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PAIR CORRELATION OF LOW-LYING ZEROS OF
QUADRATIC L-FUNCTIONS

KEIJU SONO

Abstract. In this paper, we investigate the nontrivial zeros of quadratic L-

functions near the real axis. Assuming the generalized Riemann hypothesis,

we give an asymptotic formula for the weighted pair correlation function of

quadratic L-functions associated to the Kronecker symbols. From this formula,

we obtain several results on the rate of simple zeros of quadratic L-functions

and on the average distance of such nontrivial zeros.

§1. Introduction

In the early 1970s, Montgomery [11] published his famous paper titled

“The pair correlation of zeros of the zeta function”. In this paper, assuming

the Riemann hypothesis (RH), he investigated the function

F (α, T ) =

(
T

2π
log T

)−1 ∑
0<γ6T
0<γ′6T

T iα(γ−γ
′)w(γ − γ′),

where w(u) = 4/(4 + u2) and γ, γ′ run over the set of the imaginary parts

of the nontrivial zeros of the Riemann zeta-function ζ(s) in 0< Im(s)6 T .

He obtained an asymptotic formula for F (α, T ) (0< α6 1− ε), and using

this formula, he obtained several results on the distances of the nontrivial

zeros. For example, under the assumption of the RH, he proved that at least

2/3− ε of the nontrivial zeros are simple, and that

lim inf
n→∞

(γn+1 − γn) log γn
2π

6 λ < 1

holds for specific λ, where γn denotes the imaginary part of the nth

nontrivial zero of ζ(s) in the upper half-plane.

Later, Montgomery’s idea, combined with new conceptions or improve-

ments, was extended to many types of L-functions or other situations.
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For example, Özlük [12] investigated the nontrivial zeros of the Dirichlet L-

functions near the real axis. Assuming the generalized Riemann hypothesis

(GRH), he proved that at least 11/12 of such zeros are simple in some sense.

One of the other interesting generalizations is the work of Hejhal [7]. From

the explicit formula of the Riemann zeta-function introduced in another of

his papers [6], he constructed a certain asymptotic formula for the function

involving the pairs of three distinct zeros of ζ(s). Further, the result of Hejhal

was generalized by Rudnick and Sarnak [16], and the n-level correlation of

the zeros of principal L-functions was obtained. In particular, their results

agree with the prediction for the Gaussian unitary ensemble of random

matrix theory.

Our aim in this paper is to investigate the pair correlation of the zeros of

the quadratic L-functions near the real axis. As prior research, Özlük and

Snyder [13] investigated such zeros. Under the assumption of the GRH, they

studied the asymptotic behavior of the function

GK(α, D) =

(
1

2
K

(
1

2

)
D

)−1∑
d6=0

e−πd
2/D2

∑
ρ∈Zd

K(ρ)Diαγ

as D→∞ for |α|< 2, where ρ= 1/2 + iγ runs over the set of all nontrivial

zeros of L(s, χd), the quadratic L-function associated to the Kronecker

symbol χd = (d/·), and K(s) is some weight function. From their asymptotic

formula, they proved that assuming the GRH, not more than 6.25% of all

integers d have the property that s= 1/2 is a zero of L(s, χd). Slightly

later, by a completely different method, Soundararajan [18] unconditionally

proved that L(1/2, χd) 6= 0 for at least 87.5% of all fundamental discrim-

inants d. On the other hand, there are several researches on the ‘n-level

density’ of the low-lying zeros of quadratic L-functions. For an odd, square-

free integer d > 0, χ8d =
(
8d
·
)

becomes a primitive character. Assuming the

GRH, we denote the nontrivial zeros of L(s, χ8d) by

1
2 + iγ8d,j (j =±1,±2, . . .),

where 06 γ8d,1 6 γ8d,2 6 · · · and γ8d,−j =−γ8d,j . For X > 0, we put

D(X) := {X 6 d6 2X | d : odd, square free},

and for a Schwartz function f ∈ S(Rn), we put

W
(n)
f (d) :=

∑
j1,...,jn=±1,±2,...
|jk|:distinct

f

(
γ8d,j1 log X

2π
, . . . ,

γ8d,jn log X

2π

)
.
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Then, the Katz–Sarnak density conjecture [9] asserts that

〈W (n)
f 〉D(X) :=

1

]D(X)

∑
d∈D(X)

W
(n)
f (d)Φ

(
d

X

)
→
∫
Rn

f(x)W
(n)
USp(x) dx

(1.1)

as X →∞, where Φ is a nonnegative smooth function supported in (1, 2)

satisfying
∫

Φ(x) dx= 1, and

W
(n)
USp(x) = det(K(xi, xj))i,j=1,...,n,

with

K(x, y) =
sin π(x− y)

π(x− y)
− sin π(x+ y)

π(x+ y)
.

Katz and Sarnak [9], assuming the GRH, proved that (1.1) holds if n=

1 and f̂(u) =
∫
R f(x)e−2πiux dx has a support in |u|< 2. Rubinstein [14],

[15], assuming the GRH, established (1.1) under the condition that f̂(u) =∫
Rn f(u)e−2πiu·x dx has a support in

∑n
j=1 |uj |< 1, and later Gao [3], [4],

under the GRH, proved that if f is of the form f(x1, . . . , xn) =
∏n
j=1 fj(xj)

and each f̂j is supported in |uj |< sj with
∑
sj < 2, then

lim
X→∞

〈W (n)
f 〉D(X) =A(f),

where A(f) is some complicated expression involving f1, . . . , fn. Moreover,

he confirmed that A(f) is equal to the right-hand side of (1.1) if n= 2, 3.

More recently, Levinson and Miller [10] proved that this fact is also valid

for 46 n6 7. Finally, Entin, Roditty-Gershon and Rudnick [2] proved that

assuming the GRH, (1.1) is valid for all n if f̂ is supported in
∑n

j=1 |uj |< 2.

If anything, our approach to investigate the pair correlation of low-

lying zeros is similar to that of Özlük and Snyder [13], in which they

investigated the 1-level density of these zeros. In this paper, assuming the

GRH (including the RH), we investigate the function FK(α, D), defined as

follows. Let K(s) be analytic in −1< Re(s)< 2 and satisfy K(1/2− it) =

K(1/2 + it) for any t ∈R. Moreover, we assume that its Mellin inverse

transform

(1.2) a(x) :=
1

2πi

∫ c+i∞

c−i∞
K(s)x−s ds
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converges absolutely for any −1< c < 2, x > 0, and that a(x) is real,

nonnegative, belongs to the C1-class, and has a support in [A, B] for some

0<A<B <∞. Then, K(s) is given by

(1.3) K(s) =

∫ ∞
0

a(t)ts
dt

t
.

For d ∈ Z, let χd = (d/·) be the Kronecker symbol, and let L(s, χd) be the

L-function associated to χd. We denote the set of nontrivial zeros of L(s, χd)

by Zd. For x > 0, D > 0, we put

fK(x, D) =
∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

K(ρ1)K(ρ2)x
ρ1+ρ2 ,

and for α ∈R, we put

FK(α, D) =

[
1

xD log D
fK(x, D)

]
x=Dα

=
1

D log D

∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

K(ρ1)K(ρ2)D
iα(γ1−γ2),(1.4)

where ρj = 1/2 + iγj for j = 1, 2. Then, the main theorem is stated as

follows.

Theorem 1.1. Assuming the GRH, for any small δ > 0, we have

FK(α, D) = L(1)α+ a(D−α)2D−α log D + a(D−α) ·O(αD−α/2 log D)

+ a(D−α)2 ·O(D−α) +O(min{1, αD−αlog2D})

+O(min{α log D, αD−1/2 log D + α(1 + α2)D−α/2 log3 D})

+O(min{Dα(log D)−1, α2D−α log3 D}) + o(1)(1.5)

uniformly for 0< α < 1− δ as D→∞, where

L(1) =

∫ ∞
0

a(x)2 dx.

The implied constants depend only on K(s) and δ > 0.

It should be noticed that the result on the 1-level density by Katz and

Sarnak [9] is stronger than that of Özlük and Snyder [13] in some sense.

However, the author believes that the asymptotic formula of Theorem 1.1
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is more useful than the limit formula (1.1) (n= 2) if we restrict the target

only to the study of the pair correlation of low-lying zeros of L(s, χd), since

the factor γ1 − γ2 is contained in the definition of FK(α, D), and both the

left-hand side and the main terms of the right-hand side of (1.5) are very

simple; hence, we can easily compute the integrals involving these terms. In

fact, several concrete results on the average gaps of the nontrivial zeros are

obtained. Section 4 of this paper is devoted to their study. In Corollary 4.2,

we give a certain upper bound for the number of pairs of ‘close zeros’ near

the real axis. In Corollary 4.3, we give a lower bound for the weighted

sum involving simple zeros of L(s, χd). Finally, in Corollary 4.4, we prove

that there are quite a few pairs of zeros (1/2 + iγ1, 1/2 + iγ2) of L(s, χd)

(d ∈ Z\{0}) satisfying 0< |γ1 − γ2|6 (2πλ)/ log D, if λ is large to a certain

extent.

§2. Preliminaries

To prove the main theorem, we prepare several lemmas. The following

nine lemmas (Lemmas 2.1–2.9) are all found in [13].

Lemma 2.1. We have

(2.1)
∑
d

e−πd
2/y2 = y + o(1) (y→∞).

Here,
∑

d denotes the sum over all nonzero integers d.

Lemma 2.2.

(2.2)
∑
d

e−πd
2/y2 log |d|= y log y +O(y) (y→∞).

Lemma 2.3. We have

(2.3)
∑
d=�

e−πd
2/y2 = Iy1/2 − 1

2
+O(y−1/2)

as y→∞. Here, I = (1/4)π−1/4Γ(1/4), and
∑

d=� denotes the sum over all

positive square integers.

Instead of (2.3), sometimes we use

(2.4)
∑
d=�

e−πd
2/y2 = Iy1/2 − 1

2
+O(min{1, y−1/2})
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or

(2.5)
∑
d=�

e−πd
2/y2 = Iy1/2 +O(1).

Lemma 2.4. Assuming the RH, we have

(2.6)
∑
p

a

(
p2

x

)
log p=

1

2
K

(
1

2

)
x1/2 +O(x1/4 log2 x) (x→∞).

Here,
∑

p denotes the sum over all primes p.

It should be noticed that the implied constant in (2.6) is dependent on

a(x) (and hence on K(s)). Hereafter, this fact will be valid for almost all

asymptotic formulas, although we will not comment again.

Lemma 2.5. Assuming the RH, we have

(2.7)
∑
p

a
(p
x

)
log p=K (1) x+O(x1/2 log2 x) (x→∞).

Lemma 2.6. Assuming the RH, we have

(2.8)
∑
p

a
(p
x

) log p
√
p

=K

(
1

2

)
x1/2 +O(log2 x) (x→∞).

Lemma 2.7. Assuming the RH, we have

(2.9)
∑
p

a
(p
x

) log p

p
=K (0) +O(x−1/2 log2 x) (x→∞).

Lemma 2.8. Assuming the RH, we have

(2.10)
∑
p

a

(
p2

x

)
log p

p
=

1

2
K (0) +O(x−1/4 log2 x) (x→∞).

Lemma 2.9. We have

(2.11)
∑
p

a
(p
x

)
p1/2 log2 p� x3/2 log x (x→∞).

In addition to these nine lemmas quoted from [13], we need several

asymptotic formulas.
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Lemma 2.10. We have

(2.12)

∞∑
d=1

e−πd
2/y2 log2 d=

1

2
y log2 y +O(y log y) (y→∞).

Proof. The left-hand side is

∞∑
d=1

e−πd
2/y2 log2 d =

∞∑
d=1

e−πd
2/y2 log2

(
d

y

)
+ 2(log y)

∞∑
d=1

e−πd
2/y2 log d

− (log y)2
∞∑
d=1

e−πd
2/y2 .(2.13)

The first term on the right-hand side of (2.13) is

∞∑
d=1

e−πd
2/y2 log2

(
d

y

)
=

∫ ∞
1−

e−πu
2/y2 log2

(
u

y

)
d[u]

=

∫ ∞
1

e−πu
2/y2 log2

(
u

y

)
du

−
∫ ∞
1−

e−πu
2/y2 log2

(
u

y

)
d{u},(2.14)

where [u] denotes the integer part of u, and {u} := u− [u]. By the change

of parameters u/y = v, we can easily see that∫ ∞
1

e−πu
2/y2 log2

(
u

y

)
du� y,

and by partial integration, we have∫ ∞
1−

e−πu
2/y2 log2

(
u

y

)
d{u}� log2 y.

Hence, the first term on the right-hand side of (2.13) is O(y). Moreover, by

Lemma 2.1, we have

∞∑
d=1

e−πd
2/y2 =

1

2
y + o(1),

and by Lemma 2.2, we have

∞∑
d=1

e−πd
2/y2 log d=

1

2
y log y +O(y).

By inserting these into (2.13), we obtain the result.
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Lemma 2.11. We have

(2.15)
∑
p

a
(p
x

)
p log p� x2 (x→∞).

Proof. It should be recalled that the function a(u) is bounded and has

a support in [A, B]. By the prime number theorem (PNT), the number of

primes p satisfying the condition p/x6B is O(x/ log x). Therefore,∑
p

a
(p
x

)
p log p� x log x · x

log x
= x2.

By a similar argument, we obtain the following.

Lemma 2.12. We have

(2.16)
∑
p

a

(
p2

x

)
p log p� x (x→∞).

Hereafter, we put

(2.17) L(s) :=

∫ ∞
0

a(t)2ts
dt

t
.

Lemma 2.13. Assuming the RH, we have

(2.18)∑
p

a
(p
x

)2
(log p)2 = L(1)x log x+ L′(1)x+O(

√
x log3 x) (x→∞).

Proof. We write

θ(u) :=
∑
p6u

log p= u+ E(u).

Then, it is well known that E(u) is evaluated by O(u1/2 log2 u) under the

assumption of the RH. Now, we have∑
p

a
(p
x

)2
(log p)2 =

∫ ∞
0

a
(u
x

)2
log u dθ(u)

=

∫ ∞
0

a
(u
x

)2
log u du+

∫ ∞
0

a
(u
x

)2
log u dE(u).(2.19)

https://doi.org/10.1017/nmj.2016.26 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.26


PAIR CORRELATION OF LOW-LYING ZEROS OF QUADRATIC L-FUNCTIONS 95

By the change of parameters u/x= v, we have∫ ∞
0

a
(u
x

)2
log u du = x log x

∫ ∞
0

a(v)2 dv + x

∫ ∞
0

a(v)2 log v dv

= L(1)x log x+ L′(1)x.(2.20)

On the other hand, by partial integration, we have∫ ∞
0

a
(u
x

)2
log u dE(u)

=−
∫ ∞
0

E(u)

{
2a
(
u
x

)
a′
(
u
x

)
log u

x
+
a
(
u
x

)2
u

}
du,

and by the change of parameters u/x= v, combining with the estimate

E(u)�
√
u log2 u, we easily find that

∫ ∞
0

E(u)
a
(
u
x

)
a′
(
u
x

)
log u

x
du�

√
x log3 x,∫ ∞

0
E(u)

a
(
u
x

)2
u

du�
√
x log2 x.

Hence, we get

(2.21)

∫ ∞
0

a
(u
x

)2
log u dE(u)�

√
x log3 x.

By inserting (2.20), (2.21) into (2.19), we obtain (2.18).

Lemma 2.14. Assuming the RH, we have

∑
p

a
(p
x

)2 (log p)2

p
= L(0) log x+ L′(0) +O(x−1/2 log3 x) (x→∞).

(2.22)

The proof of Lemma 2.14 is almost the same as that of Lemma 2.13;

hence, we omit it.
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Lemma 2.15. We assume the RH. Then, when x
1
l � 1, we have

∑
p

∑
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

= l−1K(1)K

(
1

l

)
x1+

1
l +O(l−1x1+

1
2l log2 x).(2.23)

The implied constant is independent of l.

Proof. The left-hand side is

∑
p

∑
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

=−
∑
p

a
(p
x

)
a

(
pl

x

)
log2 p+

∑
p

a
(p
x

)
log p

∑
q

a

(
ql

x

)
log q.(2.24)

By the PNT, the number of primes p satisfying pl/x6B is O(lx1/l/ log x).

Therefore,

(2.25)
∑
p

a
(p
x

)
a

(
pl

x

)
log2 p� l−1x

1
l log x.

By Lemma 2.5,

(2.26)
∑
p

a
(p
x

)
log p=K(1)x+O(x1/2 log2 x).

Further,

∑
q

a

(
ql

x

)
log q =

∫ ∞
0

a

(
ul

x

)
dθ(u)

=

∫ ∞
0

a

(
ul

x

)
du+

∫ ∞
0

a

(
ul

x

)
dE(u).

By the change of parameters ul/x= v, the first term on the right-hand side

becomes ∫ ∞
0

a

(
ul

x

)
du= l−1x

1
lK

(
1

l

)
.
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Since E(u)� u1/2 log2 u, and since a′(v) is bounded and has a support in

[A, B], the second integral is∫ ∞
0

a

(
ul

x

)
dE(u) = −

∫ ∞
0

E(u)
lul−1

x
a′
(
ul

x

)
du

� lx−1
∫ ∞
0

ul−
1
2

∣∣∣∣a′ (ulx
)∣∣∣∣ log2 u du

� lx−1(x
1
l )l−

1
2 log2(x

1
l ) · x

1
l

� l−1x
1
2l log2 x.

Combining these, we have

(2.27)
∑
q

a

(
ql

x

)
log q = l−1x

1
lK

(
1

l

)
+O(l−1x

1
2l log2 x).

By inserting (2.25)–(2.27) into (2.24), we obtain the result.

Lemma 2.16. We assume the RH. Then, when x
1
l � 1, we have∑

p

∑
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)
√
pq

= l−1K

(
1

2

)
K

(
1

2l

)
x1/2+

1
2l

+O(l−1x1/2 log3 x).(2.28)

The implied constant is independent of l.

The proof of Lemma 2.16 is almost the same as that of Lemma 2.15;

hence, we omit it. It should be noticed that the asymptotic formulas of

Lemmas 2.15, 2.16 are still valid if we replace the sum with p, q > 3, p 6= q.

To obtain the asymptotic formula of the main theorem, we need the

following translation formula for the theta function.

Lemma 2.17. Let p, q > 3 be distinct primes, and let D > 0. Then,

(2.29)
∑
d

(
d

pq

)
e−πd

2/D2
=

D
√
pq

∑
m

(
m

pq

)
e−πm

2D2/p2q2 .

Here, d and m above run over the set of all nonzero integers.

Proof. If (−1/pq) =−1, the identity (2.29) clearly holds, since both sides

become 0. We assume (−1/pq) = 1, and put
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χpq(n) =

(
n

pq

)
.

Then, χpq becomes a primitive character of modulo pq. We define the theta

function ψ(x, χpq) by

ψ(x, χpq) =
∞∑

n=−∞
χpq(n)e−n

2πx/pq

for x > 0. Then, ψ(x, χpq) satisfies

τ(χpq)ψ(x, χpq) =
(pq
x

)1/2
ψ(x−1, χpq),

where τ(χpq) is the Gaussian sum associated to χpq (for example, see [1, p.

67]). Moreover, we have τ(χpq) =
√
pq. Hence, we get

∞∑
n=−∞

(
n

pq

)
e−n

2πx/pq = x−1/2
∞∑

m=−∞

(
m

pq

)
e−πm

2/pqx.

By putting x= pq/D2, we obtain (2.29).

§3. The proof of Theorem 1.1

We start from the explicit formula∑
ρ∈Zd

K(ρ)xρ = K(1)E(χd)x−
∞∑
n=1

a
(n
x

)
Λ(n)

(
d

n

)

+ a

(
1

x

)
log

(
|d|
π

)
+O(min{x, log |d| log x}) (x> 1),

introduced in [13]. Here, E(χ) = 1 if χ is a principal character, and otherwise

E(χ) = 0. The error term is interpreted as O(1) if x= 1. Since the main

terms on the right-hand side are real, we have∑
ρ1,ρ2∈Zd

K(ρ1)K(ρ2)x
ρ1+ρ2

=

{
K(1)E(χd)x−

∞∑
n=1

a
(n
x

)
Λ(n)

(
d

n

)

+ a

(
1

x

)
log

(
|d|
π

)
+O(min{x, log |d| log x})

}2
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=K(1)2E(χd)
2x2 +

∞∑
n,m=1

a
(n
x

)
a
(m
x

)
Λ(n)Λ(m)

(
d

n

) (
d

m

)

+ a

(
1

x

)2

log2
(
|d|
π

)
− 2K(1)E(χd)x

∞∑
n=1

a
(n
x

)
Λ(n)

(
d

n

)

+ 2K(1)E(χd)xa

(
1

x

)
log

(
|d|
π

)
− 2a

(
1

x

)
log

(
|d|
π

) ∞∑
n=1

a
(n
x

)
Λ(n)

(
d

n

)

+O

(
max

{
K(1)E(χd)x,

∞∑
n=1

a
(n
x

)
Λ(n)

(
d

n

)
, a

(
1

x

)
log

(
|d|
π

)})
×O (min{x, log |d| log x})

+O
(
min{x2, log2 |d| log2 x}

)
.

By multiplying both sides by e−πd
2/D2

and taking the sum over d, we have

(3.1) fK(x, D) =M1 +M2 +M3 +M4 +M5 +M6 +O1 +O2 +O3 +O4,

where
M1 =K(1)2x2

∑
d

E(χd)
2e−πd

2/D2
,

M2 =
∞∑

n,m=1

a
(n
x

)
a
(m
x

)
Λ(n)Λ(m)

∑
d

e−πd
2/D2

(
d

n

) (
d

m

)
,

M3 = a

(
1

x

)2∑
d

e−πd
2/D2

log2
(
|d|
π

)
,

M4 =−2K(1)x

∞∑
n=1

a
(n
x

)
Λ(n)

∑
d

e−πd
2/D2

E(χd)

(
d

n

)
,

M5 = 2K(1)xa

(
1

x

)∑
d

e−πd
2/D2

E(χd) log

(
|d|
π

)
,

M6 =−2a

(
1

x

) ∞∑
n=1

a
(n
x

)
Λ(n)

∑
d

e−πd
2/D2

(
d

n

)
log

(
|d|
π

)
,

O1 =O (min {O11, O12}) , O2 =O (min {O21, O22}) ,

O3 =O (min {O31, O32}) , O4 = (min {O41, O42}) ,
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with

O11 =K(1)x2
∑
d

e−πd
2/D2

E(χd),

O12 =K(1)x log x
∑
d

e−πd
2/D2

E(χd) log |d|,

O21 = x
∑
d

e−πd
2/D2

∣∣∣∣∣
∞∑
n=1

a
(n
x

)
Λ(n)

(
d

n

)∣∣∣∣∣ ,
O22 = log x

∑
d

e−πd
2/D2

log |d|

∣∣∣∣∣
∞∑
n=1

a
(n
x

)
Λ(n)

(
d

n

)∣∣∣∣∣ ,
O31 = xa

(
1

x

)∑
d

e−πd
2/D2

∣∣∣∣log

(
|d|
π

)∣∣∣∣ ,
O32 = a

(
1

x

)
log x

∑
d

e−πd
2/D2

log |d|
∣∣∣∣log

(
|d|
π

)∣∣∣∣ ,
O41 = x2

∑
d

e−πd
2/D2

, O42 = log2 x
∑
d

e−πd
2/D2

log2 |d|.

3.1 Evaluations of O1, O2, O3, O4

First, we evaluate the error terms Oi (i= 1, 2, 3, 4). By Lemma 2.3,∑
d

e−πd
2/D2

E(χd) =
∑
d=�

e−πd
2/D2 �D1/2.

Combining this with abelian summation, we find that∑
d

e−πd
2/D2

E(χd) log |d| �D1/2 log D.

Therefore, we have

(3.2) O1�min{x2D1/2, xD1/2 log x log D}.

By Lemmas 2.2 and 2.10, we have∑
d

e−πd
2/D2

∣∣∣∣log

(
|d|
π

)∣∣∣∣�D log D,

∑
d

e−πd
2/D2

log |d|
∣∣∣∣log

(
|d|
π

)∣∣∣∣�D log2 D.

https://doi.org/10.1017/nmj.2016.26 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.26


PAIR CORRELATION OF LOW-LYING ZEROS OF QUADRATIC L-FUNCTIONS 101

Hence, we obtain

(3.3) O3�min{xD log D, D log x log2 D}.

Next, we evaluate O2. In particular, we evaluate O22 in two ways. First,

since ∣∣∣∣∣∑
n

a
(n
x

)
Λ(n)

(
d

n

)∣∣∣∣∣6∑
n

a
(n
x

)
Λ(n)� x,

by Lemma 2.2, we have

(3.4) O22� x log x
∑
d

e−πd
2/D2

log |d| � xD log x log D.

On the other hand, we decompose

(3.5)

O22 = log x

∑
d=�

e−πd
2/D2

log |d|

∣∣∣∣∣
∞∑
n=1

a
(n
x

)
Λ(n)

(
d

n

)∣∣∣∣∣
+
∑
d 6=�

e−πd
2/D2

log |d|

∣∣∣∣∣
∞∑
n=1

a
(n
x

)
Λ(n)

(
d

n

)∣∣∣∣∣
 .

Then, the first term is evaluated by

log x
∑
d=�

e−πd
2/D2

log |d|

∣∣∣∣∣
∞∑
n=1

a
(n
x

)
Λ(n)

(
d

n

)∣∣∣∣∣
� x log x

∑
d=�

e−πd
2/D2

log |d|

� xD1/2 log x log D.(3.6)

We evaluate the second term on the right-hand side of (3.5). It is known

that, assuming the GRH, for d 6=�, the estimate∑
p6x

(
d

p

)
log p� x1/2 log2 |d|x

holds (see [13, p. 221]). We decompose

(3.7)
∞∑
n=1

a
(n
x

)
Λ(n)

(
d

n

)
=
∑
p

a
(p
x

) (d
p

)
log p+

∑
l>2

∑
p

a

(
pl

x

) (
d

pl

)
log p.
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Using the estimate above, the first term is evaluated by

∑
p

a
(p
x

) (d
p

)
log p =

∫ ∞
0

a
(u
x

)
d

∑
p6u

(
d

p

)
log p


= −x−1

∫ ∞
0

∑
p6u

(
d

p

)
log p

 a′
(u
x

)
du

� x1/2 log2 |d|x.(3.8)

Next, we evaluate the second term on the right-hand side of (3.7). Since

a(x) has a support in [A, B] for some 0<A<B <∞, we may assume that

the range of l is restricted to 26 l� log x. Therefore,∑
l>2

∑
p

a

(
pl

x

) (
d

pl

)
log p �

∑
l>2

∑
p

a

(
pl

x

)
log p

�
∑

26l�log x

x1/2 log x� x1/2 log2 x.(3.9)

Combining (3.7)–(3.9), we obtain

(3.10)
∞∑
n=1

a
(n
x

)
Λ(n)

(
d

n

)
� x1/2 log2 |d|x

for d 6=�, assuming the GRH. Therefore, the second term on the right-hand

side of (3.5) is

log x
∑
d 6=�

e−πd
2/D2

log |d|

∣∣∣∣∣
∞∑
n=1

a
(n
x

)
Λ(n)

(
d

n

)∣∣∣∣∣
� x1/2 log x

∑
d 6=0

e−πd
2/D2

log |d| log2 |d|x

� x1/2D log x log D(log2 D + log2 x).(3.11)

Combining (3.6) and (3.11), we obtain

(3.12) O22� xD1/2 log x log D + x1/2D log x log D(log2 D + log2 x).

By combining (3.4), (3.12), and the evaluation O2�O22, we obtain
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O2 � min
{
xD log x log D, xD1/2 log x log D

+ x1/2D log x log D(log2 D + log2 x)
}
.(3.13)

Finally, since

x2
∑
d

e−πd
2/D2 � x2D,

log2 x
∑
d

e−πd
2/D2

log2 |d| �D log2 x log2 D,

we have

(3.14) O4�min{x2D, D log2 x log2 D}.

3.2 The computations of M1, M3 and the evaluation of M5

Next, we compute M1, M3, M5. These terms do not involve Kronecker

symbols. First, by Lemma 2.3,

M1 = K(1)2x2
∑
d=�

e−πd
2/D2

= IK(1)2x2D1/2 − 1

2
K(1)2x2 +O(x2D−1/2).(3.15)

Next, we compute M3. The sum with respect to d is∑
d

e−πd
2/D2

log2
(
|d|
π

)
= 2

∞∑
d=1

e−πd
2/D2

log2 d− 4 log π
∞∑
d=1

e−πd
2/D2

log d

+ 2(log π)2
∞∑
d=1

e−πd
2/D2

.(3.16)

By Lemmas 2.1, 2.2, 2.10, we have

∞∑
d=1

e−πd
2/D2

log2 d=
1

2
D log2 D +O(D log D),

∞∑
d=1

e−πd
2/D2

log d=
1

2
D log D +O(D),

∞∑
d=1

e−πd
2/D2

=
1

2
D +O(1).

By inserting these into (3.16), we obtain∑
d

e−πd
2/D2

log2
(
|d|
π

)
=D log2 D +O(D log D).
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Hence,

(3.17) M3 = a

(
1

x

)2

{D log2 D +O(D log D)}.

Finally, we evaluate M5. Since

∑
d

e−πd
2/D2

E(χd) log

(
|d|
π

)
�

∞∑
d=1

e−πd
4/D2

log d

� D1/2 log D,

we obtain

(3.18) M5� xa

(
1

x

)
D1/2 log D.

3.3 The computation of M4 and the evaluation of M6

Next, we compute M4. We decompose this by

M4 = −2K(1)x

∑
n=p

+
∑
n=p2

+
∑

n=pk,k>3

 a
(n
x

)
Λ(n)

×
∑
d

e−πd
2/D2

E(χd)

(
d

n

)
=: −2K(1)x

(
M

(1)
4 +M

(2)
4 +M

(3)
4

)
,(3.19)

say. First,

M
(1)
4 =

∑
p

a
(p
x

)
log p

∞∑
d=1

e−πd
4/D2

(
d2

p

)

=
∑
p

a
(p
x

)
log p


∞∑
d=1

e−πd
4/D2 −

∞∑
d=1
p|d

e−πd
4/D2


=
∑
p

a
(p
x

)
log p

{ ∞∑
d=1

e−πd
4/D2 −

∞∑
d=1

e−πp
4d4/D2

}
.(3.20)
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By Lemmas 2.3 and 2.5,∑
p

a
(p
x

)
log p

∞∑
d=1

e−πd
4/D2

=
(
K(1)x+O(x1/2 log2 x)

) (
ID1/2 − 1

2
+O(D−1/2)

)
= IK(1)xD1/2 − 1

2
K(1)x+O((Dx)1/2 log2 x) +O(xD−1/2).(3.21)

By Lemma 2.3,

∞∑
d=1

e−πp
4d4/D2

=
ID1/2

p
− 1

2
+O(min{1, pD−1/2}).

Therefore, by Lemmas 2.5 and 2.7, we have∑
p

a
(p
x

)
log p

∞∑
d=1

e−πp
4d4/D2

=
∑
p

a
(p
x

)
log p

{
I · D

1/2

p
− 1

2
+O(min{1, pD−1/2})

}

= IK(0)D1/2 +O(D1/2x−1/2 log2 x)− 1

2
K(1)x+O(x1/2 log2 x)

+O

(∑
p

a
(p
x

)
(log p) min{1, pD−1/2}

)
.(3.22)

By Lemmas 2.5 and 2.11, we have∑
p

a
(p
x

)
log p� x, D−1/2

∑
p

a
(p
x

)
p log p� x2D−1/2.

Therefore, the last line of (3.22) is evaluated by O(min{x, x2D−1/2}). Hence,

we have∑
p

a
(p
x

)
log p

∞∑
d=1

e−πp
4d4/D2

= IK(0)D1/2 − 1

2
K(1)x

+O(D1/2x−1/2 log2 x+ x1/2 log2 x+ min{x, x2D−1/2}).(3.23)
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By inserting (3.21), (3.23) into (3.20), we obtain

(3.24) M
(1)
4 = IK(1)D1/2x+O((Dx)1/2 log2 x+ min{x, x2D−1/2}).

Next,

M
(2)
4 =

∑
p

a

(
p2

x

)
log p

∞∑
d=1

e−πd
4/D2

(
d2

p2

)

=
∑
p

a

(
p2

x

)
log p


∞∑
d=1

e−πd
4/D2 −

∞∑
d=1
p|d

e−πd
4/D2

 .(3.25)

By Lemmas 2.3 and 2.4,

∑
p

a

(
p2

x

)
log p

∞∑
d=1

e−πd
4/D2

=

{
1

2
K

(
1

2

)
x1/2 +O(x1/4 log2 x)

}{
ID1/2 − 1

2
+O(D−1/2)

}
=

1

2
IK

(
1

2

)
D1/2x1/2 − 1

4
K

(
1

2

)
x1/2

+O(D1/2x1/4 log2 x+ x1/2D−1/2).(3.26)

On the other hand, since

∞∑
d=1
p|d

e−πd
4/D2

= I · D
1/2

p
− 1

2
+O(min{1, pD−1/2}),

by Lemmas 2.4 and 2.8, we have

∑
p

a

(
p2

x

)
log p

∞∑
d=1
p|d

e−πd
4/D2

=
∑
p

a

(
p2

x

)
log p

{
I · D

1/2

p
− 1

2
+O(min{1, pD−1/2})

}

= ID1/2

{
1

2
K(0) +O(x−1/4 log2 x)

}

https://doi.org/10.1017/nmj.2016.26 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.26


PAIR CORRELATION OF LOW-LYING ZEROS OF QUADRATIC L-FUNCTIONS 107

− 1

2

{
1

2
K

(
1

2

)
x1/2 +O(x1/4 log2 x)

}
+O

(
min

{∑
p

a

(
p2

x

)
log p, D−1/2

∑
p

a

(
p2

x

)
p log p

})

=
1

2
IK(0)D1/2 − 1

4
K

(
1

2

)
x1/2

+O(x−1/4D1/2 log2 x) +O(x1/4 log2 x)

+O

(
min

{∑
p

a

(
p2

x

)
log p, D−1/2

∑
p

a

(
p2

x

)
p log p

})
.(3.27)

By Lemmas 2.4 and 2.12, we have∑
p

a

(
p2

x

)
log p� x1/2,

∑
p

a

(
p2

x

)
p log p� x.

Hence, the last line of (3.27) becomes O(min{x1/2, xD−1/2}). Therefore,

∑
p

a

(
p2

x

)
log p

∞∑
d=1
p|d

e−πd
4/D2

=
1

2
IK(0)D1/2 − 1

4
K

(
1

2

)
x1/2 +O(x−1/4D1/2 log2 x)

+O(x1/4 log2 x) +O(min{x1/2, xD−1/2}).(3.28)

By inserting (3.26), (3.28) into (3.25), we obtain

M
(2)
4 =

1

2
IK

(
1

2

)
D1/2x1/2 +O(D1/2x1/4 log2 x) +O(min{x1/2, xD−1/2}).

(3.29)

Next, we evaluate

M
(3)
4 =

∑
k>3

∑
p

a

(
pk

x

)
log p

∑
d

e−πd
2/D2

E(χd)

(
d

pk

)
.

Since a(u) = 0 for u > B, we only have to compute the part pk/x6B. The

number of such k is O(log x). Since p must satisfy p6 (Bx)1/k 6 (Bx)1/3,

https://doi.org/10.1017/nmj.2016.26 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.26


108 K. SONO

and ∣∣∣∣∣∑
d

e−πd
2/D2

E(χd)

(
d

pk

)∣∣∣∣∣6
∞∑
d=1

e−πd
4/D2 �D1/2,

using the PNT, we find that

M
(3)
4 � (log x) ·

 ∑
p6(Bx)1/3

log p

 ·D1/2

� x1/3D1/2 log x.(3.30)

By inserting (3.24), (3.29), (3.30) into (3.19), we obtain

M4 =−2IK(1)2D1/2x2 +O(D1/2x3/2 log2 x) +O(min{x2, x3D−1/2}).

(3.31)

Next, we evaluate M6. We decompose this by

M6 = −2a

(
1

x

)∑
n=p

+
∑

n=pk,k>2

 a
(n
x

)
Λ(n)

∑
d

e−πd
2/D2

(
d

n

)
log

(
|d|
π

)
=: M

(1)
6 +M

(2)
6 ,

say. By the Pólya–Vinogradov inequality, we find that∑
d

e−πd
2/D2

(
d

p

)
log

(
|d|
π

)
�√p log p log D.

Hence, by Lemma 2.9,

M
(1)
6 � a

(
1

x

)∑
p

a
(p
x

)
log p · √p log p log D

� a

(
1

x

)
· x3/2 log x log D.(3.32)

Next, we evaluate M
(2)
6 . By Lemmas 2.1, 2.2 and the conditions k� log x,

p6
√
Bx, we have

M
(2)
6 � a

(
1

x

)
log x

∑
p6
√
Bx

log p
∑
d

e−πd
2/D2

log

(
|d|
π

)

� a

(
1

x

)
Dx1/2 log x log D.(3.33)
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Combining (3.32), (3.33), we obtain

(3.34) M6� a

(
1

x

)
{x3/2 log x log D +Dx1/2 log x log D}.

3.4 The computation of M2

Finally, we compute

M2 =
∞∑

k,l=1

∑
p,q∈P

a

(
pk

x

)
a

(
ql

x

)
(log p)(log q)

∑
d

e−πd
2/D2

(
d

pk

) (
d

ql

)
,

where P denotes the set of all prime numbers. It will be convenient to keep

in mind that only k, l satisfying k, l� log x contribute to the sum above.

First, we evaluate the contribution of the part p= 2 to M2. The contribution

of the part p= q = 2 is

�
∞∑

k,l=1

a

(
2k

x

)
a

(
2l

x

)∑
d

e−πd
2/D2 �D log2 x.(3.35)

The contribution of the part p= 2, q > 3, l > 2 is

�
∑
k

∑
l>2

∑
q∈P

a

(
2k

x

)
a

(
ql

x

)
(log q)

∑
d

e−πd
2/D2

� Dx1/2 log2 x.(3.36)

Since (·/2kq) is a nonprincipal character whose conductor is at most 2q, by

the Pólya–Vinogradov inequality, we have∑
d

e−πd
2/D2

(
d

2k

) (
d

q

)
� q1/2 log q

for primes q > 3. Therefore, the contribution of the part p= 2, q > 3, l = 1

is ∑
k

∑
q∈P>3

a

(
2k

x

)
a
( q
x

)
(log 2)(log q)

∑
d

e−πd
2/D2

(
d

2k

) (
d

q

)
� (log x)

∑
q∈P

a
( q
x

)
(log q) · q1/2 log q

� x3/2 log2 x,(3.37)
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where P>3 denotes the set of all prime numbers greater than 2. By (3.35),

(3.36) and (3.37), the contribution of the part p= 2 to M2 is at most

O(Dx1/2 log2 x+ x3/2 log2 x). The contribution of the part q = 2 is the

same. Therefore, we conclude that

M2 =
∞∑

k,l=1

∑
p,q∈P>3

a

(
pk

x

)
a

(
ql

x

)
(log p)(log q)

×
∑
d

e−πd
2/D2

(
d

pk

) (
d

ql

)
+O(Dx1/2 log2 x+ x3/2 log2 x)

=:
∞∑

k,l=1

M
(k,l)
2 +O(Dx1/2 log2 x+ x3/2 log2 x),(3.38)

say. Moreover, by the PNT and Lemma 2.1, we have

M
(k,l)
2 �

∑
p,q

a

(
pk

x

)
a

(
ql

x

)
(log p)(log q)

∑
d

e−πd
2/D2

� klDx1/k+
1
l

for each k, l. Hence, the total contribution of the part k > 3, l > 2 or k >
2, l > 3 is at most O(Dx5/6 log4 x). Therefore,

M2 = M
(1,1)
2 +M

(2,2)
2 + 2

∑
l>2

M
(1,l)
2

+O(Dx5/6 log4 x+ x3/2 log2 x).(3.39)

By the computation above, M
(2,2)
2 is evaluated by

(3.40) M
(2,2)
2 �Dx.

Next, we compute M
(1,l)
2 for l > 1, 1� x�D1−δ.

(A) First, we consider the case that l is odd. In this case, we decompose

M
(1,l)
2 =

 ∑
p,q∈P>3
p=q

+
∑

p,q∈P>3

p 6=q

 a
(p
x

)
a

(
ql

x

)
(log p)(log q)
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×
∑
d

e−πd
2/D2

(
d

p

) (
d

q

)
=: M

(1,l)
2,1 +M

(1,l)
2,2 ,(3.41)

say. First, we compute M
(1,1)
2,1 . This term is given by

M
(1,1)
2,1 =

∑
p

a
(p
x

)2
(log p)2

∑
d

e−πd
2/D2

−
∑
p

a
(p
x

)2
(log p)2

∑
d
p|d

e−πd
2/D2

.(3.42)

By Lemmas 2.1, 2.13, the first term on the right-hand side of (3.42) is∑
p

a
(p
x

)2
(log p)2

∑
d

e−πd
2/D2

= {D +O(1)}{L(1)x log x+ L′(1)x+O(x1/2 log3 x)}

= L(1)Dx log x+O(Dx+ x log x).(3.43)

By Lemmas 2.1, 2.13, 2.14, the second term on the right-hand side of (3.42)

is ∑
p

a
(p
x

)2
(log p)2

∑
d
p|d

e−πd
2/D2

=
∑
p

a
(p
x

)2
(log p)2

{
D

p
+O(1)

}

�D
∑
p

a
(p
x

)2 (log p)2

p
+
∑
p

a
(p
x

)2
(log p)2

�D log x+ x log x.(3.44)

By inserting (3.43), (3.44) into (3.42), we obtain

(3.45) M
(1,1)
2,1 = L(1)Dx log x+O(Dx+ x log x).

If l > 2 (including the case that l is even), by the PNT and Lemma 2.1,

M
(1,l)
2,1 �

∑
p

a
(p
x

)
a

(
pl

x

)
log2 p

∑
d

e−πd
2/D2
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� D · lx
1
l

log x
· log2 x

� lDx
1
l log x.(3.46)

Next, we compute M
(1,l)
2,2 .

(a) Let x= o(D1/2). By the Pólya–Vinogradov inequality, we obtain∑
d

e−πd
2/D2

(
d

p

) (
d

q

)
� (pq)1/2 log(pq).

Hence, by the PNT, we have

M
(1,l)
2,2 �

∑
p,q

a
(p
x

)
a

(
ql

x

)
(log p)(log q)(pq)1/2 log(pq)

�
∑
p

a
(p
x

)
p1/2 log2 p

∑
q

a

(
ql

x

)
q1/2 log2 q

� x

log x
x1/2 log2 x · lx

1
l

log x
x

1
2l log2 x

� lx3/2(1+
1
l
) log2 x.(3.47)

(b) If D1/2−δ� x�D1−δ, by the translation formula of the theta

function (Lemma 2.17), we have

M
(1,l)
2,2 =D

∑
p>3

∑
q>3
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

1
√
pq

∑
m

(
m

pq

)
e−πm

2D2/p2q2 .

We decompose this by

(3.48) M
(1,l)
2,2 =M (1,l)

s −M (1,l)
p −M (1,l)

q +M (1,l)
pq + E,

where

M (1,l)
s = D

∑
p>3

∑
q>3
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

1
√
pq

∑
m=�

e−πm
2D2/p2q2 ,

M (1,l)
p = D

∑
p>3

∑
q>3
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

1
√
pq

∑
m=�
p|m

e−πm
2D2/p2q2 ,
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M (1,l)
q = D

∑
p>3

∑
q>3
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

1
√
pq

∑
m=�
q|m

e−πm
2D2/p2q2 ,

M (1,l)
pq = D

∑
p>3

∑
q 6=p
q>3

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

1
√
pq

∑
m=�
pq|m

e−πm
2D2/p2q2 ,

and

E =D
∑
p>3

∑
q>3
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

1
√
pq

∑
m 6=�

e−πm
2D2/p2q2 .

First, by Lemma 2.3,

M (1,l)
s = D

∑
p>3

∑
q>3
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

1
√
pq

(
I

√
pq

D
+O(1)

)

= ID1/2
∑
p>3

∑
q>3
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

+O

D∑
p>3

∑
q>3
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)
√
pq

 .(3.49)

By applying Lemmas 2.15, 2.16 to (3.49), we obtain

(3.50)

M (1,l)
s = ID1/2l−1K(1)K

(
1

l

)
x1+

1
l +O(l−1D1/2x1+

1
2l log2x) +O(Dx1/2+

1
2l ).

In the computation above, we used |K (1/2l)| �
∫ B
A t1/2l dt/t� l. Next, by

Lemma 2.3,

M (1,l)
p = D

∑
p>3

∑
q>3
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

1
√
pq

∞∑
m=1

e−πp
2D2m4/q2

� D
∑
p

∑
q

a
(p
x

)
a

(
ql

x

)
(log p)(log q)
√
pq

(√
q

pD
+O(1)

)
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� D1/2
∑
p

a
(p
x

) log p

p

∑
q

a

(
ql

x

)
(log q)

+D
∑
p

a
(p
x

) log p
√
p

∑
q

a

(
ql

x

)
log q
√
q
.

By Lemma 2.7, ∑
p

a
(p
x

) log p

p
� 1.

By the PNT, ∑
q

a

(
ql

x

)
log q� lx

1
l

log x
· log x� lx

1
l .

By Lemma 2.6, ∑
p

a
(p
x

) log p
√
p
� x1/2.

By the PNT and the Stieltjes integral,

∑
q

a

(
ql

x

)
log q
√
q
�
∫ ∞
1

a

(
ul

x

)
du√
u
�
∫ (Bx)

1
l

1

du√
u
� x

1
2l .

Combining these, we obtain

(3.51) M (1,l)
p � lD1/2x

1
l +Dx1/2+

1
2l .

Next, by Lemma 2.3,

M (1,l)
q = D

∑
p>3

∑
q>3
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

1
√
pq

∞∑
m=1

e−πq
2D2m4/p2

� D
∑
p

∑
q

a
(p
x

)
a

(
ql

x

)
(log p)(log q)
√
pq

(√
p

qD
+O(1)

)

� D1/2
∑
p

a
(p
x

)
log p

∑
q

a

(
ql

x

)
log q

q

+D
∑
p

a
(p
x

) log p
√
p

∑
q

a

(
ql

x

)
log q
√
q
.(3.52)
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By the PNT and the Stieltjes integral,∑
p

a
(p
x

)
log p� x,

∑
q

a

(
ql

x

)
log q

q
�
∫ ∞
1

a

(
ul

x

)
du

u
�
∫ (Bx)

1
l

1

du

u
� l−1 log x.

The last line of (3.52) is O(Dx1/2+1/2l), as we computed in the evaluation

of M
(1,l)
p . Combining these, we obtain

(3.53) M (1,l)
q � l−1D1/2x log x+Dx1/2+

1
2l .

The term M
(1,l)
pq is evaluated by

M (1,l)
pq = D

∑
p>3

∑
q>3
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

1
√
pq

∞∑
m=1

e−πp
2q2D2m4

� D
∑
p

a
(p
x

) log p
√
p

∑
q

a

(
ql

x

)
log q
√
q

� Dx1/2+
1
2l .(3.54)

Finally, we evaluate E. First,

E = D
∑
p>3

∑
q>3
q 6=p

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

1
√
pq

∑
m 6=�

(
m

pq

)
e−πD

2m2/p2q2

� D

∣∣∣∣∣∣
∑
p>3

∑
q>3

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

1
√
pq

∑
m6=�

(
m

p

)(
m

q

)
e−πD

2m2/p2q2

∣∣∣∣∣∣
+D

∑
p>3

a
(p
x

)
a

(
pl

x

)
log2 p · 1

p

∞∑
m=1

e−πm
2D2/p4 .(3.55)

By the PNT and Lemma 2.1, the second term on the right-hand side of

(3.55) is
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D
∑
p>3

a
(p
x

)
a

(
pl

x

)
log2 p · 1

p

∞∑
m=1

e−πm
2D2/p4

�D
∑
p

a
(p
x

)
a

(
pl

x

)
log2 p

p

(
p2

D
+O(1)

)
� l−1x

2
l log x+Dx

1
l .(3.56)

Next, since

e−πm
2D2/p2q2 6 exp(−πm2D2(Bx)−2−

2
l )

holds for p6Bx, q 6 (Bx)1/l, the first term on the right-hand side of (3.55)

is evaluated by

D

∣∣∣∣∣∣
∑
p>3

∑
q>3

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

1
√
pq

∑
m6=�

(
m

p

) (
m

q

)
e−πD

2m4/p2q2

∣∣∣∣∣∣
�D

∑
m6=�

e−πm
2D2/(Bx)2+

2
l

∣∣∣∣∣∑
p

a
(p
x

) log p
√
p

(
m

p

)∣∣∣∣∣
×

∣∣∣∣∣∑
q

a

(
ql

x

)
log q
√
q

(
m

q

)∣∣∣∣∣ .(3.57)

According to [13, p. 221], under the assumption of the GRH,∑
p

a
(p
x

) log p
√
p

(
m

p

)
� log2 mx

holds uniformly for m� x m 6=�. Moreover, since the GRH implies∑
q6x

1
l

(
m

q

)
log q� x

1
2l log2(mx

1
l )

uniformly for m� x1/l m 6=�, we have∑
q

a

(
ql

x

)
log q
√
q

(
m

q

)

=

∫ ∞
0

a

(
ul

x

)
1√
u
d

∑
q6u

(
m

q

)
log q


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=
1

2

∫ ∞
0

∑
q6u

(
m

q

)
log q

 a

(
ul

x

)
u−3/2 du

− l

x

∫ ∞
0

∑
q6u

(
m

q

)
log q

 a′
(
ul

x

)
ul−

3
2 du

=
1

2

∫ ∞
0


∑

q6(xv)
1
l

(
m

q

)
log q

 a(v)(xv)−
3
2l · x

1
l l−1v

1
l
−1 dv

− l

x

∫ ∞
0


∑

q6(xv)
1
l

(
m

q

)
log q

 a′(v)(xv)
1
l
(l− 3

2
) · x

1
l l−1v

1
l
−1 dv

� 1

2

∫ B

A
(xv)

1
2l log2(m(xv)

1
l )a(v)(xv)−

3
2lx

1
l l−1v

1
l
−1 dv

+ lx−1
∫ B

A
(xv)

1
2l log2(m(xv)

1
l )a′(v)(xv)

1
l
(l− 3

2
)x

1
l l−1v

1
l
−1 dv

� log2 mx

uniformly for m� x1/l. On the other hand, by forgetting the Kronecker

symbols, we have∑
p

a
(p
x

) log p
√
p

(
m

p

)
� x1/2,

∑
q

a

(
ql

x

)
log q
√
q

(
m

q

)
� x

1
2l .

Hence, the first term on the right-hand side of (3.55) is

� D
∑
m6x

1
l

e−πm
2D2/(Bx)2+

2
l log4 mx

+D
∑
m>x

1
l

e−πm
2D2/(Bx)2+

2
l x1/2+

1
2l

� x1+
1
l log4 x+D log4 x(3.58)

for D1/2−δ� x�D1−δ. By inserting (3.56), (3.58) into (3.55), we obtain

(3.59) E�Dx
1
l + x1+

1
l log4 x.
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By combining (3.50), (3.51), (3.53), (3.54) and (3.59), for odd l and

D1/2−δ� x�D1−δ, we have

M
(1,l)
2,2 = ID1/2l−1K(1)K

(
1

l

)
x1+

1
l

+O(l−1D1/2x1+
1
2l log2 x) +O(Dx1/2+

1
2l )

+O(x1+
1
l log4 x).(3.60)

By combining this and (3.46), for odd l > 3 and D1/2−δ� x�D1−δ, we

have

M
(1,l)
2 = ID1/2l−1K(1)K

(
1

l

)
x1+

1
l

+O(l−1D1/2x1+
1
2l log2 x) +O(lDx

1
l log x)

+O(Dx1/2+
1
2l ) +O(x1+

1
l log4 x).(3.61)

If l = 1, D1/2−δ� x�D1−δ, by (3.45) and (3.60), we have

M
(1,1)
2 = L(1)Dx log x+ IK(1)2D1/2x2

+O(Dx+D1/2x3/2 log2 x+ x2 log4 x).(3.62)

On the other hand, for odd l > 3 and x= o(D1/2), by (3.46) and (3.47), we

have

(3.63) M
(1,l)
2 � lDx

1
l log x+ lx3/2(1+

1
l
) log2 x,

and for l = 1, x= o(D1/2), by (3.45) and (3.47), we have

(3.64) M
(1,1)
2 = L(1)Dx log x+O(Dx+ x3 log2 x).

(B) Next, we consider the case that l is even. In this case, we have

M
(1,l)
2 =

∑
p,q

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

∑
d

(
d

p

)
e−πd

2/D2

−
∑
p,q

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

∑
q|d

(
d

p

)
e−πd

2/D2
.(3.65)

Since ∑
d

(
d

p

)
e−πd

2/D2 �√p log p,
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the first term on the right-hand side of (3.65) is∑
p,q

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

∑
d

(
d

p

)
e−πd

2/D2

�
∑
p

a
(p
x

)√
p log2 p

∑
q

a

(
ql

x

)
log q

� x3/2 log x · lx
1
l

� lx3/2+
1
l log x.(3.66)

The second term on the right-hand side of (3.65) is∑
p,q

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

∑
q|d

(
d

p

)
e−πd

2/D2

=
∑
p

a
(p
x

)
(log p)

∑
q

(
q

p

)
a

(
ql

x

)
(log q)

∑
d

(
d

p

)
e−πq

2d2/D2

�
∑
p

a
(p
x

)
(log p)

∑
q

a

(
ql

x

)
(log q)

∣∣∣∣∣∑
d

(
d

p

)
e−πq

2d2/D2

∣∣∣∣∣ .(3.67)

Now, since q satisfies q 6 (Bx)1/l�D1−δ�D, D/q� 1 holds. Therefore,

by the Pólya–Vinogradov inequality, we have

(3.68)
∑
d

(
d

p

)
e−πq

2d2/D2 �√p log p.

Therefore, ∑
p,q

a
(p
x

)
a

(
ql

x

)
(log p)(log q)

∑
q|d

(
d

p

)
e−πd

2/D2

�
∑
p

a
(p
x

)√
p log2 p

∑
q

a

(
ql

x

)
log q

� lx3/2+
1
l log x.(3.69)

By combining (3.66) and (3.69), we obtain

(3.70) M
(1,l)
2 � lx3/2+

1
l log x

for even l.
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Now, we have computed or evaluated M
(1,l)
2 for all l. If x= o(D1/2), by

(3.63) and (3.70), we have

(3.71)
∑
l>2

M
(1,l)
2 �Dx1/3 log x+ x2 log2 x.

By inserting (3.40), (3.64), (3.71) into (3.39), we obtain

(3.72) M2 = L(1)Dx log x+O(Dx+ x3 log2 x).

If D1/2−δ� x�D1−δ, by (3.61),

(3.73)
∑

l>3,odd

M
(1,l)
2 �D1/2x4/3 +Dx2/3 + x4/3 log4 x.

(It should be noticed that K(1/l)� l.) On the other hand, by (3.70),

(3.74)
∑

l>2,even

M
(1,l)
2 � x2 log x.

By inserting (3.40), (3.62), (3.73), (3.74) into (3.39), we obtain

M2 = L(1)Dx log x+ IK(1)2D1/2x2

+O(Dx+D1/2x3/2 log2 x+ x2 log4 x)(3.75)

for D1/2−δ� x�D1−δ.

3.5 Conclusion

Now, we have computed or evaluated all terms appearing on the right-

hand side of (3.1). We fix δ > 0 sufficiently small. Then, we have the

following.

(1) If 1< x�D1/2−δ, by inserting (3.2), (3.3), (3.13), (3.14), (3.15),

(3.17), (3.18), (3.31), (3.34) and (3.72) into (3.1), we obtain

fK(x, D)

= L(1)Dx log x− IK(1)2D1/2x2 − 1

2
K(1)2x2 + a

(
1

x

)2

D log2 D

+ a

(
1

x

)
O(xD1/2 log D + x3/2 log x log D +Dx1/2 log x log D)

+ a

(
1

x

)2

O(D log D) +O(x2D−1/2) +O(Dx+ x3 log2 x)
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+O(D1/2x3/2 log2 x) +O(min{x2, x3D−1/2})

+O(min{x2D1/2, xD1/2 log x log D})

+O
(
min

{
xD log x log D, xD1/2 log x log D

+ x1/2D log x log D(log2 D + log2 x)
})

+O(min{xD log D, D log x log2 D})

+O(min{x2D, D log2 x log2 D}).

(2) If D1/2−δ� x�D1−δ, since a(1/x) = 0, by inserting (3.2), (3.3),

(3.13), (3.14), (3.15), (3.17), (3.18), (3.31), (3.34) and (3.75) into (3.1), we

obtain

fK(x, D)

= L(1)Dx log x− 1

2
K(1)2x2

+O(x2D−1/2) +O(Dx+D1/2x3/2 log2 x+ x2 log4 x)

+O(D1/2x3/2 log2 x) +O(min{x2, x3D−1/2})

+O(min{x2D1/2, xD1/2 log x log D})

+O
(
min

{
xD log x log D, xD1/2 log x log D

+ x1/2D log x log D(log2 D + log2 x)})

+O(min{xD log D, D log x log2 D})

+O(min{x2D, D log2 x log2 D}).

By dividing both sides by xD log D and putting x=Dα (α > 0), we obtain

the following formulas.

(1) If 0< α6 1/2− δ, we have

FK(α, D)

= L(1)α+ a(D−α)2D−α log D + a(D−α) ·O(αD−α/2 log D)

+ a(D−α)2 ·O(D−α) +O(min{1, αD−α log2 D})

+O(min{α log D, αD−1/2 log D + α(1 + α2)D−α/2 log3 D})

+O(min{Dα(log D)−1, α2D−α log3 D}) + o(1).(3.76)

(2) If 1/2− δ < α6 1− δ, we have

(3.77) FK(α, D) = L(1)α+ o(1).
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Here, the implied constants depend only on K(s) and δ > 0. However, the

identity (3.76) is still valid for 1/2− δ < α6 1− δ, since the terms except

for the first term on the right-hand side of (3.76) are all o(1) if α is large.

Hence, we obtain (1.5).

§4. Applications of Theorem 1.1

We extend FK(α, D) to the whole of α ∈R by FK(α, D) := FK(−α, D)

for α < 0. Then, the identity (1.5) holds for 0< |α|6 1− δ, by replacing

α on the right-hand side with |α|. To investigate the low-lying zeros of

quadratic L-functions, we consider the integral of FK(α, D) multiplied by

some bounded function. First, we prove that in this integral, the contribution

of the error terms in (1.5) is small.

Lemma 4.1. We have∫ 1

−1
|α|D−|α|/2 log D dα� 1

log D
,(4.1) ∫ 1

−1
D−|α| dα� 1

log D
,(4.2) ∫ 1

−1
min{1, |α|D−|α| log2 D} dα� 1√

log D
,(4.3) ∫ 1

−1
min{D|α|(log D)−1, α2D−|α| log3 D} dα� (log log D)2

log D
,(4.4)∫ 1

−1
min{|α| log D, |α|D−1/2 log D + |α|(1 + α2)D−|α|/2 log3 D} dα

� (log D)−1/3.(4.5)

Proof. The estimates (4.1), (4.2) follow from direct computations of

integrals. The estimate (4.3) follows from∫ 1

−1
min{1, |α|D−|α| log2 D} dα

�
∫ 1/

√
logD

0
1 dα+

∫ 1

1√
log D

αD−α log2 D dα

and
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√
logD

0
1 dα� 1√

log D
,∫ 1

1√
log D

αD−α log2 D dα�D−1/
√
logD log1/2 D.

The estimate (4.4) follows from∫ 1

−1
min{D|α|(log D)−1, α2D−|α| log3 D} dα

�
∫ log logD/ logD

0
Dα(log D)−1 dα+ (log3 D)

∫ 1

log log D
log D

α2D−α dα

and ∫ log logD/ logD

0
Dα(log D)−1 dα � log log D

log D
,

(log3 D)

∫ 1

log log D
log D

α2D−α dα � (log log D)2

log D
.

Finally, the left-hand side of (4.5) is at most

2

∫ (logD)−2/3

0
α log D dα

+ 2

∫ 1

(logD)−2/3

{αD−1/2 log D + α(1 + α2)D−α/2 log3 D} dα,

and by direct computations, we easily find that these integrals are at most

O((log D)−1/3).

Next, we mention the L-functions associated to Kronecker symbols. If

d 6≡ 3 (mod 4), χd = (d/·) becomes a Dirichlet character modulo 4|d| or |d|.
In this case, we denote the conductor of χd by d∗. If d≡ 3 (mod 4), by the

reciprocity law of Kronecker symbols, we find that

χd(p
k) =


(p
d

)k
(p≡ 1 (mod 4) or p= 2)

(−1)k
(p
d

)k
(p≡ 3 (mod 4))
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for primes p. Hence, the L-function associated to χd is expressed by

L(s, χd) =
1

1−
(
2
d

)
2−s

∏
p>3

1

1− η4(p)
(p
d

)
p−s

,

where η4 is the nonprincipal character of modulo 4. In this case, we denote

the conductor of η4(·)(·/d) by d∗. Let N(χd, T ) denote the number of zeros

of L(s, χd) in the rectangle 0< σ < 1, −T 6 t6 T . Then, it is well known

that

N(χd, T ) =
T

π
log

d∗T

2πe
+O

(
log(d∗T )

log log(d∗T + 3)

)
holds uniformly for d∗T > 1 (for example, see [17]). Then, by partial

integration, we have∑
ρ∈Zd

|K(ρ)|2 =

∫ ∞
0

∣∣∣∣K (1

2
+ it

)∣∣∣∣2 dN(χd, t)

=
log d∗

π

∫ ∞
0

∣∣∣∣K (1

2
+ it

)∣∣∣∣2 dt+OK

(
log d∗

log log d∗

)
.(4.6)

We define the constants A∗+, A∗− by

(4.7)

A∗− = lim inf
D→∞

1

D log D

∑
d

e−πd
2/D2

log d∗,

A∗+ = lim sup
D→∞

1

D log D

∑
d

e−πd
2/D2

log d∗.

It should be noticed that since log d∗ 6 log d+O(1), we have A∗+ 6 1.

Corollary 4.2. Assuming the GRH, for any C > 0, 06 µ < 2π, ε > 0,

we have

1

D log D

∑
d

e−πd
2/D2

#

{
ρ1, ρ2 ∈ Zd |Im(ρi)|6 C (i= 1, 2),

0< |γ1 − γ2|6
µ

log D

}
6

1

sin4 1

{(
4

9
C + ε

)
g(µ)−B∗−C + ε

}
.(4.8)

Here,

g(µ) =

( µ
2

sin µ
2

)2

, B∗− =
1

3
A∗−,

and A∗− is the constant given by (4.7).
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Proof. We fix λ such that 1/2< λ6 1− δ, and put

r(u) =

(
sin πλu

πλu

)2

.

Then, its Fourier transform is given by

r̂(α) = λ−2max{λ− |α|, 0}.

In particular, r̂(α) is bounded and has a support in [−1 + δ, 1− δ]. There-

fore, by (1.5) and Lemma 4.1, we have∫ ∞
−∞

FK(α, D)r̂(α) dα

= L(1)

∫ ∞
−∞
|α|r̂(α) dα+ (log D)

∫ ∞
−∞

a(D−|α|)2D−|α|r̂(α) dα+ o(1).(4.9)

The implied constant is dependent only on K(s) and λ. By a direct

computation, the first integral on the right-hand side of (4.9) is∫ ∞
−∞
|α|r̂(α) dα=

λ

3
.(4.10)

On the other hand, the second integral of the right hand side of (4.9) is∫ ∞
−∞

a(D−|α|)2D−|α|r̂(α) dα

= 2

∫ ∞
0

a(D−α)2D−αr̂(α) dα

= 2λ−2
∫ λ

0
(λ− α)a(D−α)2D−α dα

= 2λ−1
∫ λ

0
a(D−α)2D−α dα− 2λ−2

∫ λ

0
a(D−α)2αD−α dα.(4.11)

By the change of parameters t=D−α, the first integral on the right-hand

side of (4.11) is∫ λ

0
a(D−α)2D−α dα =

∫ ∞
0

a(D−α)2D−α dα

=
1

log D

∫ 1

0
a(t)2 dt

=
M

log D
,(4.12)

where
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(4.13) M =MK :=

∫ 1

0
a(t)2 dt.

On the other hand, since a(D−α)2 is bounded, we have∫ λ

0
a(D−α)2αD−αdα�

∫ ∞
0

αD−α dα� 1

log2 D
.(4.14)

By inserting (4.12), (4.14) into (4.11), we have∫ ∞
−∞

a(D−|α|)2D−|α|r̂(α) dα=
2M

λ log D
+O

(
1

log2 D

)
.(4.15)

By inserting (4.10), (4.15) into (4.9), we obtain

(4.16)

∫ ∞
−∞

FK(α, D)r̂(α) dα=
λ

3
L(1) +

2

λ
M + o(1).

For C > 0, we take

K(s) =KC(s) = C2

(
e(s−(1/2))/C − e−(s−(1/2))/C

2s− 1

)2

.

Then, since K(1/2 + it) = C2(t−1 sin(t/C))2, K(s) is real on the line

Re(s) = 1/2 and satisfies K(1/2 + it1)K(1/2 + it2)> 0 for all t1, t2 ∈R.

Moreover, by an easy computation, its Mellin inverse transform a(x) =

aC(x), defined in (1.2), is given by

a(x) =



0 (x < e−2/C or x> e2/C)

C2

2
x−1/2

(
1

C
+

1

2
log x

)
(e−2/C 6 x < 1)

C2

2
x−1/2

(
1

C
− 1

2
log x

)
(16 x < e2/C).

This function surely satisfies the conditions given in Section 1. By the

definition of FK(α, D), we have∫ ∞
−∞

FK(α, D)r̂(α) dα

=
1

D log D

∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

K(ρ1)K(ρ2)

∫ ∞
−∞

Diα(γ1−γ2)r̂(α) dα
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=
1

D log D

∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

K(ρ1)K(ρ2)r

(
(γ1 − γ2) log D

2π

)

=
1

D log D

∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

K(ρ1)K(ρ2)

sin
(
(γ1−γ2)λ logD

2

)
(γ1−γ2)λ logD

2

2

.

(4.17)

We fix a real number µ satisfying 06 µ < 2π. Since the function f(x) :=

((sin x)/x)2 is even and decreasing in [0, π], the inequality

f

(
(γ1 − γ2)λ log D

2

)
> f

(µ
2

)
holds if γ1, γ2 satisfy |γ1 − γ2|6 µ/(λ log D). Therefore, by (4.17), we have∫ ∞
−∞

FK(α, D)r̂(α) dα

>
1

D log D

∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

|γ1−γ2|6 µ
λ log D

K(ρ1)K(ρ2)f

(
(γ1 − γ2)λ log D

2

)

>
f
(µ
2

)
D log D

∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

|γ1−γ2|6 µ
λ log D

K(ρ1)K(ρ2).

(4.18)

Now, we have ∑
ρ1,ρ2∈Zd

|γ1−γ2|6 µ
λ log D

K(ρ1)K(ρ2)

>
∑

ρ1,ρ2∈Zd
0<|γ1−γ2|6 µ

λ log D

|Im(ρ1)|,|Im(ρ2)|6C

K(ρ1)K(ρ2) +
∑
ρ∈Zd

|K(ρ)|2.(4.19)

By (4.6), the second term on the right-hand side of (4.19) is given by

∑
ρ∈Zd

|K(ρ)|2 =
log d∗

π
C4

∫ ∞
0

(
sin t

C

t

)4

dt+OC

(
log d∗

log log d∗

)
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=
C log d∗

π

∫ ∞
0

(
sin t

t

)4

dt+OC

(
log d∗

log log d∗

)
=
C

3
log d∗ +OC

(
log d∗

log log d∗

)
.(4.20)

On the other hand, since

min
|y|6C

∣∣∣∣K (1

2
+ iy

)∣∣∣∣2 = sin4 1,

the first term on the right-hand side of (4.19) is∑
ρ1,ρ2∈Zd

0<|γ1−γ2|6 µ
λ log D

|Im(ρ1)|,|Im(ρ2)|6C

K(ρ1)K(ρ2)

> (sin4 1)#

{
ρ1, ρ2 ∈ Zd |Im(ρi)|6 C (i= 1, 2), 0< |γ1 − γ2|6

µ

λ log D

}
> (sin4 1)#

{
ρ1, ρ2 ∈ Zd |Im(ρi)|6 C (i= 1, 2), 0< |γ1 − γ2|6

µ

log D

}
.

Hence, by (4.18), we obtain∫ ∞
−∞

FK(α, D)r̂(α) dα

>
f
(µ
2

)
D log D

∑
d

e−πd
2/D2

×
{

(sin4 1)#

{
ρ1, ρ2 ∈ Zd |Im(ρi)|6 C (i= 1, 2),

0< |γ1 − γ2|6
µ

log D

}
+
C

3
log d∗ +OC

(
log d∗

log log d∗

)}
.(4.21)

Combining (4.16) and (4.21), we obtain

1

D log D

∑
d

e−πd
2/D2

#

{
ρ1, ρ2 ∈ Zd |Im(ρi)|6 C (i= 1, 2),

0< |γ1 − γ2|6
µ

log D

}

https://doi.org/10.1017/nmj.2016.26 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.26


PAIR CORRELATION OF LOW-LYING ZEROS OF QUADRATIC L-FUNCTIONS 129

6
1

f
(µ
2

)
sin4 1

{
λ

3
L(1) +

2

λ
M

−
f
(µ
2

)
D log D

· C
3

∑
d

e−πd
2/D2

log d∗ + o(1)

}
.(4.22)

By direct computation, we find that

L(1) =

∫ ∞
0

a(x)2 dx=
C

3
, M =

∫ 1

0
a(x)2 dx=

C

6
.

Moreover, by our assumption,

1

D log D

∑
d

e−πd
2/D2

log d∗ >A∗−.

By inserting these results into (4.22) and putting λ= 1− δ with sufficiently

small δ > 0, we obtain (4.8).

Next, we give a certain lower bound for the rate of simple zeros of

quadratic L-functions.

Corollary 4.3. We assume the GRH. For any ε > 0, we have∑
d

e−πd
2/D2

∑
ρ∈Zd
simple

K(ρ)2

>

(
2B∗− −

4

9
− ε
)

(B∗+)−1
∑
d

e−πd
2/D2

∑
ρ∈Zd

K(ρ)2(4.23)

when D > 1 is sufficiently large. Here,

K(s) =K1(s) =

(
es−

1
2 − e−s+

1
2

2s− 1

)2

, B∗± =
1

3
A∗±,

and A∗± are the constants defined by (4.7).

Proof. In the proof of Corollary 4.2, we showed that

1

D log D

∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

K(ρ1)K(ρ2)

sin
(
(γ1−γ2)λ logD

2

)
(γ1−γ2)λ logD

2

2
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=

∫ ∞
−∞

FK(α, D)r̂(α) dα

=
λ

3
L(1) +

2

λ
M + o(1)(4.24)

holds for λ= 1− δ. Moreover, in this case, we have

L(1) =

∫ ∞
0

a(x)2 dx=
1

3
, M =

∫ 1

0
a(x)2 dx=

1

6
,

since C = 1. Therefore,

1

D log D

∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

K(ρ1)K(ρ2)

sin
(
(γ1−γ2)λ logD

2

)
(γ1−γ2)λ logD

2

2

=
λ

9
+

1

3λ
+ o(1).(4.25)

Let mρ,d be the multiplicity of the zero of L(s, χd) at ρ= 1/2 + iγ. Then,∑
ρ∈Zd
simple

K(ρ)2 >
∑
ρ∈Zd

(2−mρ,d)K(ρ)2

> 2
∑
ρ∈Zd

K(ρ)2 −
∑

ρ1,ρ2∈Zd

K(ρ1)K(ρ2)

sin
(
(γ1−γ2)λ logD

2

)
(γ1−γ2)λ logD

2

2

.

Hence, we obtain

1

D log D

∑
d

e−πd
2/D2

∑
ρ∈Zd
simple

K(ρ)2

>
2

D log D

∑
d

e−πd
2/D2

∑
ρ∈Zd

K(ρ)2

− 1

D log D

∑
d

e−πd
2/D2

×
∑

ρ1,ρ2∈Zd

K(ρ1)K(ρ2)

sin
(
(γ1−γ2)λ logD

2

)
(γ1−γ2)λ logD

2

2

.(4.26)
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The second term on the right-hand side is given by (4.25), since K(ρ2) is

real. On the other hand, the first term is

1

D log D

∑
d

e−πd
2/D2

∑
ρ∈Zd

K(ρ)2

=
1

π

∫ ∞
0

(
sin t

t

)4

dt · 1

D log D

∑
d

e−πd
2/D2

log d∗ + o(1)

>
1

3
A∗− + o(1)

=B∗− + o(1).(4.27)

Therefore, by inserting (4.25), (4.27) into (4.26) and taking δ > 0 sufficiently

small, we obtain

1

D log D

∑
d

e−πd
2/D2

∑
ρ∈Zd
simple

K(ρ)2 > 2B∗− −
4

9
− ε.

By combining this and

1

D log D

∑
d

e−πd
2/D2

∑
ρ∈Zd

K(ρ)2 6B∗+ + o(1),

we obtain (4.23).

Corollary 4.4. We assume the GRH, and that all zeros of L(s, χd)

are simple. For 0< λ < 1, we have

1

D log D

∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

0<|γ1−γ2|6 2πλ
log D

K(ρ1)K(ρ2)

>
2

3
λ− 2

9
λ2 − cos 2πλ

6π2
+

sin 2πλ

12π3λ
−B∗+ + o(1)(4.28)

as D→∞, where B∗+ =A∗+/3 and

K(s) =K1(s) =

(
es−(1/2) − e−s+(1/2)

2s− 1

)2

.
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In particular, if λ > λ0 = 0.6073, we have

(4.29)
∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

0<|γ1−γ2|6 2πλ
log D

K(ρ1)K(ρ2)�D log D

as D→∞.

Proof. Instead of the function r(u) used in the proof of Corollary 4.2,

we use the Selberg minorant

h(u) =

(
sin πu

πu

)2 1

1− u2
.

This function is bounded and satisfies h(u)6 1, h(u)< 0 if |u|> 1. The

Fourier transform of h(u) is given by

ĥ(α) =

1− |α|+ sin 2π|α|
2π

(|α|6 1)

0 (|α|> 1)

(for example, see [5]). For 0< λ < 1, we give lower and upper bounds for

the integral ∫ ∞
−∞

FK(α, D) · λĥ(λα) dα.

First, since the integrant is nonnegative and 1/λ > 1, by (1.5), we have∫ ∞
−∞

FK(α, D) · λĥ(λα) dα

=

∫ 1
λ

− 1
λ

FK(α, D) · λĥ(λα) dα

>
∫ 1

−1
FK(α, D) · λĥ(λα) dα

= λL(1)

∫ 1

−1
|α|
{

1− |λα|+ sin 2πλ|α|
2π

}
dα

+ λ log D

∫ 1

−1
a(D−|α|)2D−|α|

{
1− |λα|+ sin 2πλ|α|

2π

}
dα+ o(1).(4.30)

The first term on the right-hand side of (4.30) is
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λL(1)

∫ 1

−1
|α|
{

1− |λα|+ sin 2πλ|α|
2π

}
dα

= 2λL(1)

∫ 1

0

(
α− λα2 +

α sin 2πλα

2π

)
dα

= 2λL(1)

{
1

2
− λ

3
− cos 2πλ

4π2λ
+

sin 2πλ

8π3λ2

}
.(4.31)

Next, we compute the second term on the right-hand side of (4.30). Since

1− |λα|+ sin 2πλ|α|
2π

= 1 +O

(
1

log3 D

)
for |α| � 1/(log D), we have

λ log D

∫ 1

−1
a(D−|α|)2D−|α|

{
1− |λα|+ sin 2πλ|α|

2π

}
dα

= 2λ log D

∫ ∞
0

a(D−α)2D−α
{

1 +O

(
1

log3 D

)}
dα.

By the change of parameters D−α = v, we have∫ ∞
0

a(D−α)2D−α dα=
1

log D

∫ 1

0
a(v)2 dv =

M

log D
,

where M =
∫ 1
0 a(v)2 dv. Therefore,

λ log D

∫ 1

−1
a(D−|α|)2D−|α|

{
1− |λα|+ sin 2πλ|α|

2π

}
dα= 2Mλ+ o(1).

(4.32)

By inserting (4.31), (4.32) into (4.30), we obtain∫ ∞
−∞

FK(α, D) · λĥ(λα) dα

> 2λL(1)

{
1

2
− λ

3
− cos 2πλ

4π2λ
+

sin 2πλ

8π3λ2

}
+ 2Mλ+ o(1)

=
2

3
λ− 2

9
λ2 − cos 2πλ

6π2
+

sin 2πλ

12π3λ
+ o(1),(4.33)
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since L(1) = 1/3, M = 1/6. On the other hand, we have∫ ∞
−∞

FK(α, D) · λĥ(λα) dα

=
1

D log D

∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

K(ρ1)K(ρ2)h

(
(γ1 − γ2) log D

2πλ

)
.(4.34)

Now, since h((γ1 − γ2) log D/(2πλ)) is negative if |γ1 − γ2|> (2πλ)/ log D,

by (4.34), we have∫ ∞
−∞

FK(α, D) · λĥ(λα) dα

6
1

D log D

∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

|γ1−γ2|6 2πλ
log D

K(ρ1)K(ρ2)h

(
(γ1 − γ2) log D

2πλ

)

=
1

D log D

∑
d

e−πd
2/D2

∑
ρ∈Zd

K(ρ)2

+
1

D log D

∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

0<|γ1−γ2|6 2πλ
log D

K(ρ1)K(ρ2)h

(
(γ1 − γ2) log D

2πλ

)

6B∗+ +
1

D log D

∑
d

e−πd
2/D2

∑
ρ1,ρ2∈Zd

0<|γ1−γ2|6 2πλ
log D

K(ρ1)K(ρ2) + o(1).

By combining (4.33) and the above, we obtain (4.28). Since B∗+ =A∗+/36
1/3, the right-hand side of (4.28) becomes positive if λ > λ0 = 0.6073.

Therefore, we obtain (4.29).
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