G ^ |m - (2c + 1) (4j + 6fe + 4/) = 2fc mod 3 r , w = 4/ 

+ 6k + 4 / m o d d } . 

7fû:c = co, 

emd if ac = cô, 

2 K ( ^ 2 , x ) = © T f t B I , ^ 6 w 2 : 

/w either case 

<P\^2JX) — /-. _ \ 4 w l \ / 1 _ \ 6 w 2 \ Z ^ A 

where d(i) is the degree of yim 

Proof. We do the case ac = co. T h e sum for 9J?(2^2, x) is direct if we show 
C[cp4, <p&] + ^4C[cp4, <̂ e] + <£>42C[<p4, <̂ e] is direct. Let £* Ç £4*C[<p4, <̂ 6] where 
Po -\- pi + P2 = 0. Applying cô 4 and (wA)2 we obtain £>0 + w2pi + w£>2 = 0 
and po + w£i + orp2 = 0 by Lemma 4 .1 , yielding pf: = 0 for i = 0, 1, 2. 

By Lemma 4.1, <p4mi, <£>e™2 are algebraically independent absolute invar iants 
of 2^2. If p is a homogeneous polynomial of degree z, (aA) o p = amp if and 

only if (vA) o p = «^-(2^+1)^ and I ^ I o £ = MW£ if and only if s = n 

mod d. So p £ Wl(&2, x) if and only if p £ C[cp4, <pe], cp4C[^4, ^e], or cp4
2C-

[<p4, ^e] where s = 4 j + 6& + 4/ with t = 0, 1, 2 respectively and m — (2c + 1)2 
= 0, 2c, 4c mod 3 r respectively and z = n mod J. T h e result is now clear. 

T h e next theorem gives corresponding results for the groups of Lemma 2.4; 
its proof is similar to the previous ones. 
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THEOREM 4.4. Using the notation of Lemma 2.4, if ^ = & i let b = 1 and 
m = l,andif& = @2,letb = 2r. Define 

mx = dè/gcd (6, d&), w2 = db/gcd (8, d&), and y = {(j, k)\0 ^j< mu 

0 ^ k < m2}. 
Let 

J t = \ (j, k) G y\m - (6j + 86 + 120 = 0 mod b and 

n = 6/ + 8k + 12t mod d) for t = 0, 1. 

Define {y t } according to the following: 

& 

^ 2 

{yt\ 

ifx(B) = i UWIO' ,* ) e A } 

ifx(B) = - 1 {^eVsWIO',*) £ Ji] 

U W I O \ * ) G •/„} u \<p*w<Pi2\(j,k) e J A 

Then 

m&, x) = © T^CtW, *>8W2] and <p(&,X) = (1 - X6mi)(l - X8"12) 

x E xd(0 

where d(i) is the degree of y t. 

The final result is for the groups of Lemma 2.5. 

THEOREM 4.5. [/sing the notation of Lemma 2.5, /d 

wi = d/gcd (12, d), w2 = d/gcd (20, d), and y = {(j, jfe)|0 ^ j < wx, 

0 g & < m2}. 
Define 

J t = {(j, k) G y | 1 2 j + 20& + 30/ = n mod J} /or * = 0, 1. 

Let 

hi} = \*12JM(j,k) G Jo} U \h2Jhokho\(j,k) e Ji}. 

Then 

3 R ( ^ l , X) = © 7 i C [ ^ i 2 W l , ^20W2] a » d 2 K ( ^ 2 , X ) = © 7<C[lfi2Wl , #20* 

^4/50 

<P(^J,X) = 
1 

(1 - X12W1)(1 ~ X20W2) 

wfeere d (i) is /fee degree of y t. 

2 x d ( z ) 
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We remark that 2)?(^, 1) is a ring and hence 7aj G 2)î(^ , 1) when the 7 / s 
are as in the last four theorems when x = 1. Expressing y %y j in the natural way 
in 9ft (S^, 1) gives a syzygy. All syzygies in this section can be obtained from 
the following: 

^ 4
2 ^4 = (PAZ + 1 2 \ / 3 i <p&2 

((^42)2 = <p43<p4 + 1 2 \ / 3 i <p£yx 

<P122 = <fs" - 1 0 8 ^ 6
4 

50(ty3o
2 = 27\/5^i25 - 3125V5^2o3. 

These syzygies can also be found in [4, Sections 36, 37]. The present author has 
taken great care to validate the results of this section by hand and with 
computer. 
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