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POLYNOMIAL INVARIANTS OF FINITE LINEAR GROUPS
OF DEGREE TWO

W. CARY HUFFMAN

1. Introduction and notation. Recently invariant theory of linear groups
has been used to determine the structure of several weight enumerators of
codes. Under certain conditions on the code, the weight enumerator is invariant
under a finite group of matrices. Once all the polynomial invariants of this
group are known, the form of the weight enumerator is restricted and often
useful results about the existence and structure of codes can be found. (See
(5], [8], [14], and [15].) Many of the groups in these applications are of degree 2;
in this paper all the invariants of finite 2 X 2 matrix groups over G are deter-

mined.

We begin with some definitions and theorems. Let xy, . . . , x, be independent
variables and Clx,, ..., x,] the ring of complex polynomials in x1, ..., x,.
Let 4 = (ay;) be an n X n complex matrix. If f € Clx,, ..., x,], define

n n
Aof:f(z1 7 TN 21 a,zjx,-).
= =

If B is another n X #n matrix, then Bo (4 of) = (4B) of. Let ¥ be a finite
group of n X n matrices over C and x: ¥ — C a homomorphism. Then f is a
relative invariant of G with respect to x if Aof = x(4)f for all 4 € ¥ if
x = 1, f is an absolute invariant of ¥. We denote by M(¥, x) the set of all
relative invariants of & with respect to x. So M(¥, 1) is a C-algebra and
M(YG, x) is an M(Z, 1)-module and a graded Z-module. The object of this
paper is to obtain a simple description of M(¥, x) when n = 2. We remark
that Burnside |2], Blichfeldt [1], DuVal {4], Klein [7], and possibly others
completed a simpler version of this problem by describing invariants without
regard to the characters x and examining the groups projectively. Such a
separation was necessary in the coding theory applications mentioned pre-
viously. Also invariants of groups generated by reflections were studied by
Shephard-Todd [13] and Stanley [16]; recently results were obtained by
Riemenschneider [12] which deal with absolute invariants of groups of degree 2
containing no reflections. We remark that in this paper any finite group of
degree 2 and any linear character x is covered.
We can write M(Z, x) = BT M(Z, x).: where

MG, x): = |f € M(Y, x)|f is homogeneous of degree 1}.
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Let ¢(%, x)(\) = > %0 dimeM(F, x) )\ be the Molien series of 9 with
respect to x. Then

TrEOREM 1.1. (Molien [11}; see [2, p. 300] and [15})

) LA
(@, 00 = %] > (EE‘(’)%(__“)')\‘A_)_

I | iz
where bar denoles complex conjugation.

In our situation we will be able to write «(%, x) in the form

l
Z )\b/g
k=1
(1 . }\111)(1 _ )\rlg)

and correspondingly write M(Y, x) = @i v.Clf1, f2] where fi, f2 are
algebraically independent and elements of M(Y, 1)y, M(¥, 1), and
ve € M(Y, X)ov,- (See [6], [9], [14], [15] for discussion and conjectures regarding
the forms of the Molien series and their relationship to the form of M(Z, x).)

In Section 2, we give generators and characters of the finite groups of degree
2. In Section 3 the invariants for the monomial groups are determined, and in
Section 4 the invariants for the primitive groups are given.

e(G,x)(\) = for some /

2. Groups of degree 2. Let & be a finite linear group of degree 2 over C. If
#H = NG N then MK, x) = NoM(¥Y, xV); so we consider ¥ up to
change of basis. As is well known we may assume % is unitary. Such groups
have been enumerated by DuVal [4] and Coxeter {3] using quaternions. We
now give generators for the groups in the form we will need them later as well
as the linear characters. It is straightforward to convert, say, Coxeter’s list
[3, Chapter 10] to those listed here. With each lemma we give the groups as
in Coxeter’s list [3] as well as the corresponding projective group in Blichfeldt
{1]. Z, is the cyclic group of order &, Z the integers, and Z(%) the center of 7.

LimMma 2.1, (Type 1 of [3]; Type A of [1]) Let % = A be abelian of exponent

e =Py ptwith py, ..., p o distinet primes. Let € be a primative eth root of 1.
Then W~ 7, X Z;whereg = ¢/f € Z. Also
1) % = (By, Be) > (Bi) X {(By) where

N 0) M(eg 0)
Bl—(o e and By = 0

vy = plal- . 'pqaq: Vs :]'p&as. . -Platyq < 3, ng (_77 6) = lvd = pll+1- ..
XP5~~1~

with

) If ¢ = pr oo p7t, we may assume 0 < a; S vy fori=1,..., q and
1 =35,...,1L
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iii) A character x on A must have values x(B1) = €t and x(B:) = 2 for
some ny, na. Wemay assumeQ = ny < f (which we do in Section 3).

Lemma 2.2. (Type 2,3,3',4 of [3]; Type B of [1]) Let G be monomial and
nonabelian with diagonal subgroup W ~ Z, X Z; of index 2 and exponent
e =P .. ptwhere g = e/f = pit. .. p,"t Let e be a primitive eth root of 1.
We may assume G = (A, F) where A = (dy, 42) =~ {(4;) X (4:) and

_fe 0 {1 0 4_(0 1)
‘41“(0 ef)’ A2"<0 eﬂ)’ F=\a o

with |F| = 2 and « a primitive 2°+1 voot of 1. If 2|e, let p1 = 2. We ulso obtuin
Difpr =20 2a1andif 2 ¥ e, b = 0;
Hyif pr = 2andry > «y — bthenj = 1 mod 271—1=0,
iii) ged (4, e) = 1;
iv) 72 = 1 mod g.
v) Let ¢, = ged (j — 1, d). A character x on G must have values x(4,) =
€, x(Aq) = €™, x(F) = o™ where

ny = (7 4+ Dmn:mod (e/c1) and ny = n1 + n2(1 — 7) mod 2°.

We remark that the first condition on #; and #s in v) comes from the two
facts that I'~1AF, ' A F € I plus some straightforward calculations involv-
ing ¢;. The second condition on n,, ns, 7; comes from F? € 3, as does ii).

LeEMMA 2.3. (Types 5,6 of [3]; Type C of [1]) Let G be primitive und G /Z(9)
~ A, Then G is either

g~ {oa (s oo —{oan (2 )

where A =(—i(:i i_ z _1 : i) ,0 = <( _(1) (1)) , (6 _01)> s the quater-
nion group of order 8, u is @ primitive dth rool of 1, und in G, a 1s a primitive 37
root of 1 (r = 1) und 3 + d. A character x of G must satisfy x(r) = 1 for
T € Q, x(g 2) = p* where 2\n if 2|d, x(A) = 1, w, or & where w is a primitive
cuberootof 1if G = Gy, and x(ad) = a"if G = Y5,

Lemma 2.4. (Types 7,8 of [3]; Type D of [1]) Let ¥ be primitive und G /Z ()
~S,. Then G is either

7 =Coan (oo =onim(; )

. o L (1 —i
where Q,A are asin Lemma 2.3, B = 3 (z 1

and in G s, B is a primitive 27 root of 1 (r = 2) and 2 t d. A character x of G

) , v1is ¢ primitive dth root of 1,
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must satisfy x(r) = 1forallr € (Q,4), X(g 3) =y where 2n if 2|d, x(B) =
2149 = G, and x(BB) = B" where 2mif G = G ..

LeyMa 2.5. (Type 9 of [3]; Type I of [17) Let G be primitive and G | Z(9)
~ Ay. Then G = 9 forj = 1 or 2 where

&G M 0)> I ( Y % + 51’)
n/] <Q; Ay ij (0 " ’ i __% + 6/ -, )

o

and w15 « primitive dth root of 1, wsing the notation of Lemma 2.3. A character
. . 0
x of G must satisfy x(r) = 1forall v € (Q,4,C,) and x(g ) = u" where 2n
if 2|d. #
3. Relative invariants of the monomial groups. Theorems 3.1 and 3.10
give the invariants of the abelian and nonabelian monomial groups.

TuEOREM 3.1. Using the notation of Lemma 2.1 let m = e/vy, n = ej/vy,
fi=a" and fo = y". Then there exists an integer w such that (vy — dv)w = 1
mod fv,. Let

¢ ={lll = (n — nev)wmod fv, and 0 < | < nj.

If 1 € ¥, there exists a« unique integer k(1) such that k(l)vy = n; — v, mod e where
0= k() <m Letvy, = x*0y" Then

MO, x) = @ze‘d ’YlC[fl,f‘l] and

)\k( D41

) _ ey

Proof. First, w exists because Lemma 2.1 ii) implies fv;|e and primes dividing
e divide precisely one of v, and dv, giving ged (fo, vo — dey) = 1. If 1 € ¥,
then I(vy — dv1) = n; — 790y mod fv; which implies n, — v, = 0 mod v, and so
k(l) exists as m = e¢/v;; k() is unique as kv, = k(l)v, mod ¢ implies ¥’ = k(l)
mod 1.

As U is diagonal, every element of M (U, x) is a sum of monomials x*y' €
M, x). Examining B, o x*y’, x¥y' € MU, x), if and only if,
(*) kv, 4+ lvs=mnrmode and k + ld = n,mod /.
Letting 1 = ne = 0, f1, fo € MU, 1) using Lemma 2.1 ii). We are finished if
we show that

a)if 1 € & v, € M, x);

b) if 2y’ € M, x), then ¥y’ € D e v/ Clf1, fol;
¢) Yoo viClf1, fo is a direct sum.
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For a) by definition of k(l), k()v; + lv» = n, mod ¢. /
kE(Dv, + v, = n, mod fo,.

Forl € ¢, [(vs — dvi) = ny — naw; mod dvy whence
nevy — ldvy = ny — lvy = k(/)v, mod fu,

implying (*). For b) let/ = /1 4+ in and & = &k, + jm where 0 £ 1} < n and
0 £k <m. Then

Xyl =y filfol i L CY and By = R(L).
As fuile, using (*) we obtain #y — vy + ldv, = nwv, mod fv, which implies
I = (n, — nwy)w mod Jv.
By Lemma 2.1 ii), fuiln implies [ = [} mod fv; giving [, ¢ ¥. Clearly kv, =
ki mod e and lvs = v, mod e giving kv = kvy = ny — lvs = 1y — 1o mod ¢
and so k1 = k(/;). Finally, for ¢), as powers of y in v,C| f1, f2] are congruent (o
[ mod #, the sum is direct.

For the remainder of this section let % be as in Lemma ‘_.‘_. Clearly poly-
nomials in M (%, x) are lincar combinations of x'y’ and x*y" + Bx'y* when
k=1

Levya 3.2, We have in the notution of Lemma 2.2,

1) @* = 1and ged (j,0) = 1;

iy wfy " CMQAL, x) if and on]y if k= n — jlmod ¢ and | = ny mod ;

i) «fy" MO, x) if and only if x'v* € MO, x);

w) of xfyt C MO, x), then ny = k ~{— [ mod 2°;

v) xlyt € MUY, x) if and only if x'y' € M, x) und ny = 21 mod ov+1.

vi)if k = [, then x'y! 4 Bxy* € W)E(@ x) if and only if x*y' € M, x)
und 8 = a?'— "*.

Proof. 1), ii), v), and vi) follow directly from Lemma 2.2. As 3 is also

J 4
generated by (6 O) and (6 (1)) , 111} is clear. Ifor iv) we are done if 2 + ¢
€
by Lemma 2.2; so we assume 0 = «;. By i1) we obtain 2 + / = n, + (1 — j)!
mod 2% and I = 5, mod 2971 giving iv) if b £ ¢; — 7y by Lemma 2.2 v). If
b > ay — 7y, by Lemma 2.2 i),

1 —j = 0 mod 271—(@1="

which implies (1 — 7) (I — n2) = 0 mod 2° and so
E+1l=mn 4+ (1 — jin: = nymod 2"

by Lemma 2.2 v).

LesmMA 3.3, Let m be the minimal posilive inleger such that (1 + j)fm = 0
mod e and 2°|fm. Then
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i) mexisis and fmle (i.e. m|g);
i) if (1 4+ j)fm’ = 0mod e and 2°| fm’, then m|m’;
i) f1 = x° 4+ v and fo = (xy)™ are algebraically independent elements of
MG, 1).

Proof. The homomorphism y: Z — Z, given by x¢ = (1 + j)fx mod e has
kernel (m;) with e/f ¢ {(m;). The homomorphism 6: {(m,) — Z» given by
x0 = fx mod 2° has kernel (m ) containing ¢/f also by Lemma 2.2 1) giving 1)
and ii). Letting ny = n2 = ny = 0, f1, f» € M(Z, 1) and iii) follows casily.

From now on we may assume 0 < no < f;letd = e/fm. Letl(n) = fn + n»
and let k() be such that 0 < k(n) < e where k(n) = n, — jl(n) mod e. Let
Fy={n0 £n<mand k(n) > [(n)} and I, = {n € I i|k(n) < fm}.

LEMMA 3.4. Let 0 € n, n* < mwithn ¢ F,. Assume k(n) = [(n*) mod fm,
te, k(n) = fmg 4+ I(n*) with 0 < g < d (as 0 £ 1(n*) < fm). Then we have

i) if n* € Sy, then ¢ > 0;

i) if ¢ > 0, then k(n*) = fm(d — q) + (n).

Proof. By Lemma 3.2 ii) and iil), I(n) = n, — jk(n) = n, — jfmq — jl(n*)
mod e. As k(n*) = n; — jI(#*) mod ¢ and (1 4 j)fm = 0 mod ¢,

l(n) = k(n*) + fmqg mod e.
fg=0as0 g iln), k#x*) <e ln) =kx*) and k(n) = I(n*). As l(n*) =
E(n) > I(n), n* > n. lia* ¢ I, 1(n) = k(n*) > [(n*) which implies n > n*,
a contradiction giving i). If ¢ > 0, then

0 =i(n) <fm = fmg+ k(n*) < 2¢
asl(n) = k(n*) + fmgmod ¢, [(n) = fmg + k(n*) — ¢, giving ii).

LEMMA 3.5. If 0 S n, ' < m with k(n) = k(n’) mod fm, then n = n’. For

ewch n € Iy with fm £ k(n) there is « unique n* € ¥ such that k(n) = 1(n*)

mod fm. Also k(n*) = I(n) mod fm. If k(n) < fm und n € F,, then there is
non* € I with k(n) = [(n*) mod fm.

Proof. If k(n) = k(n') mod fm, as fmle, jl(n) = jl(n’) mod fm whence
I{(n) = I(n") mod fm by Lemma 3.21). Son = »' mod m and n = »'.
Ifn € F, with fm < k(n) then as k(n) = n, mod f by Lemma 3.2,
k(n) = fmqg + fn* + na with 0 £ v* <mand 0 < g < d.
By Lemma 3.4 ii), k(#*) = fm(d — ¢) + () = fm and thus n* € F,. If also
forsome 0 = n' < m, k(n) = [(n') mod fm, then I(n") == [(n*) mod fm and so
n' = n* mod m and ' = n*. The last statement follows from Lemma 3.4 i).

Now let
An(x, y) = xkmylm 4 q2ln=—nslmyk for y ¢ # | and

Bn(x’ y) — xk(n)yl(nH—e + azl(n)ﬁn;;xl(n)ﬁ»eyk(n) for n € <ﬂ2~
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By Lemma 3.2 and 3.3 i), 4,, B, € M(Z, x). From now on let g, , = x¥y’ +

a? I—n;;x lyk.

LEMMA 3.6, Let | = 3. v, Clf1, fo] where {v,} = {4,lr € £} U {B,)r € Fs}
Let 0 <1 < k < e and assume gy, € EUE(g, x). Thenl = fmp + I(n) where
0 = n < m and either 1) k = fmp + k(n) or ii) k = fmp + k(n) — e. Also
g1 € Wandincasei) gy 11, € Nand incaseii) goy,., € N.

Proof. By Lemma 3.2 ii) [ = fmp + [(n) where 0 £ n < m. Also
k=mn —jl =mn —jfmp — jl(n) = k(n) + fmp mod e
as (1 4 j)fm = Omod e and k(n) = n, — jl(n) mod e. Soas 0 < fmp, k(n) <
e,1) or ii) holds.
Assume i) holds. Then & > [ implies k(n) > I(n) and n ¢ £,. Then
et = [P 1 €N

as a?’™ = 1 since 2°| fm. Also

i, itre = [Pkt 100+e € N

if k(n) < fm. Assume k(n) = fm. Let n* ¢ ¥, be as in Lemma 3.5. Then by
Lemma 3.4, k(n) = fmg + [(n*) and k(n*) = fm(d — q) 4+ I(n) which implies
I(n) + e = fmg + k(n*). So

gr,i4e = f2pgk(n),l<n)+e = azk(n*)~n3f2p+qgk(n*),l(n*) € Sﬁy

the last equality requiring 2/(n*) 4+ 2k(n*) = 2n; mod 2°F!, which holds by
Lemma 3.2 iv).

Assume ii) holds. As p =d — 1 and £ 20, k(n) = fm. So n € F; let
n* € £ 1beasin Lemma 3.5. Then k(n) = fmq + [(n*) and k(n*) = fm(d — q)
+ I(n) which impliesk = fm(p + ¢ — d) + {(w*) and ! = fm(p + ¢ — d) +
k(n*), the former implyingp + ¢ —d = 0as 0 £ [(n*) < fm. So

o1 = QDTG € N
again using 2/(n*) 4+ 2k (n*) = 2n; mod 2°*1. Also
Zrrer = [P m €N,
giving the lemma.
Now let 0 < w be the minimal integer such that
(1 + Hi(w) = ny mod ¢ and n; = 2/(w) mod 2°*1,

Let 0 = v be the minimal integer such that (1 + j)/(v) = n; mod e and n; =
2/(v) mod 2>+, Note that v or w may not exist; define .#; to be the elements of
{v, w} which do exist.

LEMMA 3.7. Forz € F3,0 £z < m. If v, or w; satisfy the equations defining
v or w respectively, then v = vy mod m and w = w; mod m.
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Proof. Assume s = m. Then (1 +j7){({(z —m)) = 1 + ) {z) — fm) =
(1 + j)l(z) = ny mod e. As 2fm = 0 mod 2", 2[(z) = 2/(z — m) mod 20+,
contradicting the choice of z.

Now (1 + H)i{w;) = (1 4 j)l{w) mod e which implies (1 + j)f(w; — w) =0

mod ¢; also 2/(w;) = 2l(w) mod 2" and so f(w; — w) = 0 mod 27 giving
mlw, — wby Lemma 3.3 1i). Asabove (I 4 j)f(v; — 2) = 0 mod ¢. By Lemma
3.2,

ny = 20{(v;) = 2{(v) mod 2°.

As 21(vy) = 2" 4+ ny, 2[(») = 2°s + ny and by choice of v, 91, both ¥ and s are
odd. Hence

20(v1) — 20(v) = 2f(vy — v) = 0 mod 21,

vy — .

again yielding m

Remarks. 1. 1z ¢ Iy, 1(z) = k(s).
2. If both v, exist, then v — w| = m/2 because 0 < 2fv — w| < 2m and
2|l — w]| satisties the conditions for m.

Now define Cp(x,y) = (xv) ' if wexists and
c‘r(x’ y) —_ xl(z‘)yl(p)—% € + a‘l/(zr)fn;;xl(z‘) imyl(r)
if v exists. By Lemma 3.2, Cy, C. € DY, x).

Lz \1\1\‘35 Let M = 3 4Gl fol where {y,} = 1A r € £ \TB|r ¢ Sl
\J{Clr € i}, Then the ubove sum is direcl.

Proof. In 4 ,Cl 1y, f2), B,Cl [1,f2], and C,C| 1, f»] the powers of x arc congruent
to k() and I(r) mod fm. Now k(w) = l[{w) &£ k(v) = (z) mod fm. Letn & .9,
and7 &€ I, If k(n) = k{r) mod fm, n = r by Lemma 3.5, a contradiction. 1f
I(n) = k(r) mod fm, then /(i) = {{r) mod fm and so n = r, a contradiction. So
by Lemma 3.5, we only need to prove that

)if k(n) = fm and n = n* then A4,C|f1, f2] + ACl[1, fo] is direct;

1) if k(n) < fm, then 4,Clf, fof + BClf1, f+] is direct.

Let a(x, ¥) = X a,  Ji7fs and 0(x, y) = > B, 12" To prove i) assume

(1> C (xv y)/ln =+ [7(9\3, 3’)‘471* = 0.
By Lemmas 3.4 and 3.5, k(n) + {(n) = fm(2¢ — d) -+ I{n*) + k(n*) where
0 < ¢ < d. Taking homogeneous components of degree = in (1), we obtain

(2) 0= j[, oy 1 f2" A, + Z Bro fr'fa' A

where ;= {(r, s)lrd + 25 + (29 — d) = 4} and % = {(r, s)|rd + 25 = 5}
when 2, = (1/fm)(z — (k(n*) + 1(n*))). The degrees of x in the % sum are
congruent to k(n) and /() mod fm and in the %, sum are congruent to
E(n*) = [(n) mod fm and [(n*) = k(n) mod fm. Splitting into these two
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degrees (as k(n) 2 /(n) mod fm since n # n*) and letting v = 1, we obtain

(5) Z ar’S(xc + l)rxfm<s+q) +a2l(n*)—ns Z Br,s(xc + 1)rxfms =90
7 L

E

(4) a‘ll(n)—n3 Z ar,s<xe+ l)rxfnz(erq) + (/2 BT’S<xe+ 1)Txfm(s+d) = 0.

F1

Combining we obtain
(5) a‘zz(n*)—ns Z Br,s(Xd + l)rXs _ a?k(n)—ns Z Br.s(Xd + 1)7X3+d _ O
kS Fa

where &/ = X. But (X? 4+ 1)7X*, (X4 4+ 1)"X*" have degrees z; — s and
z1 — s + d. Clearly 8, ¢ = O for all (r, s) € %5 Similarly using (3), a,, = 0
for all (r, s} € .%,. We obtain ii) in an analogous manner, the crucial fact
needed to obtain two equations being k(n) = [(n) mod fm since 0 £ I(n) <
k(n) < fm.
A straightforward induction yields
Lemma 3.9. Let X C {(u, v)|u, v are nonnegative integers} = 7 . Assume
(0,0) ¢ . and either (1,0) or (0, 1) ¢ . Assume also
D (), (wrv+ DY =W+l
i) (wv), w+1,») S = uv+1) Y,
i) mv) €= w+1,v+1) ¢ &
Then ¥ =9 .
TuroREM 3.10. M(ZD, x) = @ v,Clf1, f2] where {y,} = {An € A} U
{Baln € F2} \J {Ciln € S}

Proof. As A, B, C, € M(F, x) we only need to show M(F, x) € M where
M = @ v, Clf1, f2] by Lemma 3.8. Clearly it suffices to show by examining the
action of 4,, 4., IY on a polynomial in D (Z, x) the following:

)alyl € MY, x) =" ¢ Mand

i)ifk =1, g, ¢ EDE((J‘}, X) = gr, € N
For i), I = fmg + I{(w) by Lemmas 3.2 and 3.7 implying xy! = C,f:? € M.

Forii) let £ = p*e + by, I = v¥e + [y with 0 £ &y, [} < e. As

geo = 2T,
we may assume /; < ki Let
S = {(#, V)|gue+k1,vc+h € EDE}.
We are clearly finished if we satisfy the hypotheses of Lemma 3.9. We note that

= U

Fi8uctr vern GuaDy ek, vet it T Luerks, (4D et i

using ¢*¢ = 1 implying 1) and ii) of Lemma 3.9. Also

d —
f‘Z Quetkr,vern = E(utDethr, (»+Det 1

giving iii) of Lemma 3.9.
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By Lemma 3.6, if [; < ki, (0,0) €.% and either (0, 1) € % or (1,0) € .¥.
If ]}, = kyand ny; = 2/, mod 21, by Lemma 3.7, by = [, = fmqg + [{w). As
Sun = 20byt = 2£0C, € Musing 1 = o273, we obtain (0,0) ¢ .. Now as

Lntenn =f1x"y“ £ W,

(1,0) € M. Finally if l, = kyand n; = 2/; mod 2"+, by Lemma 3.2, ny = 2/,
mod 2%, giving o2 = —1. Asg,., = 0 € M, (0,0) € .¥. By Lemma 3.7,
ki = Iy = fmg + [(2) which implies g5, 140 = [2°C, € M and (0, 1) € ¥,

In all cases Lemma 3.9 holds, completing the proof of the theorem.

Remark. The form for the Molien series in Theorem 3.10 is

)4k () W)+ +e 2 w) 21w+ e
2 A + 2 A + N 4

_ neh _nesy -
‘P(gv X)O‘) = (1 _ >\c><1 - )\2,“")

4. Relative invariants of the primitive groups. In this section we
describe the relative invariants of the groups of Lemmas 2.3-2.5. Define the
following polynomials:

ey = xt — 2431 x%2 + y*

= xiy — xy?

ey = x% + 1dxty? -+ % = ¢ugy

ere = x'2 — 33(xby* b xtyd) 4 12

Y2 = 225¢6% + Ser

Yoo = 3eserr — 38V 5¢e e

Yoo = 6696¢s” + 225¢60s’ — 5804/ Ses’ere.

Also define ~ as the involution in the Galois group of Q (7, v/5)/Q(2) sending
Vo — — /5 and — is complex conjugation.

We use the notation of Lemmas 2.3, 2.4, 2.5. Let %, = {(Q, /4 ) where
w = e2713 The characters of 5, can be determined by x; ;(w’4) = w’ where
1=20,1, 2 Let2f = (Q, 4, B). The characters of ¢ are determined by
x:i(B) = (=1)ifori = 0,1. Let.?, = (Q, 4, C;)forj = 1, 2. The characters
of ¥, are trivial. The groups #,, 4, & ; are respectively isomorphic to
SL.(3), GL2(3) and SL.(5). The following lemma describes the (Y, x) for
G c | H,H L.

€6

Levmma 4.1, The following lable 1s valid:

Proof. This is a straightforward application of Theorem 1.1. The polynomials
@1, P, ¢s, 19, ¥ia, Yoo, Yae have also been obtained by other authors. For
instance they are found in Sections 36, 37 of DuVal [4] where they were de-
noted by P, S, O, R, v/5I, D, 1 respectively. (DuVal’s study first considered
the groups projectively (Sections 36, 37) and secondly considered the absolute
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& X MW(T, x) (9, x)
L4 A"
Ay X0,0 Cles, 051 @ ¢1:Cles, ¢sl EI“—“XUJ)L“(I‘Z‘XE)‘
Ay X1,0 2:Cles, sl ® ¢ Cles, s] { >\4‘+ A\ |
Hy Xz ¢iCles, os] ® 2,Cles, ¢s] fa=\ya =X
H Xo0,1 Cles, ¢l } 1 ,
H s Xo.2 Clés, s fa=3ha =%
Hy X1,1 2:°Cles, ¢4l } _‘7____2\_8_&__,._
A X2,2 0 °Cley, 6 (1 =2AH1 =%
H X2,1 21Cles, el } _____,,bf____,,v
H X1,2 1G24, ¢l 1 —-AHa —-2%
1
A Xo Cles, s} (1 — )\o) (1— )\8)
}\12
% X1 ‘PIQC[‘pﬁy ‘708} (1 _ )\b) (1 _ )\8)
L Clyn, Yol @ YaolClvns, ¥o] | L 142"
s i Clis, Vool @ VoGl vl | S (1= NI = A7)

invariants (Section 39). The present table is thus more extensive because it
separates out the relative invariants.)

We now state a theorem giving the invariants of %, of Lemma 2.3.

THEOREM 4.2.
my = d/ged (8,d), and S = { (7, k)]0 £ <my,0 £k < m,}. Let

=10, k) € L|6j+ Sk + 4 =nmodd} fort =0,1,2,3.

Define {v.} according to the following

x(4) |

171}

Using the nolution of Lemma 2.3, let my = d/ged(6,d),

£ p—

£

Then

Vool es"[ (7, k)
Lesos &1l (7,
loslest il (7, k) € F1} U {oslest .2

.
k)

M(G 1, x) = @ vClee™, ¢ and

(%1, x) = 1

1

Z )\rl(z)
S = X

where d(1) 1s the degree of v,.
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Proof. By Lemma 4.1, 3 v,Clee™!, ¢s™] is direct and ¢s™!, ¢ are alge-

braically independent. We examine x(4) = 1, the others being similar. By
examining M (5, xo.0) of Lemma 4.1, a homogeneous f = f1 + fois in M(F 1, x)

where i = ¢oles" and fo = ¢ies’es® if and only if (g of; = uf; or
u

equivalently 67 + 8k = n mod d and 67 + 8 + 12 = u mod d. Clearly the
result holds.

We now examine %, of Lemma 2.3.

THEOREM 4.3. Using the notation of Lemma 2.3, leth = 3"if r > land b =1
ifr = 1. Let ¢ = 3™'. Define my = db/ged (4, db), my = db/ged (6, db), and
=G R0 <m, 0=k <ma. Fort = 0,1, 2define
Fo=1{G, k) € Llm — (2c+ 1)(4] + 6k 4 4t) = 2tc mod 37, n = 4j

+ 6k -+ 4t mod d}.
Define
by = leded®|(G, k) C Jof U lededai| (G, k) ¢ S
U ledesded|(, k) € Faf.

Ifa® = w,

=
N
=

I

@ v Cle™, w6
and if a® = o,

M(YG o, x)

Il

® 7.Gle", 6]

In either case

, 1 ;
& — d(d)
J?y X) (1 _ /\4m1)(1 _ )\ﬁmg) Z A

¢
where d(1) 1s the degree of v,.

Proof. We do the case a® = w. The sum for M (G, x) is direct if we show
Cles, ¢s] + 2:Cles, ¢6] + 2.2Cles, ¢ is direct. Let p; € 2.'Cley, ¢5) where
po + p1 + P2 = 0. Applying w4 and (wd)? we obtain py + ©?*p + wps = 0
and py + wpr + 0?p: = 0 by Lemma 4.1, yielding p;, = 0 for z = 0, 1, 2.

By Lemma 4.1, ¢,™1, ¢¢”? are algebraically independent absolute invariants
of G, If p is a homogeneous polynomial of degree z, (@ad) o p = o”p if and
only if (wd) o p = «™ @ D2p and (g 2) op = p"p if and only if 5 = »n
mod d. So p € M(Y 4, x) if and only if p € Cles, o, @:Cles, 6], or 3.2C-
¢4, ¢s) wherez = 47 + 6k + 4t witht = 0, 1, 2 respectively and m — (2¢ + 1)z
= 0, 2¢, 4c mod 37 respectively and z = # mod d. The result is now clear.

The next theorem gives corresponding results for the groups of LLemma 2.4;
its proof is similar to the previous ones.
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THEOREM 4.4. Using the notation of Lemma 2.4, if 9 = G letb = 1 and
m=1,andif G = G, leth = 27. Define
my = db/ged (6, db), m, = db/gcd (8, db), and S = { (4, k)|0 = 7 < my,
0=k« WZQ}.
Let
F.o=10G k) € Lm — (6; + Sk + 12t) = 0 mod b and
n = 67 + 8k + 12t mod d} for ¢t = 0, 1.
Define {v,} according to the following:

g ’ {71'}

Golifx(B) =1 {edest|(G, k) € I}
Gl x(B) = =1 {eodeshen|(f, k) € Sy}
Gy | fodes| (G, k) € Io} U fosipsben| (G, k) € I}
Then
1
(L= N") (1 ="™)

X Z )\d(i)

M(F, x) = @ vCled", es™] and (¥, x) =

where d(1) is the degree of ..
The final result is for the groups of Lemma 2.5.
TuEOREM 4.5. Using the notation of Lemma 2.5, let
my = d/ged (12, d), me = d/ged (20, d), and ¥ = {(J, R)|0 = ] < my,

Define

S, = (G k) € L12j + 20k + 30t = nmod d} for t = 0, 1.
Let

frid = Wl (G, R) € Job \J {nale ol (4, k) € Fa).
Then

DG, x) = @ v Q™ ¥oi™] and M(G o, x) = ® 7.C[J12"1, Ja™?].
Also

1 dli
‘p(g;’y X) = (1 _ )\121111) (l . )\20m2) Z }\l()

where d(z) is the degree of v .
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We remark that M(Z, 1) is a ring and hence vy, € M(Z, 1) when the v,’s
are as in the last four theorems when x = 1. Expressing vy, in the natural way
in M(F, 1) gives a syzygy. All syzygies in this section can be obtained from
the following:

2425y = @8 + 124/ 1 ¢4
() = ofp: + 124/3 1 o6
e12? = ¢ — 108¢s*

50011/302 = 27\/3 11/125 —_ 3125\/3 ll/Q():;.

These syzygies can also be found in {4, Sections 36, 37]. The present author has
taken great care to validate the results of this section by hand and with
computer.
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