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Summary

An analysis of mutation accumulation in finite, asexual populations shows that by modeling
discrete individuals, a necessary condition for mutation-selection balance is often not met. It is
found that over a wide parameter range (whenever N e"1"'8 < 1, where TV is the population size, ft is
the genome-wide mutation rate, and s is the realized strength of selection), asexual populations will
fail to achieve mutation-selection balance. This is specifically because the steady-state strength of
selection on the best individuals is too weak to counter mutation pressure. The discrete nature of
individuals means that if the equilibrium level of mutation and selection is such that less than one
individual is expected in a class, then equilibration towards this level acts to remove the class.
When applied to the classes with the fewest mutations, this drives mutation accumulation. This
drive is in addition to the well-known identification of the stochastic loss of the best class as a
mechanism for Muller's ratchet. Quantification of this process explains why the distribution of the
number of mutations per individual can be markedly hypodispersed compared to the Poisson
expectation. The actual distribution, when corrected for stochasticity between the best class and
the mean, is akin to a shifted negative binomial. The parameterization of the distribution allows
for an approximation for the rate of Muller's ratchet when N e'*11* < 1. The analysis is extended to
the case of variable selection coefficients where incoming mutations assume a distribution of
deleterious effects. Under this condition, asexual populations accumulate mutations faster, yet may
be able to survive longer, than previously estimated.

1. Introduction

Muller (1964) noted the opportunity for a ratchet
mechanism to operate in asexual populations. He
noted that if those individuals with the fewest number
of mutations fail to reproduce, or produce offspring
with more mutations than they themselves have, then
in the absence of back mutation or recombination, the
minimum number of mutations per individual in the
following generation will increase. Felsenstein (1974),
in a paper identifying the importance of this process
vis-a-vis the maintenance of recombination, named
this monotonic accumulation of mutations in asexual
populations Muller's ratchet.

The role of Muller's ratchet was further discussed
by Maynard-Smith (1978), and in the same year
Haigh (1978) published a mathematical model
describing the process. Kimura & Maruyama (1966)
had shown that the distribution of the number of
mutations per individual is Poisson with mean /i/s,
where fi is the genome-wide mutation rate and s is the

invariant selection coefficient. Haigh (1978) proved
that distribution is a unique, equilibrium distribution,
and thus in the absence of perturbations, asexual
populations will achieve mutation-selection balance:
the only way mutations can accumulate past the
equilibrium level (i.e. the only way the ratchet can
operate), is by the stochastic loss of the best class.
Although Muller never explicitly specified the mech-
anisms responsible for driving the ratchet, Haigh's
analysis demonstrated the sole importance of sampling
error. This conceptualization has become so estab-
lished that subsequent authors have often defined the
ratchet in terms of the stochastic loss of the best class.
Previous authors have discussed the role of non-
stochastic processes in Muller's ratchet (Haigh, 1978;
Bell, 1982; Pamilo et al. 1987; Lynch & Gabriel, 1990;
Charlesworth, D. et al. 1993; Gabriel et al. 1993;
Stephan et al. 1993), yet most investigations into the
rate of the ratchet have concentrated on quantifying
the stochastic component.

The rate of the ratchet has remained essentially
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unsolved for over thirty years: there is still no general
solution. This paper demonstrates that many asexual
populations will never achieve Haigh's equilibrium
condition, and therefore mutations will accumulate
for reasons in addition to the stochastic loss of the
best class. This conclusion leads to an approximation
of the rate of the ratchet over a parameter range that
is important for metazoans and metaphyta.

2. The model

Monte Carlo simulations are used to model the
accumulation of mutations in asexual (parthenogenic)
individuals. Prior to starting a simulation, NA indi-
viduals are initialized as mutation-free. The sequence
of events in discrete generations is reproduction-s-
mutation -> selection, with the population (of off-
spring) being censused after mutation but prior to
selection.

Each generation an individual is randomly picked
with replacement from the pool of NA adults. An
offspring is cloned, the mutation process is applied to
its genome, and a fitness-value is calculated. The
fitness-value for each offspring is the multiplicative
effect of all mutations in its genome, i.e. n<"_1(l —sj,
where s{ is the selection coefficient of the /th allele in
a genome of n mutations. This value is then compared
with a uniform random variate, and if it is greater, the
offspring is saved in a separate pool to become an
adult in the next generation. This process is repeated
until 7VA new individuals are selected.

Mutation is modeled as a Poisson process of mean
/i, where /i is the genome-wide mutation rate (Kimura
& Maruyama, 1966). For modeling all mutations with
the same deleterious effect, s is held constant (herein
called constant s runs). When examining the conse-
quence of variation in mutational effects, each
mutation has a selection coefficient drawn from an
approximate negative exponential distribution (Ohta,
1977; Gillespie, 1991) (herein called variable s runs).
To allow the use of an analytical probability density
function (p.d.f.) with unit area on the domain [0,1], a
beta distribution with shape parameters v = 1 and
&> = s'1 — 1 is used to approximate a negative expo-
nential of mean s.

Before any statistics are recorded, mutations are
allowed to accumulate until the mean population
fitness first reaches its infinite-size expectation of e~F

(Haldane, 1937; Muller, 1950; Kimura et al. 1963).
Let N be a random variable that stands for the actual
number of offspring selected to produce NA adults in
any one generation, and let N = E (N). Then on
average, the number of offspring N needed to maintain
a carrying capacity of NA adults is N = NA w'1 =
NA e". To maintain this constant relationship between
the number of individuals before selection (N) and the
number after selection (NA), offspring in subsequent
generations are compared with a standard that is
decremented proportional to the decay in mean fitness.

For example, when mean fitness is w = e'1 s 0-37,
offspring are compared with a (0,1 x 0-37"1 x 0-37) =
(0,1) uniform variate. As mean fitness falls to 0-36,
offspring are compared with a (0,1 x 0-37"1 x 0-36) =
(0,0-97) uniform variate, etc. By decreasing the
standard of comparison as mutations accumulate, TV
is kept constant. Because NA and N are independent of
s, sampling error in both the adult and the offspring
stage is the same in both constant and variable ^
simulations throughout the length of each simulation.
The constancy of NA and N assures that population
extinction is impossible, making it conceptually
distinct from the mutational melt-down approach of
Lynch & Gabriel (1990). The general behavior of the
model is similar to the models of Kimura & Maruyama
(1966), Felsenstein (1974), Haigh (1978) and
Charlesworth (1990) when parameterized in equi-
valent ways. In comparisons with Haigh's model, it is
noteworthy that by changing the pool of individuals
that selection acts on from that of NA adults in his
model to that of their offspring in this model, the
relevant population size is increased by e11.

3. Mutation accumulation beyond the stochastic loss
of the best class

Our current conception is that in the absence of
stochasticity, asexual populations will achieve
mutation-selection balance (Haigh, 1978; Higgs,
1994). But the conditions for equilibrium require the
presence of individuals that may have a very low
probability of actually being present. If they are
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Fig. 1. In asexual populations, the relative selective
advantage of each mutational class can be at its
equilibrium (i.e. the distribution is at its equilibrium
shape), but the population can still acquire mutations for
reasons other than the stochastic loss of the best class.
The rate the best individuals are lost is a combination of
mutation pressure diminishing the best class, mutation-
free reproduction augmenting the class, and the stochastic
exclusion of some individuals from reproducing at all.
The figure shows two snapshots of the same population
taken at generation zero and generation 100. N = 104;
^ = l; s = 002.

https://doi.org/10.1017/S0016672300034686 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300034686


Mullens ratchet 243

008

006-

004-

0 02-

000
40 60

Number of mutations per individual

Fig. 2. Continuous-line representation of the discrete
probability mass function (Poisson [0 = ft/s;x]) as it fits
the simulation in Fig. 1 at generation zero. The scale on
the abscissa has been increased to emphasize that the
Poisson distribution overestimates the observed variance
by 61 %.

absent, the reduced range in fitness between the most
fit individuals and the mean is insufficient to maintain
enough variance in the population, and the population
will be unable to maintain its equilibrium number of
mutations (Fig. 1).

Because individuals are discrete, non-divisible units,
whenever the equilibrium expectation of a class (i.e.
the number of individuals) is less than unity, at some
point the class will have to have zero individuals. For
classes in the right-hand tail of the distribution, (or in
both tails of a sexual population), lost classes can be
rebuilt at a later time, so any non-zero probability
mass can be achieved as a time-average. There is no
restriction for the equilibrium number of individuals
in these classes to be greater than unity. But for the
best class in an asexual population, there is no
regenerative mechanism once the class is lost. Thus if
the equilibrium number of individuals in the class is
less than unity, as mutation and selection equilibrate
to a level less than one individual, they act to remove
the individual and consequently drive the ratchet.

Consider a simulation parameterized with values
similar to those found in the Drosophila literature
(Fig. 2; ji = 1 and s = 002; Simmons & Crow, 1977;
Crow & Simmons, 1983; Charlesworth et al. 1990;
Crow, 1993 a, b), where it is noted that the actual
distribution of the number of mutations per individual
is markedly hypodispersed compared to the Poisson
expectation. As Haigh (1978) indicated, as mutations
begin to accumulate, the entire distribution will march
to the right, with both the mean and the best class
moving at the same rate.

To the degree that the expected number of mutation-
free individuals (the zero class) is below unity, it is
proportionally unlikely to be realized in a finite
population. For example, for the values used in Fig. 1
and 2 (JVs \0\/i = \,s = 0-02,(9 = fi/s = 50), the

expected size of the zero class is N e e = 1-9 x 10 18 of
an individual (eqn 6, Haigh, 1978). Even if an
individual is placed in this class, the existence of this
one individual exceeds the class' equilibrium size, the
class is unstable, and there is deterministic pressure to
remove this one individual. This is true not only for
the zero class, but for all classes up to the first class
with an expectation greater than or equal to unity.
Although mutation pressure is a stochastic process, as
a mechanism of evolution it is a non-stochastic
pressure, and thus the inevitable removal of these
classes is due, at least in part, to a force distinct from
sampling error.

If the less mutated classes are missing, then one
would perhaps expect that the mean {&) could just
shift to the right, thereby restoring the necessary range
between the best class and the mean and establishing
an equilibrium. But when the mean number of
mutations is 6, the mean relative strength of selection
on each class is at its steady-state magnitude and will
remain time invariant (Haigh, 1978). Thus as the
mean moves to the right, the equilibrium size for
each class is also redefined. After the mean has moved
one class, the first class has the same expectation that
the zero class used to have, and thus it too will be lost
in a similar manner. This interdependency of the
stability of the best class and the mean on the range
between them maintains the reduced range of the
distribution. The rate the best class is lost is both a
function of the probability of its stochastic loss, and
also of the strength of selection on maintaining it
under mutation pressure.

At equilibrium, each class maintains its size by a
balance between mutation pressure diminishing it,
mutation-free reproduction within the class
augmenting it, and new mutants from less-mutated
classes also augmenting it. Only the zero class can
maintain its size solely by the first two mechanisms:
all others require recruitment from less mutated
classes. If these classes are unstable, then their eventual
absence will reduce the recruitment rate into classes
downstream, and they too will be unable to maintain
their position. Because the steady-state strength of
selection on all classes other than the zero class is
below that required to offset mutation pressure,
without a stable zero class, i.e. whenever N e~e < 1,
mutations will accumulate indefinitely.

It is true that for any d there exists a N large enough
to guarantee a stable zero class, but the required size
of N grows exponentially with 6. For any N that does
not satisfy N e~e ^ \, mutation pressure can be
expected to reduce the number in the best class to
below one individual. Despite this, the best class never
has an expectation of exactly zero; therefore the
continued existence of the best class when its
expectation is less than unity reflects the action of
stochasticity in maintaining the class above its
expectation, while its final loss must be due to at least
some stochasticity reducing the number below its
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expectation. Thus some stochasticity is always
required to drive the ratchet, though its magnitude
may be negligibly small. In Figs. 1 and 2, the
contribution of stochasticity (the time to lose
1-9 x 10~18 of an individual) is so small that the ratchet
is driven primarily by mutation pressure. In this
paper, the phrase 'non-stochastic component' refers
to the observation that whenever N e~° < 1, the
Poisson equilibrium condition of mutation-selection
balance is not only unattainable, but that a necessary
consequence of its approach is the drive of the ratchet.

4. The distribution of the number of mutations per
individual

The identification that asexual populations may fail to
achieve mutation-selection balance because of the
discrete nature of individuals, allows one to formulate
a probability mass function (p.m.f.) for the dis-
tribution of the number of mutations per individual.

If the first k classes have a low expectation and are
consequently absent, then when the distribution is at
its equilibrium shape all non-zero probability
associated with the remaining classes is now con-
strained to at most classes k...co. With almost unit
probability, all classes O...k — 1 will be zero after
some finite amount of time, even after adjusting for
movement of the mean. The mutation-selection
process is still identical to that analysed by Haigh
(1978), so the equilibrium condition of a Poisson
relationship among classes still holds, though the
distribution is now a shifted Poisson distribution of
parameter A = d — k, where k is the first class with an
expectation greater than or equal to unity

k = m\n{x\Ne-°dx/x\ ^ l,xe{0,1,2,...,(?}}.

The shifting of the first class from the zero class to
the kth class, while the mean still stays at 0, yields a
p.m.f. for the distribution of the number of mutations
per individuals as

x)=-j (*_*). • * * * * .
0 otherwise

0)

Equation (1) identifies a shifted Poisson distri-
bution, yet there are two factors in Monte Carlo
simulations that act to change the observed distri-
bution from that of (eqn 1). The first is that in this
new distribution there also may be classes that have
a low expectation, and thus they too may not be
realized. The second is that the distance from k to the
mean, and more importantly the distance from the
best class to the mean, is a random variable. Variance
in this distance is equivalent to variance in the
parameter of the distribution, and this acts to increase
the variance in the number of mutations per individual
beyond that predicted by (eqn 1). Quantitatively,
these points can produce a distribution markedly
different from (eqn 1), yet qualitatively, the major

conceptual distinction between populations where
N e'° > 1 and those where N e~e < 1 is captured in
(eqn 1) above. The remainder of this section incor-
porates the above points into a revised p.m.f.

To address the first point, let b equal the expected
position of the best class. The effect of the missing
classes k...b — 1 is not analogous to the missing 0...
k — \ classes. The missing classes k...b — \ represent
a left truncation on an otherwise (shifted) Poisson
distribution, while the missing O...k— 1 classes far
exceed that of a left truncation: they substantially
change the shape of the distribution from one of
parameter 6 to one of parameter A = 6—k shifted k
classes to the right. To include the effect of truncation,
(eqn 1) may be refined into a truncated Poisson dis-
tribution shifted k classes to the right with the first
non-zero probability at class b (cf. Haight, 1967;
Johnson et al. 1993; see also the [left] displaced
Poisson distribution of Staff, 1964, 1967)

0 otherwise

Equation (2) describes the distribution of the
number of mutations per individual if the best class is
actually lost whenever its frequency falls below one
individual. This can be verified by constructing a new
model that reiterates the mutation and selection
operations on p.m.f.s (instead of stochastically picking
individuals from a population) and truncates the best
class accordingly (data not shown). Our interest,
though, is in describing the more relevant case where
there is a probabilistic loss of the best class.

If the mean number of mutations is large (ji/s > 10)
such that deviations around the relative position of
the best class in reference to the mean are approxi-
mately symmetric, then the distance between the best
class and the mean predicted by (eqn 2) will be close
to the mean observed distance, and (eqn 2) can be
used to approximate the position of the best class. If
b equals the mean position of the best class, then b is
the first class with an expectation of at least one
individual

b = min{x\Nf(x;x)

(3)

It is understood that to determine b initially, b in (eqn
2) is redefined for each b = x in (eqn 3) until (eqn 3)
is satisfied. The use of a truncated distribution allows
for the extremely accurate estimations of the position
of the best class shown in Table 1.

To address the second point, note that the distance
between the best class and the mean affects the relative
strength of selection on the best class, and thus
variance in this distance is paramount to variance in
the parameter of the distribution. If the parameter
itself a random variable, then the resultant distribution
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Table 1. Simulation results over a variety of parameter values, k is the
first class in a Poisson distribution of parameter d that has an
expectation greater than one individual, b is the first class in a shifted
Poisson distribution of parameter A that has an expectation greater than
one individual. Each row represents the mean of 10 independent
simulations, each run for N generations. Data was reported every N/100
generations, from which only the last N /2 generations were used. Missing
entries assume the value in the above row

N

500

1000

t = b-i

11
18
26

7
11
18
4
7

11

12
19
30
8

12
19
4
8

12

s

0005

001

002

0005

001

002

0-5
1
2
0-5
1
2
0-5
1
2

0-5
1
2
0-5
1
2
0-5
1
2

Variance

k

11
168
358

33
77

168
13
33
77

74
165
352

31
74

165
12
31
74

Best class

Predicted b Observed

88
186
384
40
88

186
17
40
88

86
184
382

39
86

184
16
39
86

Poisson Predicted
k e ="/,

100
200
400

50
100
200

25
50

100

100
200
400

50
100
200
25
50

100

^ "/s

34
50
68
24
34
50
16
24
34

38
54
78
27
38
54
17
27
38

-k 4-t

88-32
185-72
384-26
40-38
87-87

18608
17-28
39-70
87-98

86-68
183-41
381-17

38-89
8606

183-85
16-27
38-69
86-42

Observed
<±S.E.

33-24 + 6-61
47-00 + 5-85
65-65 + 13-31
21-32 + 2-14
32-87 + 3-04
47-79 + 4-05
13-92 + 0-99
23-40+1-30
32-17 + 3-62

35-29 + 3-75
56-21+6-53
81-98 + 7-96
24-03 + 1-32
38-68 + 2-63
55-77 + 2-99
15-25 + 0-58
24-49 + 1-32
36-79 + 1-60

Rate

Worst <class

Predicted Observed

116
219
421

64
116
219

37
64

116

119
222
426

66
119
222

38
66

119

: of the

Predicted
R =

0-33
0-75
1-66
0-26
0-66
1-50
018
0-52
1-32

0-31
0-73
1 61
0-23
0-62
1-46
016
0-46
1-24

sk — st

116-41
218-78
420-67

6414
116-67
218-33

36-80
64-87

11602

118-68
222-86
42510

6611
119-47
222-40

38-34
66-62

118-88

ratchet

Observed
Robs±s.E.x 102

0-33 + 3-15
0-77 + 4-18
1-69 + 7-87
0-29 + 2-33
0-66 + 4-58
1-50 + 600
0-23 + 1-45
0-54 + 3-67
1-37 ±5-62

0-33 + 1-51
0-71+319
1-60 + 5-58
0-26+1-33
0-63 + 2-43
1-45 + 4-71
019+1-34
0-51+2-21
1-28 + 2-70

is said to be a compound or mixed distribution.
Teicher (1960) showed that a mixed Poisson dis-
tribution is itself never Poisson (except in the trivial
case when the parameter is distributed as a causal [or
deterministic] variate), and that a mixture on two
mixed Poissons (i.e. through the mutation and
selection process) remains a mixed Poisson. Thus our
motivation is to determine a new distribution that
accounts for the increased variance in the population

accorded by stochasticity in the distance between the
best class and the mean.

Figure 3 a, b illustrates that although the best class
and the mean are highly correlated, random fluctu-
ations in the difference between the two can be
appreciable. To quantify this variance, it will be
convenient to translate the distribution k units to the
left, and thus anchor the distribution at zero. This will
allow derivations in terms of centralized, instead of
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Fig. 3. (a) As mutations accumulate, the best class is continually redefined, so there always exists a non-zero best class.
When the best class is lost, the second best class will tend to be larger than its expected size as the new best class.
Because of the high correlation between the position of the best class and the mean, a correlated shift in the position of
the mean maintains the average distance between the two classes. Thus variance in the distance between the best class
and the mean tends to increase the average size of the best class (not shown on graph), and this slows the ratchet, (b)
The mean number of mutations per individual and the number of mutations in the best class from (a). The continuous-
line representations for the best class and the mean are plotted after adjusting for the rate of mutation accumulation.
Adjustment is performed by subtracting a linear regression on the mean from the observed values. The data points are
the observed distance between the mean and the best class, (c) The distribution of the distance from the best class to the
mean as it fits a gamma distribution. Parameterization is defined subsequently in the text. To gain sufficient precision,
each point represents the height of a histogram cumulative over ten independent runs. The bin size equals 1, so the
ordinate of the p.d.f. can be read as the relative probability of occurrence, (d) Variance in d, the distance between the
best class and the mean, is translated into variance in the parameter of the distribution. This is achieved in two steps;
first expressing d in units measured from the anchor of the distribution, and then scaling the variance to units
appropriate for the position of the mean. N^IO3; s = 0005; /t = 2;r + rf=30-l-18 = /t/s-k.

non-centralized p.d.f.s. A final translation back to the
right will restore the corrected p.m.f.

Let d be a random variable that equals the difference
between the best class and the mean. It is reasonable
to assume that the distribution of d is Gaussian. Yet
this must be only an approximation, for the normal
distribution, besides having support on the entire real
axis, imposes no restrictions on the relationship
between the mean and the variance. Because for any

set of initial conditions N, s and JX there exists exactly
one equilibrium distribution, there must be an a priori
relationship between the mean and variance of d. It is
this parametric relationship between the mean and the
variance that will allow the identification of a specific
parameterized distribution for each combination N, s
and (i. There is a rich literature to suggest (e.g.
Johnson et al. 1993, ch. 17) that when there is evidence
that the normal distribution is indeed only an
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(asymptotically) approximating distribution for con-
tinuous non-negative variates, then the actual dis-
tribution may be better fit by a gamma distribution
(Fig. 3 c).

The two-parameter gamma distribution has a p.d.f.

e (4)

with mean E (X) = a/? and variance Var (X) = a/?2 for
shape parameter a and scale parameter /?. Because d
represents a difference, while the parameter A is more
appropriately measured from 0 to the mean, construct
a new random variable t, that has the same distribution
as d, but is now measured b—k units from the origin
(Fig. 3d). This maps the difference d into a random
variable centered at the expected (shifted) position of
the best class t = E (t) = b — k. Because d units from
the mean is centered at the same position as t units
from the origin, there is no change in the scale of units
when transforming from d to t. To set the scale of the
distribution oft so the ordinate can be read as p.m.f.,
let/? = t/(/i/s — k). Because E(t) = a/? = t, this implies
that a = /i/s — k.

Let A be a random variable that stands for the
parameter of the distribution of the number of
mutations per individual. Then if the variance in X is
directly proportional to the variance in d (and con-
sequently t), X may be constructed by mapping t^X
while maintaining the ratio of the variance to the
mean. By setting E(X) = A = fi/s—k and keeping /?
constant, X is centered around its expectation while
the variance to mean ratio is preserved. With /? =
t/(ji/s—k),a = (ji/s—k)2/t and

In a classic paper, Greenwood & Yule (1920)
showed that when the parameter of Poisson dis-
tribution is distributed as a gamma variate, the
resulting compound distribution is the negative
binomial. In a notation consistent with (eqn 4), the
p.m.f. is

Pr(X = x) = fa + X-1
V a - l

with mean and variance

1

i+/?r

Var(X) = ocp + a.p2 = /i/s-k+t.

Translating k units to the right, the final distribution
for the number of mutations per individual is a shifted
negative binomial

Pr(X = x)

a + {x-k)-\
a - l

p
\+p,
0

\+P)

008 -i

006-

004-

002-

000
20 40 60 80 100
Number of mutations per individual

120

otherwise

(5)

Fig. 4. Continuous-line representations of shifted
negative binomials as they fit the simulation in Fig. 1. The
negative binomial is derived from the Poisson by taking
into account the variance in the distance between the best
class and the mean. The location of the right-hand
distribution uses the predicted rate of the ratchet (see
text). Both p.m.f.s are parameterized solely from
knowledge of N, s, and fi; neither was placed by prior
reference to the simulations, /i/s-k = 23; k = 27; b = 35;
t = 8; a = 232/8;/? = 8/23.

with a and /? denned as above, E(X) = /i/s, and
Var (X) = ji/s—k + t.

The result that the variance of the mixed distribution
is approximately equal to the (unshifted) mean plus
the variance of the mixing distribution is consistent
with other derivations that yield similar mixed
distributions. For example, Kemp & Kemp (1965)
and Kemp & Kemp (1966) found that if a mixing
distribution on a Poisson variate is normal with mean
A and variance cr\, then, under some mild restrictions,
the resulting mixed distribution is Hermite with mean
A and variance /( + <T\.

Figure 4 shows how (eqn 5) fits the simulations
reported in Figs. 1 and 2. Table 1, which also includes
predictions on the position of the worst class, shows
how (eqn 5) fits other simulations. The worst class is
predicted to be the last class in (eqn 5) that has an
expectation of at least one individual.

5. The rate of the ratchet

Given that an approximate p.m.f. for the number of
mutations per individual is a shifted negative binomial,
one can formulate an expression for the rate of
Muller's ratchet. The rate of the ratchet is approxi-
mately

R^/i-s<T2
n, (6)

where <T\ is the variance in the number of mutations
per individual (eqn 14, Haigh, 1978; eqn 16, Pamilo et
al. 1987). Haigh's analysis identifies cr2

n = 6 = fi/s as
the criterion for equilibrium, with finite populations
approaching this value very quickly as N^co.
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Equations (1), (2) and (in the limit) (eqn 5) reduce to
Haigh's solution and predict <r\ = 6 when the zero
class is present (k = 0). But whenever the zero class is
missing while the mean still equals 8, the variance of
the distribution falls below the Poisson expectation,
and under these conditions, we had no reliable theory
for estimating <j\.

From (eqn 1), A = fi/s—k is both the parameter of
the distribution and the variance. Substituting this
into (eqn 6) yields an upper bound estimate of the rate
of the ratchet as

R = sk.

From (eqn 5), the correction for stochasticity in the
distance between the best class and the mean yields

R = sk — st. (8)

The addition of stochasticity in the distance between
the best class and the mean increases the variance of
the population proportional to the distance that the
expected best class exceeds the first non-zero prob-
ability. This stochastically induced increase in the
variance of the population decreases the rate of the
ratchet. Table 1 compares the rate predicted by (eqn 8)
with the observed rate.

One may also note that although the variance in the
position of the best class makes an important
contribution to determining the rate of the ratchet, the
over-all importance of stochasticity in driving the
ratchet diminishes as the mutation rate increases. As
the mutation rate becomes large, the load increases,
and the number of offspring (N = 7VA e^) needed from
a pool of NA adults grows exponentially. For a finite
population, as ji becomes large the expected frequency
of the zero class quickly approaches zero and the
probability that k > 0 approaches unity, guaranteeing
a non-stochastic component to the ratchet. Con-
currently, the probability that members of the best
class acquire no new mutations becomes vanishingly
small {e'11). Under a large mutation rate not only is the
strength of selection on the best class too weak, but in
each generation, few individuals in the best class will
escape acquiring new mutations. In this situation, it is
mutation pressure that primarily diminishes the best
class and drives the ratchet.

6. Rate of decay in mean fitness

Given the rate of mutation accumulation, one
can extend it to the rate of decay in mean fitness.
Temporarily ignoring drift and assuming constant
selection coefficients (an assumption examined in the
next section), the mean population fitness for a large
finite population is approximately its equilibrium
expectation times the effect of accumulated mutations,
e'^iX— S)RT, where T is measured in time since the
population first reaches its mean fitness of e"'1. Rr

equals the number of turns of the ratchet. The
regression of e~''{\—s)Rr on RT defines mean popu-
lation fitness as a function of the number of
accumulated mutations, and the rate the population
traverses this curve, i.e. a regression on T, is a
function of N, s and /i. Because fitness in this model is
exclusively multiplicative, the rate of decay is linear on
a log scale, and thus

(7) and

-s)

= R In (1 -s) for R independent of T. (9)

7. Variable selection coefficients

The logic of the preceding analysis can be applied to
the more realistic case where mutations assume a
distribution of deleterious effects (Fig. 5). In a
population where incoming selection coefficients are
distributed as negative exponential variates (Ohta,
1977; Gillespie, 1991), the existence of mutations of
small effect makes it even more likely that every
individual will have at least one mutation. This
increases the likelihood of an absent zero class and
consequently a hypodispersed population.

For constant selection coefficients, the variance in
fitness amongst individuals is determined entirely by
the variance in the number of mutations. Variable
selection coefficients change this relationship and
introduce three new aspects to mutation accumulation.
First, because the best class (the class with the fewest
mutations), is not necessarily the most fit class,
selection on the most fit individuals does not minimize
mutation accumulation per se: mutation accumulation

008

006

004-

002

000
80 100

Number of mutations per individual
120

Fig. 5. The same parameter values as used in Fig. 1
except with variable selection coefficients, f = 00113;
0 = 88-50; k = 58; b = 71. Seg
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Table 2. Similar to Table 1, except incoming mutations are distributed as approximate negative exponential
variates. s~inc is the mean incoming selection coefficient; s~seg is the mean observed selection coefficient amongst
segregating loci over the last N / 2 generations

N

500

1000

fsegxlC

4-002
4-312
4-496
7-399
8014
8-664

1317
14-51
16-22

3-899
4-148
4-456
7161
7-652
8-357

12-26
13-93
15-59

0005

001

002

0005

001

0-02

)3

/<•

0-5
1
2
0-5
1
2
0-5
1
2

0-5
1
2
0-5
1
2
0-5
1
2

t = b

13
20
28

9
13
20

6
9

13

15
22
32
9

15
22

6
9

15

Best class

k Predicted

99 112
198 218
401 429

48 57
99 112

197 217
23 29
49 58
98 111

99 114
203 225
398 430
48 57

101 116
201 223

24 30
50 59
99 114

Variance

Poisson
-kd = /i/ssee

124-94
231-91
444-84

67-58
124-78
230-84

37-97
68-92

123-31

128-24
241-08
448-83

69-82
130-69
239-32

40-78
71-79

128-29

Observed

112-61
216-40
428-42

56-86
111-61
216-31

29-29
5800

110-86

113-90
223-58
428-81

5702
115-71
222-16

30-33
58-57

113-46

Predicted
/V^eg— k +

38-94
53-91
71-84
28-58
38-78
53-84
20-97
28-92
38-31

44-24
6008
82-83
30-82
44-69
60-32
22-78
30-79
44-29

Worst class

Predicted Observed

142
252
467

83
142
251

51
84

140

148
264
475

87
151
262

56
89

148

t

14109
25114
465-66

82-74
142-28
249-39

50-36
8410

139-40

14809
265-23
474-87

87-56
151-73
26202

55-88
9000

148-27

Observed
<rl±S.E.

34-33 + 1000
54-24 + 9-44
70-61 + 17-80
28-89+12-68
39-74 + 8-61
52-62 + 9-63
16-35 + 2-00
27-00 + 4-50
35-24 + 6-92

42-73 + 7-20
65-11+8-40
95-29 ±14-87
33-98 + 4-60
46-34+11-10
61-48 + 9-09
21-44 + 3-88
33-99 ±4-87
44-69 + 7-15

Rate of the ratchet

Predicted
R = SSeS

k-Jsee<

0-34
0-77
1-68
0-29
0-69
1-53
0-22
0-58
1-38

0-33
0-75
1-63
0-28
0-66
1-50
0-22
0-57
1-31

Observed
•Kobs±S.E. xlO2

0-36 + 301
0-80 ±6-96
1-71 + 11-66
0-32 + 3-44
0-73 + 4-27
1-64+ -4-54
0-28 + 204
0-63 + 3-33
1-46 ±6-98

0-35 + 2-57
0-76 + 2-91
1-65 + 3-84
0-30 + 2-74
0-68 + 3-24
1-54 + 4-45
0-25 + 2-48
0-59 + 2-77
1-42 ±3-05

is minimized as a correlated response. Secondly, the
introduction of mutations of differing effect at differing
rates results in a lower mean selection coefficient
amongst segregating alleles (e.g. see Keightley, 1994).
This means that constant 5 models underpredict the
mean number of mutations per individual. Thirdly,
the introduction of mutations of effect s <£ N'1

(Kimura, 1968, 1983, p. 44; Li, 1978) will result in a
class of alleles that can drift out of mutation-selection
balance, thereby augmenting mutation accumulation.

With variable selection coefficients, the fact that the
incoming distribution of mutations does not reflect
the equilibrium distribution introduces two additional

summary statistics that affect the rate of the ratchet
and the rate of decline in mean fitness: S"seg, the mean
selection coefficient of all alleles that are currently
segregating, and Jtlxed, the mean selection coefficient of
all alleles fixed in the population. The latter is
approximated by the mean selection coefficient of all
fixed loci when measured after a sufficiently long
period of time.

(i) Rate of the ratchet

If most alleles are being held in mutation-selection
balance, then a mean fitness of e'*1 s (1 —s~seg)

n implies
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n s /J-/sseg = 0 for any sseg <g 1, where n is the average
number of mutations per individual. Thus for variable
selection coefficients, the expected mean number of
mutations per individual is determined by sseg, the
average effect of all mutations segregating in the
population, and 6 is redefined as

6 s (10)

The same approximation can be derived as a
limiting case for a diffusion model following the form
of Kimura (1969, 1983, p. 239) and Ewens (1979).
Even with mutations drifting out of mutation-
selection balance (eqn 10) will still estimate the mean
number of mutations per individual, though the
algebraic relationship between selection coefficients
assigned to alleles and a calculated fitness statistic for
the population will no longer be indicative of the
actual strength of selection. Drift will invalidate the
expected distance from the best class to the mean as
a measure of the ability of the population to resist
mutation accumulation, and for this reason (eqn 8)
using 5 = sseg will tend to underestimate the rate of
the ratchet. This will be true for both constant and
variable s models whenever s or sseg are implicitly
assumed to reflect the true strength of selection.

To circumvent this, sseg should be replaced by a
statistic that accurately estimates the true strength of
selection, not just the arithmetic average selection
coefficient of segregating alleles. But an analytical
prediction for S"seg is complicated by simultaneously
occuring background selection affecting the long-term
net effect of selection and the mean time to fixation
(Hill & Roberston, 1966; Charlesworth, B. et al. 1993;
Charlesworth, 1994; Barton, 1994). Despite this, the
general inequality slnc ^ ss (where S"inc is the
mean incoming selection coefficient) allows a quali-
tative prediction of how constant s models compare to
variable s models.

Because the equality is met only in the degenerative
case (i.e. when 5 is constant or when all mutations can
freely drift), the inequality j l n c > Jseg increases the
likelihood that a variable s population will have a
missing zero class. This reflects the verbal argument
that to the degree that mutations of small effect can
enter a population, it is increasingly unlikely that
there will be any mutation-free individuals. As S"seg

decreases linearly, the inequality N e'° < 1 is satisfied
for an exponentially larger range of N. This causes k
to increase faster than sseg decreases. This results in a
faster ratchet for populations with variable selection
coefficients.

When only a few individuals are expected in the
best class, the time to lose the best class stochastically
can still be small compared to the non-stochastic
component. This is demonstrated in Table 2 where the
rate of the ratchet using the observed sseg and (eqn 10)
are still reasonably approximated by a shifted negative
binomial.

800 -i

600 •

400 -E

I
S

Z 200 •

Number of fixed
mutations

200 400 600
Generation

800 1000

Fig. 6. A sample variable 5 run showing the increase in
the number of fixed mutations, and the minimum, mean
and maximum number of mutations per individual over
time. The saltatory increase in the number of fixed
mutations is indicative of how selective sweeps fix
multiple mutations simultaneously in asexual populations.
The observed ^-intercept and slope (the rate of the
ratchet) is y = 71-71 +0-63r(r2 = 0-992). The predicted
regression using the observed S"seg is y = /i/Jseg + RT =
72-44 + 0-55T. i V s l O 3 ; sinc = 0-02; ju, = 1; f = 0-01381.

(ii) Rate of decay in log mean fitness

Mutations of very small effect accumulate almost
freely, yet individually add little to the decay in mean
fitness. For alleles at strictly neutral loci, their influx
drives mutation accumulation, yet their neutrality
causes no decay in mean fitness. At the other extreme,
mutations of very large effect experience an almost
deterministic efficiency of selection, so their con-
tribution to the decline in mean fitness is also small. In
both cases, population mean fitness declines only very
slowly beyond the infinite-size mutation-selection
equilibrium. Between these two extremes are values of
s small enough to accrue, yet large enough to
substantially effect the rate of decay in mean fitness
(Kimura et al. 1963; Charlesworth, D. et al. 1993;
Gabriel, et al. 1993). The prediction then, is that there
exists a critical incoming value of S"lnc that maximizes
the magnitude of the rate of decay in mean fitness.

In the derivation for the rate of change in log mean
fitness (eqn 9), the determining factor is the average
effect of accumulated alleles. Without back mutation
pressure, selective sweeps will equilibrate the rate of
fixation with the rate of the ratchet (Fig. 6), and
therefore

= Rln(\-s[ix

For sinc <£ -/Ve\ both constant and variable s
populations will decay at approximately the same
rate. As JInc increases, variable s populations benefit
from a lower s!ixea, and therefore decay at a slower
rate. But as slnc increases further still, variable s
populations continue to have some frequency of
mutations of small effect that can enter and fix, while
constant s populations approach a deterministic
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Fig. 7. Rate of decay in log mean fitness as a function of
the mean incoming selection coefficient. Each data point
is the mean of ten independent runs with its standard
error. NS 103; sinc = 002; /i = 0-5.

efficiency in selection. At some critical value of sinc

these trade-offs balance, and there are equivalent rates
of decay (Fig. 7). As expected though, for any given
incoming selection coefficient, an increase in the
population size or a decrease in the mutation rate
always results in a slower rate of decay in mean fitness.

8. Discussion

(i) Caveats of the theory

The distribution in (eqn 5) relies on the accurate
identification of the position of the best class. If 8 is
small, then the expected size of each class changes
rapidly for classes b, b + \, b + 2, etc. and the time-
average size of the best class may not be well
approximated by b. For example, for N = 500, s =
001 and /i = 0-1, the expected best class is b = 3, while
the observed best class is bobs = 5. This is also true if
N is very small, though it is doubtful that in either case
any increase in resolution above (eqn 1) and R = sk is
justified.

The accurate prediction of the position of the best
class leads to the use of a truncated Poisson in (eqn 2),
though this is not incorporated in (eqn 5). This reflects
the fact that (eqn 5) (and most parametric distri-
butions) are more sensitive to methods that lead to
their parameterization, than to their own truncation.
Small changes in the form of the original distribution,
e.g. as a Poisson or a truncated Poisson, or in the
mixing distribution, be it a gamma, a truncated
gamma or a truncated normal, will yield slightly
different mixed distributions as a result. There is a
wide range of overlap between the negative binomial,
the hyper-Poisson distribution (Bardwell & Crow,
1964; Crow & Bardwell, 1965), the Hermite
(McKendrick, 1926), and others as approximating
distributions. All these distributions are themselves

special cases of more general distributions. The use of
a specific mixing distribution is partly justified by the
emphasis placed on assumptions leading to its
derivation, and partly by the parsimony of the
resulting mixed distribution to explain the data. See
for example, Barton's (1966) pointed review of Staff
(1964), where he strongly advocates the use of a
negative binomial in the absence of compelling reasons
otherwise.

(ii) Implications of the theory

Haigh's (1978) analysis showed that if Ne~e<25,
then otherwise stable asexual populations are subject
to mutation accumulation at a rate proportional to
the rate of the stochastic loss of the best class. This
analysis shows that if N e~e < 1, then the equilibrium
distribution of mutations necessary for mutation-
selection balance is never attained and mutations
accumulate due to both stochastic and non-stochastic
pressures.

This leads to a model for the distribution of the
number of mutations per individual. Under the caveats
described above, the distribution is expected to be
Poisson, albeit a shifted Poisson of parameter A =
ju/s—k. After adjusting for variance in the parameter
of the distribution (a phenomenon introduced by the
Monte Carlo modeling process), the distribution
becomes relatively hyperdispersed, and becomes a
shifted negative binomial.

There are three points that revise our thinking
about asexual populations with multiplicative fitness.
First, in finite, asexual populations where we do not
expect at least one ' mutation-free' individual relative
to a mutation-free standard, mutation-selection bal-
ance will not be achieved and there is no stationary
distribution of mutations. This is due specifically to
the strength of selection on the best class being too
weak to counter mutation pressure. The effect can be
large: for example, using the previous estimates of fi
= 1 and s = 002, for a population of 109 individuals
(0 = ji/s = 50, A; =14, b = 21), the ratio of the
predicted variance to the necessary variance needed to
halt mutation accumulation is

6 fi/s 50

Mutations will accumulate not just because the best
individuals may be lost by chance, but because they
are destined to be lost due to their insufficient selective
advantage relative to the other classes. Muller's ratchet
is not reserved for small populations, but will happen
in all populations that cannot maintain mutation-free
individuals.

Secondly, this consideration provides an estimate of
the rate Muller's ratchet (R = sk —st) when N e~e < 1.
As population size increases, the absolute rate of the
ratchet decreases, but ironically stochasticity becomes
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increasingly important in determining this rate. Stated
alternatively, if \ < N e~e < 25, then stochasticity
primarily drives Muller's ratchet (Haigh, 1978). As
population size decreases below the critical inequality
N e~e < 1, it is mutation pressure that increasingly
drives the ratchet.

The rate of the ratchet is mainly determined by the
ratio of the influx to efflux of mutations (0 = JJ-/S). For
small values of /i (e.g. /i s 0-0033 for DNA microbes
[Drake 1991]) and s = 002, the ratchet is not expected
to operate, since a large number of individuals will be
in the zero class (TV e~e > 1 implies N > 118). For /i =
01 , populations could maintain a zero class with only
150 individuals. But for /«^0-4 (based on human
data, Koeberl et al. 1990; Sommer, 1992; though see
Kondrashov & Crow, 1993), populations would
already need an effective size of 5 x 108 to achieve
mutation-selection balance.

The preceding is conservative in terms of the rate of
mutation accumulation, for by using constant selec-
tion coefficients it underestimates the rate to the
ratchet. Correcting for variable selection coefficients,
even if the average segregating mutation has a selection
coefficient as high as 60% of the incoming value
(jseg = 0-01226, N = 103, Table 2), the necessary num-
ber of individuals for ^ = 0-4 jumps to 1-5 xlO14.
And with this increase in N, the concordant increase
in the efficiency of selection will decrease Jseg further
still. For values of fi close to unity (Charlesworth et al.
1990; Crow, 1993 a, b), no population, with either
constant or variable selection coefficients, would ever
be large enough to be able to maintain asexual re-
production and still achieve the necessary strength of
selection to counter mutation pressure (s = 0-02 =>
N > 5x 1021). For organisms with large genomes, a
fast ratchet may be an inescapable consequence of
asexual reproduction.

The simplification that Muller's ratchet is due to the
stochastic loss of the best class in small populations
may miss the primary importance of the ratchet in the
evolution of metazoans and metaphyta. In DNA
microbes, increased mutation rates (correlated with
increasingly larger genomes) may be compensated by
more complex error-correction mechanisms (Drake,
1991). Yet as the number of genes increases further
still, recombination becomes a more plausible load
reducing mechanism (Felsenstein, 1974 and references
therein; Kondrashov, 1982). Haigh's (1978) identi-
fication of N e~e as a pivotal quantity affecting the rate
of the ratchet sets an important quantitative bound on
the parameter-space where recombination is expected
to evolve. Quantification of this rate can help to
determine the relative strength of selection for a
recombination modifier; i.e. larger values of A: reflect
a paucity of variance and should be correlated with
stronger selection for the evolution of recombination.

The restriction of Muller's ratchet from being
operational in very large populations has been used as
evidence that it may not be a sufficient reason to drive

the evolution of sex (Crow, 1994). An interpretation
of the results presented here shows that if genome size
increases faster than error-correction mechanisms
evolve, then even large populations could generate
strong selection for the evolution of load reducing
mechanisms.

Thirdly, variable selection coefficients result in a
faster ratchet, but for small values of s, a slower decay
in mean fitness. With variable selection coefficients it
is more likely that asexual populations will not be able
to achieve mutation-selection balance, but this comes
at a smaller than expected cost. Because of this study's
omission of epistasis, beneficial mutations, compensa-
tory mutations, fluctuating selection coefficients, etc.,
direct applications to natural asexual populations are
cautionary. But to the degree that unconditionally
deleterious-allele models of this type are appropriate,
it implies that populations of asexual organisms with
large genomes are acquiring mutations faster than
previously expected, for reasons other than previously
expected, yet should able to persist longer than
previously expected.

I thank William Rice for bringing this problem to my
attention, and for originally pointing out the importance of
a reduction in the steady-state strength of selection on the
best class in driving the ratchet. I also thank Alan Hastings,
Austin Burt, Michael Lynch and two additional referees for
their comments on earlier revisions that greatly improved
the quality of this manuscript.
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