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Abstract

There is presently considerable interest in the utilisation of microwave heating in
areas such as cooking, sterilising, melting, smelting, sintering and drying. In gen-
eral, such problems involve Maxwell's equations coupled with the heat equation,
for which all thermal, electrical and magnetic properties of the material are nonlin-
ear. The heat source arising from microwaves is proportional to the square of the
modulus of the electric field intensity, and is known to increase with increasing tem-
perature. In an attempt to find a simple model of microwave heating, we examine
here simple transient temperature profiles corresponding to a heat source with spa-
tial exponential decay but increasing with temperature, for which we assume either
a power-law dependence or an exponential dependence. The spatial exponential
decay is known to apply exactly when the electrical and magnetic properties of the
material are assumed constant. A number of transient temperature profiles for this
model are examined which arise from the invariance of the governing heat equation
under simple one-parameter transformation groups. Some closed analytical expres-
sions are obtained, but in general the resulting ordinary differential equations need
to be solved numerically, and extensive numerical results are presented. For both
models, these results indicate the appearance of moving fronts.

1. Introduction

The use of microwave radiation for heating is now common in many indus-
trial situations such as smelting, sintering and drying. Microwave heating
has advantages over conventional heating in that it can quickly provide uni-
form heating throughout the material. Even though the standard kitchen
microwave oven has been in existence for almost fifty years, it is only in
recent years that this technology has been considered for industrial applica-
tions. This may in part account for the lack of scientific enquiry into the
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(2) Similarity temperature profiles 291

many experimental and theoretical aspects of microwave heating.
In general, a mathematical analysis of microwave heating involves solving

both the heat equation and Maxwell's equations of electromagnetism, with
all thermal, magnetic and electrical properties being dependent upon the tem-
perature. Hill [3] examines the simplest types of exact solutions which apply
when all the physical properties of the material have a power-law type depen-
dence and which, moreover, involves the same reference temperature. This
means that all physical temperature-dependent properties can be replaced
by some power of the temperature, and, under appropriate restrictions, the
full one-dimensional equations remain invariant under a stretching group
of transformations and accordingly admit certain similarity solutions. Even
so, the number of closed analytical solutions is limited, and in general the
governing system of ordinary differential equations still needs to be solved
numerically. In contrast, Smyth [8] obtains approximate analytic solutions
following the methods of geometric optics applicable to the high-frequency
limit, small thermal diffusivity and all other material properties assumed to
be linearly dependent on temperature. The solutions so obtained are not
uniformly valid for all time, except when the electrical conductivity is small.
Pincombe and Smyth [7] extend the work of Smyth [8] to the case when the
various material properties are assumed to have a power-law dependence on
temperature but the electrical conductivity is still assumed small.

In an attempt to understand the problem of hot-spots which occur in mi-
crowave heating, Hill and Smyth [4] and Coleman [2] consider only the heat
equation together with a source term which is nonlinearly dependent upon
temperature and increases with increasing temperature. Hill and Smyth [4]
demonstrate the occurrence of hot-spots for a variety of geometries using
an exponential source term, while Coleman [2] employs both power law and
Arrhenius dependence on temperature, and demonstrates that hot-spot type
phenomena can occur for materials which do not normally exhibit thermal
runaway, in the sense that the temperature can still have a local maximum.
In this paper we attempt to improve the simple model utilised in both Hill
and Smyth [4] and Coleman [2] by incorporating a spatial dependence on the
heat source, and this model is consistent with that proposed by Coleman [1]
in examining the Stefan problem for microwave heating.

In particular, we consider the special case of the one-dimensional mi-
crowave heating of the half-space x > 0 with temperature, electric and
magnetic fields given respectively by

T=T(x,t), E = E(x,t)j, H = H(x,t)k, (1.1)

where as usual (i, j , k) denote unit vectors in the (x, y, z) directions. Now
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292 James M. Hill and Adrian H. Pincombe [3]

the nonlinear heat equation and Maxwell's equations for a linear conducting
medium of density p become

where c(T), k{T) and q(T) denote the temperature-dependent specific heat,
thermal conductivity and body heating coefficient respectively, while fi(T),
e(T) and a{T) denote the temperature-dependent magnetic permeability,
electric permittivity and electrical conductivity of the medium respectively,
and \E\ denotes the square of the modulus of the complex electric intensity.
In order to present a simplified account of microwave heating, we follow
Coleman [1] and a 2

that is, we assume
Coleman [1] and assume here that |is|2 decays exponentially with distance;

\E\2 = E2
Qe~KX, (1.3)

for certain constants EQ and K . We make this assumption because firstly,
it is a well known result in the case when the permeability, permittivity and
conductivity are known to be constants, say /xQ, e0 and a0 respectively, in
which case K is given by

(1-4)

where co denotes the wave frequency (see Tralli [9] or Metaxas and Meredith
[5]). Secondly, the assumption (1.3) will be locally valid within a limited
region, depending on the variation in n{T), e(T) and a(T). Thirdly, it
is worth emphasing that the assumption (1.3) pertains to the modulus of E
rather than E itself, so that as long as E{x, t) takes the form

for some real function 0(JC, t), the assumption (1.3) remains valid. Thus
(1.3) represents the simplest possible spatial dependence which has some
physical basis, and which enables the heating aspects of the problem to be
isolated from the electrical and magnetic fields.

Metaxas and Meredith [5] present experimental evidence which indicates
that the physical properties of the material have a power-law dependence on
temperature. In particular, if we assume that c(T), k(T) and q{T) have a
power-law dependence, then on introducing a new temperature variable T*
defined by

T* = pJc(T)dT, (1.6)
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and rescaling x, then dropping the asterisk, it is not difficult to show that
the heat equation becomes

dT d ( mdT\ -fix^n
-dT = dx-{T dx-)+ae T>

for certain constants, m , n , a and ft . Physical requirements indicate that
the source term due to microwave heating decreases spatially and increases
with temperature so that n > 0 , a > 0 and fi > 0. Similarly, assuming
constant specific heat c(T), and that k(T) and q(T) have an exponential
dependence on temperature, then a similar procedure yields

for certain constants y and S , where 3 > 0 for a heat source which is an
increasing function of temperature. Equations (1.7) and (1.8) constitute the
two basic models which we consider in this paper.

The next three sections deal with (1.7), while the final three sections of
the paper deal with (1.8). In the following section, we present a similarity
solution of (1.7) valid for m ^ 0 and n / m + 1. Solutions appropriate to
the special cases n = m+1 and m = 0 are discussed separately in Sections 3
and 4 respectively. Similarly in Section 5 we present a similarity solution of
(1.8) assuming y / 0 and y ^ 5 , and then solutions applying to the special
cases y = 8 and y = 0 are presented in Sections 6 and 7 respectively.

Finally in this section we, comment briefly on various results for time
independent solutions of these equations. For steady solutions of (1.7) and
(1.8), with T = T(x) we may readily deduce,

a(m + l ) e - 'V / ( m + 1 ) = 0, y = Tm+l,
j 2 (1-9)
U Z -Bx 5ly n yT

dx
from which it is apparent that the special cases n = m + 1 and y — S give
rise to linear equations and in both cases the transformation £ — e~
produces equations which have Bessel function solutions; thus

d2y )_dy_ 4a(m+1).. _
d£2• Zd{+ B2 y~B

2 (1-10)
d z \ dz 4ay+ + fz = 0

These equations have solutions of the form ClJQ{kQ + C2YQ{kS,), where C,

and C2 denote arbitrary constants and k — 2[a(m + l)]1^2//? or
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k = 2(ay)l/2/p. If n ^ m + 1 or y ^ <5, then possibly both of (1.9)
admit sim
such that
admit simple solutions of the form Ae x, where A and B are constants

B = / ( W + 1 )
1 . , B2 + a{m + i ) ^ - - " A - + " = 0,

(1.11)

which certainly have solutions with A < 0 when (n - m — l)/(m + 1) or
(S - y)/y is an odd integer and assuming a(m + 1) and ay are both posi-
tive. However, in general it appears to be difficult to obtain further simple
analytical expressions for solutions of (1.9) (see Murphy [6], page 387). A
careful examination of each of the above special steady solutions indicates
that there are no steady-state solutions of the microwave heating problem
such that T > 0 at all times and T tends to zero as x tends to infinity.
In subsequent sections, we examine a number of transient solutions of (1.7)
and (1.8) which arise from the invariance of these equations under simple
one-parameter transformation groups. Since we are not at liberty to impose
arbitrary boundary and initial conditions for such solutions, we illustrate
these solutions by assuming that both T{x, t) and §£(*, t) are prescribed
on the boundary x = 0 at some time t = tx, and we then display the tem-
perature profile at time t{. These numerical results indicate the presence of
moving fronts.

2. Power law thermal conductivity and heat source

In this section we examine a similarity solution of (1.7) which applies
for m ^ 0 and n / m + 1. The appropriate version of the solution for
these special cases is detailed in the subsequent two sections. It is a simple
matter to show that (1.7) remains invariant under the one-parameter group
of transformations

eetx{=x + ae, tl=eet, Tx=ebtT, (2.1)

provided the constants a and b are given by

(m+ 1 -n) 1

in which case two invariants of (2.1) are Tex/ma and te~x^a and therefore
the functional form of the solution corresponding to (2.1) is given by

T(x, t) = e-xlma<f>{Q, { = te~x/a, (2.3)
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where <f> denotes some function which is determined by substitution of (2.3)
into the partial differential equation (1.7). From (2.2) and (2.3) we observe
that this solution is only meaningful for m / 0 and n ^ m + 1.

In addition, from (2.3) we note that the solution must satisfy an initial
condition of the form

T(x,0) = e-x/ma<t>(0), (2.4)

and therefore we can if necessary accommodate the usual zero initial condi-
tion T(x, 0) = 0 by simply taking 0(0) = 0. Further, at x — 0 the solution
(2.3) would satisfy any one of the time-dependent boundary conditions

no.o-«o g
dx

ma ( 2 5 )

dx[V't)+ ma ~ a '
where here primes denote differentiation with respect to t, and the function
4>{t) is not arbitrary but is that determined by solving the ordinary differential
equation (2.6). If both a and m are positive, the solution and its partial
derivatives all tend to zero as x tends to infinity. If, however, a is negative,
zero temperature at infinity might be achieved by the condition <f>(oo) — 0.

On substituting (2.3) into (1.7), we may eventually deduce the second-
order ordinary differential equation

d4> \ \ *2,mty f \j:j.'n+l} ^ 2
= \m€ <$> + ]i<P H + ama

\ J
(2.6)

which appears not to admit any simple first integrals (unless a(m + 1) < 0)
and n = m + 1, which is not possible here) and accordingly must be solved
numerically. We note, however, that in terms of y = 4>m+i(4> — y ( m + ' ) ) ,
(2.6) takes on the alternative compact form,

(2.7)
In order to illustrate the behaviour of solutions of (2.6), we write the equation
as a pair of first-order ordinary differential equations,

\ 2 2) _ ̂ A _ V m

\W^ j m2e e '
(2.8)

and assume that both T(x, t) and %£(x, t) are prescribed on the bound-
ary x = 0 at some fixed time t — tx, so that from (2.5), and (2.5)2 we
may deduce </>(fj) and &>(*,), which can be used as starting conditions in a
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(a)

FIGURE 1. Variation of
(m = - ! , « = 2) .

(b)

and T(x, t) for (2.3) for the case a positive and m negative
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XI
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(b)

FIGURE 2. Variation of
(m = n = 2).

and T(x, t) for (2.3) for the case a and m positive
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(b)

FIGURE 3. Variation of 4>(() and T(x, t) for (2.3) for the case a and m negative
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(b)

FIGURE 4. Variation of </>(£) and T(x,t) for (2.3) for the case a negative and m positive
(m = 1, n = 3).
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Runge-Kutta scheme to determine <£(£) and hence the complete temperature
distribution at time t = tl. In the numerical results shown in Figures 1-4 we
adopt throughout the values

0=1, f, = 10, r ( 0 , f , ) = 2.3, | I ( 0 , f , ) = 0, (2.9)

and the A, B and C shown on the curves refers to the three values of a
considered, namely a = l /2(^) , a = \{B) and a = 3/2(C). We consider
the two cases a > 0 and a < 0 separately.

The case a > 0 arises if either m < 0 and n > m + 1 or if m > 0 and
n < m + 1. Further, in this case, £ defined by (2.3)2 maps the x interval
(0, oo) into the £ interval (0, / ) . The two sub-cases m < 0 and m > 0
give qualitatively different behaviour for $(£). If m < 0 then both (f>(£) and
4>'{S,) approach zero as £ tends to zero (that is, as x tends to infinity) while
for m > 0 there is a value <!; = £0 (0 < £0 < r,) such that #(<j;0) = 0 and
lim^_^ <//(£0) = oo and with <£(£) not defined by (2.8) for £, < £0. The latter
situation corresponds to a moving front, and for a zero initial condition it
is appropriate to take <j){£,) = 0 for ^ < £0. Moreover, this qualitative
behaviour of solutions coincides with the well-known behaviour of solutions
of the nonlinear diffusion equation. Typical curves corresponding to these
two sub-cases are shown in Figures 1 and 2 (see pp. 296-297).

The case a < 0 arises if either m < 0 and n < m + 1 o r i f / n > 0
and n > m + 1 and in this case £, defined by (2.3)2 maps the x interval
(0, oo) into the £ interval (t, oo). If m < 0 , the solutions for $(£) are
monotonically increasing with ^ and give rise to a variety of temperature
distributions as indicated in Figure 3(b). For m > 0 the solutions for <fi(£)
initially have the appearance of an exponential but then move steeply to zero
at £ - ^0 with <p(£) = 0 for £ > £0 and again a moving front is exhibited.
Typical curves corresponding to m < 0 and m > 0 are shown in Figures 3
and 4 (see pp. 298-299) respectively.

3. Power-law dependence with n = m + 1

If n = m + 1 then the one-parameter group (2.1) becomes

J C , = J C , * , = * ' / , Tx=e-elmT, (3.1)

so that in this case, two invariants are x and Ttl^m, and accordingly the
functional form of the solution is

T(x,t) = rl/m4>(x), (3.2)
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FIGURE 5. Temperature variation for (3.2) for the cases of m negative (m = -1/2) and m
positive (m = 1/2).
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which is simply a separable solution and it is not difficult to show that n —
m + 1 is an essential condition for the existence of solutions of the form
T(x, t) — f(x)g{t). On substituting (3.2) into (1.7), we can readily deduce

d f,md<f>\ -px,m+l 4> , , , .
-r- [ <p -=— ) + ae o = , (3.3)
dx \ ax J m

and the substitution y = <f>m+ yields

— , + aim + l)e y = —- -y . (3.4)
dx2 m '

By rearranging this equation as a pair of first-order ordinary differential equa-
tions, as described in the previous section, we can readily generate a numeri-
cal solution for y{x) for given values of >>(0) and j£(0). The temperature
profiles at time t{ shown in Figure 5(a) (see p. 301) apply for m = - 1 / 2 ,
with the values

fi=l, /, = 10, T(0,tl) = 0, ^ ( O , / , ) = 0, (3.5)

while those shown in Figure 5(b) apply for m = 1/2, with

fi = l, *, = 10, r(<U,) = 100, H(0,«,) = 0, (3.6)

and again A, B and C denote the temperature profile appropriate to the
three values of a: 1 /2 ,1 and 3/2 respectively. Since the corresponding
curves for both y(x) and cf>(x) are similar to those shown in the figures, the
former curves are not presented.

4. Power-law dependence with m zero

When m = 0, (1.7) remains invariant under the one-parameter group of
transformations

xl=x + ae, tx = t + be, Tx=e*T, (4.1)

where a — (n — 1)/ft and b is arbitrary. Two invariants of this group are
at - bx and TeKX , so that in this case the functional form of the solution
becomes

T{x,t) = e~KX(f>{x-Xt), (4.2)

where for n ^ 1, K and A are given by
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On substitution (4.2) into (1.7) with m zero, we may readily deduce

<t>" + {k- 2K)4> + K2<j> + af = 0, (4.4)

where primes denote differentiation with respect to ^ = x-kt. This equation
can be integrated in a number of special cases.

Evidently, if A = 2K we have immediately
,/2 2 ,2 2 a n+l

(4-5)

where C denotes the constant of integration. A further integration gives

where £0 denotes a further arbitrary constant and <j>0 denotes <f>(£0). Special
cases of this integral can be evaluated in terms of elliptic functions. However,
for purposes of illustrating the temperature profile it is easy to evaluate (4.6)
with the aid of Simpson's rule. Now since

^ = ± \ c - K y -2a<f>n+i 11/2

dt - f -•" ( « + i ) j '
we see that the constant C is related to the maximum value of (f>(£) by

If the positive sign is taken in (4.6), </>{£) < <f>max in the interval £,$<£,<
oo and (f>(i) tends to </>max as £, tends to infinity. If the negative sign is
adopted then 0({) < <j>mia in the interval -oo < £, < <j;0 and </>(£) tends to
^max a s "> ten<is to minus infinity. If for given ^0 we adopt the positive sign
for £ > £0 and the negative sign for £ < £0 then the resulting temperature
profile has a cusp at £ = £0 and the function <£(<!;) is symmetrical about this
point. The physical conditions applying to the microwave heating problem
are such that the negative sign is the appropriate choice with £0 positive.
Since if ^0 is negative, the temperature at x = 0 will be initially positive
but will fall to zero before rising to a maximum value. For microwave heating
we would expect a monotonic temperature increase at x = 0 and this implies
d;0 positive. Further, we would expect an initial temperature profile which
is nonzero at x = 0 but which falls to zero at some point x — <̂ 0 within
the material being heated. To obtain such an initial temperature profile, we
take the negative sign to define <f> on -co < <̂  < ^0, and set ${£,) = 0 for
<̂ 0 < £, < oo. Even though <£(£) is defined for £ < 0, it makes sense for T
to be defined by (4.2) only for x > 0 and T = 0 for x < 0 . In this case

nx,t)^e-KX*, (4.9)
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as t —> oo so that in particular T(0, t) —> <fimsa as t —> oo. In order to
illustrate this solution we set <f>msx = £0 = 1 along with the values

a = 0.1, £ = 0.2, n = 1 / 2 , (4.10)

and the resulting variation in </>(<!;) is shown in Figure 6(a) (see p. 305),
while the corresponding temperature profiles are shown in Figure 6(b) at
three times t = 0(A), t = 1(5), and t = 2(C).

Other integrals of (4.4) can be obtained by the successive substitutions

n = e*, (4.11)

so that (4.4) becomes

drf
(4.12)

Thus, if we choose n and x such that

K2 = 0, ( n - l ) / i = 2r, (4.13)

then (4.12) becomes simply

^ + ^ = 0, (4.14)

which integrates once to give

V2a^_
2

(4-16)

and a further integration yields

where C and r]0 denote constants of integration. From (4.13), and (4.13)3,
we find that n and T are given by

- - ( n + - 3 p T = V
 ( ; ; 3 ) ' (4- i ?)

so that from (4.13)2, this integration procedure is possible for (4.4) provided
the constants K and X are such that

^ = ( 2 * ( W + . 3 L l * - (4-18)
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(a)

2 . 4 . 6 . B 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8

(b)

FIGURE 6. Variation of <£(£) and T(x, t) for (4.2) at times / = 0(/i), t = 1(5) and
t = 2(C) and with a = - 0 . 1 , fi = 0.2 and n = 1/2 .
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Thus, in this case, for all n except n < - 1 there is a real value of A for
which (4.4) can be formally integrated. From (4.3) and (4.18) we see that
the possible values of the constant b are determined from the equation

(4.19)

Again for purposes of illustration, Figure 7(c) (see pp. 307-308) gives two
temperature profiles corresponding to t = 0(A) and t = 10(5) for n = 2 ,
and these are obtained by direct numerical integration of (4.16) employing
the values a = /? = 1. The procedure adopted follows that used for (4.6)
apart from the additional transformation (4.11). Since we require £, in the
range -oo < £ < ^0 for some positive £0, this means that we require r\ in
the range -oo < r\ < exi° for T > 0 and exi° < r\ < oo for T < 0. From
(4.2) we see that A > 0 represents heating while A < 0 represents cooling,
so for heating the appropriate A values are

n > 1,

(4.20)

and with this choice of A, we find that T < 0 for n > 1 while T > 0 for
n < 1 . Thus for - 1 < n < 1, we take A given by (4.20)2 and integrate
over —00 < T] < eT("° where T > 0 while for n > 1, we take A given by
(4.20), and integrate over eT(*° < tj < 00 where T < 0. From (4.3)t and
these values of A we see that the wave speed A is discontinuous at n = 1
since we have

lim A = 00, lim A = 0, (4.21)
n-»l- n->\+

and moreover for n > 1, the wave speed A increases slowly (for /? = 0.2,
A = 0.004 for « = 2 while A = 0.008 for n = 5). For n = 2 and a =
P = 1, Figures 7(a) and 7(b) show iy(ri) as determined by(4.16) and the
corresponding 4>{£) as obtained from (4.11),. In utilising (4.16) we have
taken the plus sign, TJ0 = 1, y/max = 1 and where the constant C is given by

(n + l)t2 ( « + 1 ) T 2

In the special case of (4.1) corresponding to b zero we may deduce a
simple separable solution as follows. In this case the functional form of the
solution is simply

KX (4.23)
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« - « - CJ

(a)

- . 6 .8 1 .0

(b)

FIGURE 7. Variation of <£(£), y/{n) and T(x, t) for (4.2) at times t = 0(A) and t = 10(B).
and with o = fi = 1 and n = 2 .
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1 . 2 1 . 4 1 . 6

(c)

FIGURE 7. Continued.

where for n / 1, K is still defined by (4.3), , and from (1.7) we may readily
deduce the Bernoulli equation

= K
2<fi (4.24)

where here the prime denotes differentiation with respect to time. In the
usual way we obtain

</>(*) { „ -(n-\)K2t .

Ce v ' -a/K

(4.25)

where C denotes the constant of integration. For n < 1 we may choose C
such that initially the temperature is zero and the solution becomes

(4.26)

If n > 1 then for fj > 0 , K < 0 and T(x, t) tends to infinity with x. In
addition if C > a/K2 then "blow-up" occurs after a finite time tc given by

/ ^ 2\

tc =
1

log (4.27)

Finally in this section, we note that the linear case n = 1 admits separable
solutions of the form

T(x,t) = e-A'y(x), (4.28)
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where A (assumed positive) denotes the separation constant and with the
usual substitution £, = e~^x^2, y satisfies

= 0, (4.29)
p- \ c"/

which has solutions of the form

y(£) = CxJv{2al2ZIP) + C2J_v{2al2ZIP), (4.30)

where C, and C2 denote arbitrary constants which are possibly complex
and for positive A the index v — 2/A ' /p is pure imaginary.

5. Exponential thermal conductivity and heat source

In this section we examine a similarity solution of (1.8) which applies
for y ^ 0 and 8 / y. Solutions corresponding to these special cases are
examined in the following sections. Equation (1.8) remains invariant under
the one-parameter group of transformations

x — x + ap t = pet T — T 4- hf (5 \)

provided the constants a and b are given by

(y-S) , ia = —z^—> b = ~z- (5-2)

Two invariants of this group are T-bx/a and te~x^a , so that the functional
form of the solution corresponding to (5.1) is

T(x,t) = ̂ - + m , Z = te-x/a, (5.3)

where as usual <j>(£) is determined by substitution of (5.3) into (1.8). From
these equations we observe that this solution is only sensible provided both
a and y are nonzero.

From (5.3) it is apparent that the above solution necessarily has an initial
condition of the form

T(x,0) = ^- + <j>(0), (5.4)

and would satisfy at x = 0 one of the following time dependent boundary
conditions,

T(0, t) = cf>(t), | | ( 0 , 0 = b- - ^ ' ( 0 , (5.5)

where here primes denote differentiation with respect to time and as pre-
viously mentioned (f>(t) is that function produced by solving the ordinary
differential equation (5.6).
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1 2 3 4 5 6 7 8 9 10

(a)

(b)

FIGURE 8. Variation of <)>(£) and T(x, t) for (5.3) for the case y > S and y > 0
= 2,d=l).
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2 3 4 5 6 7 8 9 10

(a)

(b)

FIGURE 9. Variation of $(/;) and T(x, t) for (5.3) for the case y < S and y < 0
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10 11 20 21

(a)

1 .2 .3 .4 .5 .6 .7 .8

(b)

FIGURE 10. Variation of </>(£) and T(x, t) for (5.3) for the case y < S and 2 > 0
(y = 1, S = 2).
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1B 12 14 16 18 20 22 24 26 28 30

(a)

1 .2 .3 .4 .5 .6 .7 .8 .<) 1.0 1.1

(b)

FIGURE 11.Variation of </>({) and T(x,t) for (5.3) for the case y > 6 and y < 0
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On substitution of (5.3) into (1.8), after some rearrangement we find

d(f> 1 / d= 1
and since this equation appears not to admit any simple first integrals, it must
also be solved numerically. As previously described in Section 2 we replace
(5.6) by a pair of first-order ordinary differential equations and assume that
both T(x, t) and §J (x, i) are prescribed on the boundary x = 0 at some
fixed time t = tx. In the numerical results, we adopt precisely the values given
by (2.3), and consider the usual three values of a , namely a = 1/2(^4), a =
l(B) and a = 3/2(C). The nature of the solution depends on whether a is
positive or negative and in either case there are two possibilities.

For a > 0 there are two possibilities y > 8 and y > 0 or y < 8 and
y < 0 which are shown in Figures 8 and 9 (see pp. 310-311) respectively.
In the first case (y = 2 and 5 = 1), (/>(£) increases steadily as ^ decreases
from £ = tl . This behaviour is shown in Figure 8(a) while the corresponding
temperature variation is shown in Figure 8(b). We note that because of the
different scales employed in these two figures, they are actually consistent
with each other, which is not apparent from inspection. In the second case
(y = — 1 and 8 = 1), cj>{^) becomes unbounded and tends to minus infinity
as £ tends to zero, and therefore the initial condition (5.4) is not defined in
this case. The behaviour is shown in Figure 9.

For a < 0 , the two possibilities are y < 8 and y > 0, and y > 8 and
y < 0 which are shown in Figures 10 and 11 (see pp. 312-313) respectively.
In the first case (y = 1 and 8 = 2), there exists some £0 > tx such that both
4>{Q and ~fe(£) rapidly approach minus infinity as ^ tends to £0 indicating
a moving front with <)>{£,) = -oo for £, > £0 . This behaviour is not clear from
the portion of the curves shown in the figure. In the second case (y = -1
and 8 = -2) both </>(£) and ^(<^) tend to infinity as £, tends to some d;0,
as is clearly apparent from Figure 11. In this case the trivial solution for
£ >Z0 is <£(£) = oo.

6. Exponential dependence with 8 = y

If 8 = y then a = 0 and the one-parameter group (5.1) becomes

xx=x, tx=et, Tx = T-e/y, (6.1)

in which case two invariants are x and T + y~ log t and therefore the
functional form of the solution becomes

<f>(x). (6.2)
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XI

(a)

2 . 4 . 6 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2

(b)

FIGURE 12. Variation of z(Z) and T(x, /) for (6.2) at time tx = 1 and with p = 1.0 and
y = 2.0.
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This solution has the form T(x, t) = f(x) + g(t) and we can readily show
that the condition S — y is an essential condition for the existence of so-
lutions of this form. Substitution of (6.2) into (1.8) with 5 — y readily
yields

d_ fy<j, d<j>
dx V dx e-»V* = - - , (6.3)

«•*/ y

and the substitution z — ey<t> gives

AK 8X
9xz = - \ . (6.4)dx

This equation can be solved in a routine manner by means of the transforma-
tion £ = e~px/2 , which gives an inhomogeneous Bessel's equation, namely

d2z 1 dz 4ay 4 lr ,.
—T+T-y* + —fz = —rr» (6-5)
d£2 ZdZ p2 p2?

which has the general solution

C2Y0(r,) + ^ f°°[J0(s)Y0(r,) - YQ(s)J0(V)]^-, (6.6)

where C, and C2 denote arbitrary constants and r\ = 2(ay)1/2£/p~.
Figure 12 (see p. 315) shows the typical variation of z(£) and temperature

profile T(x, t) which are obtained by numerical integration of (6.5), rather
than use of (6.6), and the following values have been employed:

P = \, y = 2, /, = 1, T(0,tl) = 2.3, | I ( 0 , / 1 ) = 0, (6.7)

and as usual A , B and C designate the three reference values of a , namely
1/2,1 and 3/2 respectively. These results again indicate the appearance of a
moving front with T(x, t) = -oo as the appropriate value of the temperature
outside the front.

7. Exponential dependence with y zero

If y is zero, then on introducing a new temperature variable T defined
by

T(x,t) = ST-px, (7.1)

we see that (1.8) becomes

dT d2T XY , , „
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which is formally identical to the simple model used by Hill and Smyth [4],
which does not incorporate spatial exponential decay of the source term. In
this case (7.2) remains invariant under the one-parameter group of transfor-
mations

xx=ex, tx=e2*t, T , = T - 2 e , (7.3)

for which the invariants are xt~^2 and T + 21ogx, so that the functional
form of the solution becomes

T{x,t) = -2logx + 4>(Z), Z = xt1/2. (7.4)

We observe that in terms of the original temperature variable T, this solution
necessarily has an initial condition of the form

T(x,O) = {0x-2logx + <t>(oo)}/d. (7.5)

On substituting (7.4) into (7.2) we can readily deduce the second-order non-
linear ordinary differential equation,

^V + ̂ V + 2 + a ^ - O , (7.6)

which again needs to be solved by a numerical scheme. We observe that if
we use

T(x,t) = -lof>t + ys(O, £ = * r 1 / 2 , (7.7)

instead of (7.4), then in this case we obtain from (7.2) the slightly simpler
differential equation

¥" + l&_ + \+a5e'1' = 0, (7.8)

which can be reconciled with (7.6) by means of the relation

(7.9)

Altogether we have from (7.1) and (7.4) that the temperature T(x, t) is
given by

(7-10)
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5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 3 4 . 5

(a)

1 2 3 4 5 6 7 8 9 1 0 11 1 2 1 3

(b)

FIGURE 13. Variation of (/>(£) and T(x, t) for (7.10) at time /, = 10 and with P = S =
x0 = t0 = 1 .
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for arbitrary constants JC0 and TQ. Figure 13 shows the variation of
and T(x, t) for (7.10) assuming the following values

(7.11)
and as usual A, B and C designate the three reference values of a.

8. Conclusion

We have attempted to model the microwave heating of a infinite slab by
equations of the form (1.7) and (1.8), where a and /? designate positive
constants. These models incorporate a heat source term which decays expo-
nentially with distance, and increases with increasing temperature. We have
examined simple similarity temperature profiles for special cases of the mod-
els. These solutions enable the partial differential equations to be reduced
to ordinary differential equations for which we have obtained numerical so-
lutions. Since for the similarity solutions under discussion we are not at
liberty to impose arbitrary boundary and initial conditions we have adopted
the strategy of solving the various ordinary differential equations assuming
that both the temperature T(x, t) and the temperature gradient f j ( x , t)
are prescribed at the boundary x — 0 at some fixed time t = tx, and we
are then able to display the temperature profile at this fixed time tl. These
numerical results indicate the appearance of moving fronts. For the model
(1.7) with both m and n positive, the fronts move into a region of zero
temperature which is a valid trivial solution of the governing equation. This
model is therefore entirely consistent with the observed characteristics of
microwave heating of materials which are known to exhibit all the classical
phenomena associated with nonlinear diffusion, such as "blow-up" which is
referred to as "hot-spots" and "waiting-time" phenomena. That is, materi-
als are known to remain at the initial temperature for a finite time when
subjected to microwave radiation and then suddenly the temperature starts
to increase. Moreover, certain materials are known to be either completely
transparent to microwave radiation or respond after the application of con-
vential heating, and these characteristics are also embedded in the model
(1.7). However, although the model (1.8) also predicts moving fronts and
typical phenomena associated with nonlinear diffusion, the associated trivial
solution of (1.8) for y and 8 both positive is T — -oo while for y and
8 both negative it is T — oo. These may be physically unrealistic and in
addition, because T = 0 is not a trivial solution of (1.8) the model may not
admit the possibility that certain materials can be transparent to microwave
radiation.
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