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Abstract

Artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) are
machine learning techniques that enable modeling and prediction of various properties in the
milling process of alloy 2017A, including quality, cost, and energy consumption (QCE). To
utilize ANNs or ANFIS for QCE prediction, researchers must gather a dataset consisting of
input–output pairs that establish the relationship betweenQCE and various input variables such
asmachining parameters, tool properties, andmaterial characteristics. Subsequently, this dataset
can be employed to train a machine learning model using techniques like backpropagation or
gradient descent. Once the model has been trained, predictions can be made on new input data
by providing the desired input variables, resulting in predicted QCE values as output. This study
comprehensively examines and identifies the scientific contributions of strategies, machining
sequences, and cutting parameters on surface quality, machining cost, and energy consumption
using artificial intelligence (ANN and ANFIS). The findings indicate that the optimal neural
architecture for ANNs, utilizing the Bayesian regularization (BR) algorithm, is a {3-10-3}
architecture with an overall mean square error (MSE) of 2.74 × 10�3. Similarly, for ANFIS,
the optimal structure yielding better error and correlation for the three output variables (Etot,
Ctot, and Ra) is a {2, 2, 2} structure. The results demonstrate that using the BR algorithm with a
multi-criteria output response yields favorable outcomes compared to the ANFIS.

Introduction

The manufacturing sector is one of the world’s largest consumers of electrical energy. With the
increase in the cost of energy and the associated carbon emissions, reducing energy demand has
become an urgent challenge for manufacturers in recent years. The machine tool consumes a
great deal of electrical energy. With the aim of reducing energy consumption and cost in CNC
machining, the selection of optimal machining strategies and cutting parameters is considered
one of themost important saving policies. The use of new prediction and optimization techniques
with artificial intelligence technology can positively contribute to this economic policy. Several
researchers have used artificial intelligence tools to solve prediction and optimization problems
in mechanical manufacturing. Ben Yahia et al. [1] have developed an integrated environment for
the automated planning of machining processes to fabricate prismatic parts. The system is based
on the application of the neural network. The system presented is based on the application of the
ANN. The model used in this study is applied to the design of the features, namely pockets,
grooves, steps, and essentially their intersections: pocket/pocket, step/pocket, step/step, pocket/
groove, step/groove, and groove/groove. Girish and Kuldip [2] used the neural network (NN) to
predict energy consumption and surface roughness (Ra). They performed machining experi-
ments to verify the suitability of the proposed model for predicting energy consumption and
Ra. The results predicted by the proposed model indicate a good synchronism between the
predicted values and the values. Aykut et al. [3] studied the milling Ra of alloy AA6061. An
experimental model has been improved to assess surface quality using response surface meth-
odology (RSM) and artificial neural networks (ANNs). Serra et al. [4] used multi-objective
optimization by the genetic algorithm (GA) by integrating regression analysis to simultaneously
minimize Ra, power consumption, and cutting time and maximize productivity. Tzu-Liang et al.
[5] developed a Ra prediction model for a set of input data, namely cutting speed, cutting depth,
and feed rate. The model was verified by comparing the fuzzy output (FL) with the experimental
data used to build the empirical model. The results of these experiments are in good agreement
with those predicted by the fuzzy logic model.

In mechanical manufacturing, machine tools consume energy that can reach critical values.
Improving the energy efficiency of machine tools can lead to a significant reduction in the cost
of products. Research on reducing energy consumption is still insufficient in view of the
increasing use of energy sources [6]. For example, Yansong et al. [7] presented an approach that
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integrates both Ra and energy consumption to optimize cutting
parameters during turning. Ampara and Paul [8] studied how
different tool paths can influence the direct energy demand in
machining. Therefore, they suggested a way to drastically reduce
the energy intensity at the level of material removal. Experimen-
tation demonstrates that the energy consumption of the unidir-
ectional method for the y axis, about 230 kWh, is more than that of
the parallel contour, 120 kWh. Resul et al. [9] presented a predic-
tion model to estimate the energy consumption involved in mill-
ing prismatic parts. They studied the effect of the cutting strategy
on the energy consumed and the total cutting time of the rect-
angular open pocket feature. Measurements of cutting energy,
auxiliary energy, and base energy showed that the “zigzag” cutting
strategy consumes the least energy, and the “zig with contour”
strategy consumes more energy. Congbo et al. [10] carried out a
set of experiments to demonstrate the performance of operational
strategies in the milling process. The authors used five tool path
strategies in this process, namely bidirectional along x, parallel
contour, bidirectional along y, bidirectional at an angle of 45 °, and
spiral contour. The results showed that the maximum specific
energy consumed (SEC) is given by the strategy of the spiral
contour (87 J/mm3). On the other hand, the minimum energy is
given by the bidirectional strategy along x (53.1 J/mm3). In the
work of Bousnina and Hamza [6], the authors studied the effects
of cutting parameters on energy consumption in the turning
process of 304-L stainless steel. These studies have shown that
the reduction in energy consumption can reach a value of 58.42%.
They also showed that the increase in the energy efficiency (EE) of
the machine can reach 18.96%.

Few researchers have evaluated optimal cutting conditions
based on minimum cost during the manufacturing process. For
example, Qiulian et al. [11] used multi-objective optimization by
the non-dominated sorting genetic algorithm II (NSGA-II) algo-
rithm oriented toward three objectives and affected by three vari-
ables. The three variables are feed rate, depth of cut, and cutting
speed. The three goals are energy consumption, minimummachin-
ing cost, and better Ra. Congbo et al. [12] studiedmulti-passmilling

face milling and used multi-objective optimization to maximize
energy efficiency and minimize production costs by the adaptive
multi-objective particle swarm. The results showed that increasing
cutting speed, depth of cut, and feed rate simultaneously reduced
production time and cost. To achieve energy saving and low cost of
CNC machining, Yongmao et al. [13] used a multi-objective opti-
mization approach by integrating the adaptive particle swarm
optimization (APSO) algorithm and the improved GA (NSGA-
II). Experimental results have shown that the multi-objective opti-
mization model is feasible and efficient and that it can effectively
help operators balance energy consumption and manufacturing
costs.

Optimizing this process has become a primary stake to reach
higher productivity and quality. To optimize process planning, it is
important to select a suitable machining strategy [14]. The main
objective of this research is to provide a multi-criteria help tool for
determining the optimal machining process by integrating the
factors: QCE.

The inventory of the main works of research on the optimiza-
tion of the machining process shows the wide variety of tools and
parameters that can influence this process. Table 1 presents these
different works. This table shows that these studies are devoted
mainly to the definition of simple machining entities (facing,
pocket, etc.). On the other hand, most of these studies use some
strategies without taking into account the machining ranges
(sequences). It was also found that the influence of machining
strategies and sequences on the manufacturing cost is nonexis-
tent in all previous studies. On the other hand, the combination of
the roughness, cost, and energy output responses is linked only
with the cutting parameters and this is for the work of Qiulian
et al. [11].

Finally, there is no study ormodel that takes into account cutting
parameters, strategies, and machining ranges at the same time for
the modeling and optimization of surface quality, machining cost,
and energy consumed (QCE) of numerically controlled machine
tools to machine interacting entities using artificial intelligence,
which will be the subject of this article.

Table 1. The different works presented

Ref.

Input Output

MethodsCutting parameters Strategies Sequences Surface quality Energy Cost

Ben Yahia et al. [1] ✓ ANN

Girish and Kuldip [2] ✓ ✓ ANN, FL, MR, GA

Aykut et al. [3] ✓ ✓ ANN, RSM

Serra et al. [4] ✓ ✓ ✓ MLR, GA

Tzu-Liang et al. [5] ✓ ✓ LF

Yansong et al. [7] ✓ ✓ ✓ -

Ampara and Paul [8] ✓ ✓ ✓ Mod

Resul et al. [9] ✓ ✓ ✓ RSM

Congbo et al. [10] ✓ ✓ ✓ -

Bousnina and Hamza [6] ✓ ✓ RSM

Qiulian et al. [11] ✓ ✓ ✓ ✓ NSGA-II

Congbo et al. [12] ✓ ✓ ✓ AMOPSO

Yongmao et al. [13] ✓ ✓ ✓ APSO, NSGA-II

This work ✓ ✓ ✓ ✓ ✓ ✓ GRA, ANN, ANFIS
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Experimental methods

The main objective of manufacturing industries is to minimize the
cost of the finished product as much as possible while maintaining
the superior quality of the product. Today, energy consumption has
become the main factor that directly influences the cost of machin-
ing. Faced with this problem, it is necessary to minimize the energy
consumption of machine tools in the machining process. This
minimization cannot be obtained without knowing all the machin-
ing strategies. The problem gets a bit more complicated when we
talk about interacting machining features. Figure 1 depicts aero-
nautical structural parts that are required for frame construction
and are frequently manufactured using numerically controlled
machine tools. These parts are high-value critical components full
of complex and interactive machining features, for example, hole/
pocket and pocket/groove.

Most researchers who have worked on energy consumption
use a single machining feature, for example, pocket and surfacing,

with a limited number of tool paths. Under these conditions, it is
difficult to measure this consumption since a part can contain
several features and these features can interact, which requires
several combinations of machining operations. So the contribu-
tion in this work is made there, that is, by creating several
sequences (ranges) with different machining strategies in order
to choose the optimal sequence that gives minimum cost, energy
consumption, and roughness. A machining strategy is a method-
ology used to generate a series of operations to produce a given
shape. The choice of these strategies will be to achieve well-
determined specifications and shapes. In this context, three
machining strategies have been chosen (zigzag, zig, and inward
parallel contour (IPC); Figure 2.

In this part, the case of pocket/groove features has been
studied by illustrating the effects of the planning of machining
sequences, machining strategies, and cutting parameters on the
surface quality, manufacturing cost, and energy. Figure 3 presents
the machining features associated with the selected part. In order

Figure 1. Example of interacting machining features of aircraft structural parts [15].

a) Zig-zag b) Inward parallel contour (IPC) c) Zig

Figure 2. Machining strategies.

Feature: F1 Feature: F2 Feature: F3 Feature: F4 Feature: F5 Feature: F6 Feature: F7

Figure 3. Machining features.
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to make this part, the machining features will be used to finally
obtain a set of combinations of sequences called the “machining
range.” Table 2 illustrates all the machining sequences used in
this study with the different combinations of strategies (zigzag,
IPC, and zig).

Materials and measurements

All the experimental tests are carried out at the workshops at the
Higher Institute of Technological Studies of Gabes (ISET Gabes).
The machine used is a Realmeca C300H 4-axis machining center.
The center generates power between 5.5 kW and 7.5 kW with a
maximum rotation frequency of 6500 rpm. Thismachine is powered
by 380 V electrical energy and 6 bar pneumatic energy. The Catia V5
software used in this work makes it possible to create the tool paths
and then generate the G-code program compatible with the Num
director of the center. The tool used is an uncoated high-speed steel
tool with a diameter of 8 mm and two teeth (Figure 4).

Thematerial of themachined part is an aluminum alloy (2017A:
AlCu4MgSi). This material is widely used in the aerospace, auto-
motive, and so forth industries. This material has high mechanical
characteristics after treatment and also good machinability, polish-
ability, and good heat resistance between 100 and 250 °C. Table 3
shows the chemical composition of the material used.

A Chauvin-Arnoux CA8332 power analyzer was used in order
to measure the power consumed by the machine at each instant
during a machining operation. Data processing is performed using
the Power Analyzer’s Dataview interface. Figure 5 illustrates the
shape of the power consumed during the machining of the S6
sequence. This graph consists of two main parts. The first part is
themachining of the features F2with the IPC strategy, which in turn
consists of three practically identical parts which correspond to the
three layers of the same depth of cut (ap). Also, note that each layer
consists of a pace for a cuttingwidth ae= tool diameter and a second
for a width ae = 3 mm. This is why the power for the first width is
greater than the second. Now for the second part, the tool, after
completing the first feature F2, will move on to execute F1. During
the machining of F1, the tool, a large part of its trajectory passes

empty (without cutting) because a large part of the material has
been removed by the feature F2. For this, the machining phase of
this part is practically nonvisual in the shape of the power.

According to Figure 5, the power consumed can bewritten in the
following forms:

Ppi =P0 + Pc_pi i= thethlayer 1≤ i⩽3 (1)

P∗
pi = P0 + P

∗
c_pi (2)

Pg = P0 + Pc_g (3)

The arithmetic Ra is measured using a KR100 roughness meter.
The stroke measured is 6 mm for a caliber of 2.5 mm. Two studies
will be carried out in order to reduce energy consumption, minim-
ize the cost of machining, and increase the surface quality of the
machined part. The workingmethod for the first case study consists
of carrying out a set of machining sequences with different strat-
egies while keeping the cutting parameters constant, namely cutting
speed, feed rate, and depth of cut. This is in order to see the
influence of sequences and machining strategies on energy con-
sumption, cost, and surface quality. Following and after the real-
ization of the first case and the prediction of the optimal sequence
by the use of gray relational analysis (GRA), an experimental plan
with a variation of the cutting parameters on this sequence will be
carried out in the second case. The objective, in this case, is to
predict the experimental results by the use of artificial intelligence
and to determine the effects of the cutting parameters on the output
responses. The work plan is shown in Figure 6.

One of the big problems in companies is determining the time
and cost of manufacturing a product [16]. In the case of CNC
machining, it is also interesting to determine the time and cost of
each operation in order to choose the optimal machining sequence
which takes into account QCE in its execution. The cost of a
machining operation can be estimated by the equation:

Ctot =CMachine +CTool +CEnergy (4)

CMachine = μ1 + tcycle:μ2 (5)

CTool = ε
tc
T

(6)

CEnergy = δEtot (7)

Results and discussion

CNCmachines are the most important means of production in the
manufacturing industry that consumes a large amount of energy
during a machining operation. A presentation of the results of the
two case studies will be carried out in this part.

First case

The first case study focuses on the variation of machining strategies
and sequences by setting the cutting parameters for all the tests. The
choice of technological machining parameters was made taking
into account the catalog of the tool manufacturer and the capacity
of the machining center. Table 4 presents the cutting parameter
values used in this first part. This study takes into consideration the
machining sequences and strategies (tool paths) in order to obtain
the optimal sequence. Table 5 illustrates the values of energy
consumed, cost, and roughness. Table 6 presents the energy

Table 2. Machining sequences

No.
Machining sequences
(Si)

Machining features
(Fi)

Machining
strategies

1 S1 F1-F2 IPC-IPC

2 S2 F2-F1 IPC-IPC

3 S3 F3-F2-F4 IPC-IPC-IPC

4 S4 F2-F3-F4 IPC-IPC-IPC

5 S5 F1-F2 Zigzag–IPC

6 S6 F2-F1 IPC-zigzag

7 S7 F1-F2 Zig-IPC

8 S8 F1-F5-F6 IPC-IPC-IPC

9 S9 F2-F1 IPC-zig

10 S10 F2-F3-F4 IPC-zigzag-zig

11 S11 F1-F5-F6 Zig-IPC-IPC

12 S12 F1-F5-F6 Zigzag-IPC-IPC

13 S13 F7 IPC
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consumed for feature F1 for the different strategies (IPC, zigzag,
and zig). Figure 7 illustrates the effects of each strategy for this
feature F1 on the energy consumed (Etot). The figure shows that the
IPC strategy admits minimum energy consumption compared to
the other two. The maximum energy consumption for F1 is
achieved with the zig strategy. This increase in energy for this
strategy means that the cut is done in one direction and that the
tool for a significant part of its cycle moves in the air. This conclu-
sion converges with the results of Edem et al. [17] and Altıntaş et al.

[18]. Figure 8 illustrates graphs of energy consumed andmachining
cost. The figure shows that the two graphs follow the same vari-
ation, which proves that the energy consumed has a significant
influence on the cost. As a result, good energy policy management
in industries allows for cost reductions in manufacturing. On the
other hand, the sequence S8 = F1-F5-F6 has the minimum cost and
energy. This sequence is characterized by the fact that the tool along
its trajectory is in full material (cutting phase). In other words, the
tool along its trajectory does not cross empty areas (without mater-
ial). This condition saves a significant amount of cutting time. On
the other hand, the S8 sequence is realized by the IPC strategy for all
the features F1-F5-F6, which proves that the choice of the tool path
and the machining sequence has a significant influence on the cost
and energy.

Industry and researchers face a big challenge when they try to
study the surface quality of machined parts. Most researchers who

Table 3. Chemical composition of the material (wt%)

Si Fe Cu Mn Mg Cr Zn Al

0.20 à 0.80 Max 0.7 3.5 à 4.5 0.40 à 1 0.40 à 1 0.1 0.25 The rest

Cutting
speed (Vc)

Feed rate (f)

Depth of cut
(ap)

Total energy
consumed (Etot)

or
Total cost (Ctot)

or
Roughness (Ra)

bb11iib1i

b2b2
w1
i

w1
i

w2ww
ii

w2
i

Machining center Tool

Power measurement Calculation of cost Roughness measurement

Spindle

HSS cutting Tool

Measurement

Graph of the cutting power consumed Table of values: Ec + Ctot + Ra

Experimental results

Results analysis: Prediction techniques

A1

A2

B1

B2

x

y

TT

TT

N

N

∑ f

Layer 1Layer 1 Layer 2Layer 2 Layer 3Layer 3 Layer 4Layer 4 Layer 5Layer 5

ω11111111111ω1

ω2ω2

ω1 f1ffω1 f1

ωωωωωωω222222222222ω2

x y

x y

ω2 f2ffω2 f2

ωωωωωω111111ω1InpppputttttttInput
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Adaptative neuro-fuzzy inference suystems Artificial neural networks

Ø = 8 mm
2 Teeth

Figure 4. Measurement plan.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5

https://doi.org/10.1017/S089006042400009X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042400009X


have worked on surface quality as a function of the tool path have
used a single machining feature in their studies. Examples of this
claim are the work of Zaleski et al. [19] and Ali Raneen et al.
[20]. Indeed, the use of interacting features with a set of tool paths
can lead to logic of the choice of surface quality. On the other hand,
an overlay of tool paths whenmachining Fi features canmodify the
surface texture of the machined part.

Figure 9 shows the Ra of successive machining of F1-F2 entities
for sequences S1, S5, and S7 with IPC-IPC, zigzag-IPC, and zig-IPC
strategies, respectively. The figure shows that machining F1 and
then F2 (F1-F2) with zig-IPC strategies has the lowest roughness.
According to the references by Aramcharoen et al. [21] and Ali
Raneen et al. [20], the zig strategy formachining a single feature has
the maximum roughness compared to the IPC strategy, which has
the lowest roughness. In this study, the problem is a little different
since the tool for the first feature F1 creates several passes with the
same strategy in order to complete the depth h of the part. Then, the
tool will switch to executing F2 with another strategy. The problem
occurs in the last pass for feature F2. Indeed, the tool causes the last
pass with this new strategy, which passes over the texture left by the

Machining strategies

Prediction

GRA

ANN model ANFIS modelComparison

Constant cutting parameters

Variable cutting parameters

First case study

Second case study

Machining sequences

Output Responses:
Etot,Ctot and Ra

Data

Data

Optimal machining sequence and
stratteegies

Optimal machining sequence and
strategies

Multi-objective optimization

Figure 6. Work plan diagram.

Machining feature (F2)Machining feature (F2) Machining feature (F1)Machining feature (F1)
Layyer 1Layer 1 Layyer 2Layer 2 Layyer 3Layer 3

P0P
0P*

pi
P*

pi

Pp
i

Pp
i

PgP
g

PPc
_p

i
Pc

_p
i Pc

_g
P c

_ g

P*
ccc_

pppi
P*

c_
pi

Figure 5. Graph of the power consumed for the sequence S6.

Table 4. Cutting parameters (first case)

Vc (m/min) N (rev/min) ap (mm) f (mm/rev) Vf (mm/min)

50 2000 0.5 0.1 200
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first strategy of the feature F1. This phenomenon can cause a
superfinish in the F1 area. This is possible when the first strategy
has a poor surface quality compared to the second strategy. The
conclusion of Aramcharoen et al. [21] that there is a synergy
between the roughness and the energy consumed is not valid in
this study because the problem is more complicated given that the
tool makes trajectories in the air (without cutting), which can
disturb this conclusion, which is not the case in the studies by
Aramcharoen et al. [21] and Ali Raneen et al. [20]. The next step is
to determine the optimal sequence Si, which gives minimum energy
consumption, machining cost, and Ra.

Multi-objective optimization by GRA
After carrying out the experimental tests for this first case, it is now
necessary to determine the optimal machining sequence. In this
study, there are three output responses, namely energy consumed,
cost, and roughness. In this case, it is necessary to have a tool
capable of solving this multi-criteria optimization problem. GRA
helps to solve this type of uncertainty problem given its ability to
understand uncertain systems with partially known information
[22]. This theory was established by Deng in the late 1990s. The
procedure required by this theory is presented as follows [20]: To

Table 5. Experimental values (first case)

No. (Si) Machining features (Fi) Machining strategies Etot (kWh) Ctot (TD) Ra (μm)

1 S1 F1-F2 IPC-IPC 0.188 51.328 0.141

2 S2 F2-F1 IPC-IPC 0.194 52.298 0.155

3 S3 F3-F2-F4 IPC-IPC-IPC 0.159 47.506 0.120

4 S4 F2-F3-F4 IPC-IPC-IPC 0.168 47.508 0.103

5 S5 F1-F2 Zigzag-IPC 0.205 53.664 0.131

6 S6 F2-F1 IPC-zigzag 0.202 53.653 0.163

7 S7 F1-F2 Zig-IPC 0.269 63.976 0.090

8 S8 F1-F5-F6 IPC-IPC-IPC 0.135 44.956 0.101

9 S9 F2-F1 IPC-zig 0.265 64.003 0.115

10 S10 F2-F3-F4 IPC-zigzag-zig 0.197 52.360 0.128

11 S11 F1-F5-F6 Zig-IPC-IPC 0.220 56.665 0.153

12 S12 F1-F5-F6 Zigzag-IPC-IPC 0.149 46.322 0.118

13 S13 F7 IPC 0.149 46.383 0.131

Table 6. The energy consumed for machining the feature (F1) with the different
strategies (first case)

Features

Etot (kWh)

IPC Zigzag Zig

F1 0.0559 0.0669 0.1390

IPC Zigzag Zig
0.00

0.05

0.10

0.15

E t
ot
(k
W
h)

Figure 7. Histogram of the energy consumed for feature (F1) with the different
strategies.

Figure 8. Energy and cost graphs for all sequences.
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obtain better surface quality, minimum cost, and low power con-
sumption, the condition “the lower the better” will be chosen.

xi =
maxyi kð Þ� yi kð Þ

maxyi kð Þ� minyi kð Þ
(8)

where xi is the output response after normalization and yi kð Þ is the
experimental values of the output responses. The largest and smal-
lest values are max yi kð Þ

� �
and min yi kð Þ

� �
, respectively.

After normalization, the next step is devoted to the calculation of
the gray relational coefficient (GRC). The following equation pre-
sents this coefficient:

ψi =
Δmin + ϕΔmax

Δ0i kð Þ + ϕΔmax
(9)

where Δ0i kð Þrepresents the absolute value of the deviation between
the test reference y0 kð Þ and yi kð Þ, Δ0i kð Þ= y0 kð Þ� yi kð Þ

�� ��. Δmin

and Δmax respectively represent theminimum andmaximum value
of Δ0i kð Þ. ϕrepresents the distinctive coefficient which includes the
interval [0,1]. In this work, the coefficient ϕ is 0.5.

The next step is to figure out the gray relational grade (GRG)
after figuring out the GRC.

γi =
Xn
k= 1

ωkψi (10)

where ωk denotes the normalized weight of the kth experimental
response.

In the methodology of GRA, the maximum value of γi indicates
that the input parameters associated with this value are close to the
optimum [23]. In this work and according to Table 7, themaximum
value of γi corresponds to the sequence S8. This sequence shows the
best way to combine the input parameters, taking into account their
different weights. In this first study, the cutting parameters are
constant for all the tests, so the combination F1-F5-F6 with the same
IPC machining strategy is the optimal combination.

In what follows, the study relates to this sequence S8 with the
combination F1-F5-F6.

Second case

In this second part, the objective is to determine the effects of the
cutting parameters on the output variables, Etot, Ctot, and
Ra. Predicting experiment results has been done by using neural
networks (ANNs) and adaptive neuro-fuzzy inference systems
(ANFISs). The last phase of this second part is a comparison
between the two artificial models in order to choose the model that
gives more refined results. The cutting parameters associated with
this part are shown in Table 8.

The depth of cut (ap) is chosen to ensure that for each level, the
tool removes the same depth. The total cutting height of the part is
h = 1.5mm. Table 9 presents the experimental values of the 15 trials
of Etot, Ctot, and surface quality for themachining of the S8 sequence
with a different combination of cutting parameters.

Prediction with ANN
ANN models are programming techniques that simulate the

human brain [24]. These models have been implemented in several
manufacturing, scheduling, and other industry applications
[25]. An ANN is a digital adoption composed of manipulation
(processing) elements called neurons. Neurons form a complex
random system that generates a relationship between input param-
eters and output variables. Nonlinear regression analysis of net-
work output responses [26] is used to figure out how well neural
network-based predictions work. In general, NN consists of three
layers, input layers, hidden layers, and output layers.

Two proposals for neural architecture were presented in this
study in order to determine the structural performance of a neural
network. The first architecture consists of three inputs (VC, f, and
ap) and three outputs (Etot, Ctot, and Ra) at the same time
(Figure 10a). The second consists of three inputs and a single output
presented by the networks ANN1, ANN2, and ANN3 (Figure 10b).

The objective of this study is to determine the optimal structure
at the output level, number of hidden neurons, and level of the
learning algorithm used. The performance of all structures is meas-
ured using the MSE during the algorithm learning process. The
MSE is given by the following equation:

Table 7. Gray relational grade (GRG) (first case)

Si

ψi

RankEtot Ctot Ra γi

S1 0.56 0.60 0.42 0.525 6

S2 0.53 0.56 0.36 0.485 9

S3 0.74 0.79 0.55 0.691 5

S4 0.67 0.79 1.00 0.820 2

S5 0.49 0.52 0.47 0.494 8

S6 0.50 0.52 0.33 0.452 10

S7 0.33 0.33 0.66 0.442 11

S8 1.00 1.00 0.74 0.912 1

S9 0.34 0.33 0.59 0.422 12

S10 0.52 0.56 0.49 0.524 7

S11 0.44 0.45 0.37 0.419 13

S12 0.83 0.87 0.57 0.756 3

S13 0.83 0.87 0.47 0.723 4

IPC-IPC Zigzag-IPC Zig-IPC
0.0

0.5

1.0

1.5

Ra
( l
m
)

Figure 9. Surface roughness histogram of F1-F2 features made with IPC-IPC, zigzag-IPC,
and zig-IPC strategies.

Table 8. Cutting parameters (second case)

Factors

Levels

�1 0 1

Vc (m/min) 25.3 37.69 50.26

f (mm/rev) 0.075 0.1 0.125

ap (mm) 0.3 0.5 0.75
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MSE =

Pn
i= 1

xi� yi
� �2

n
(11)

The second performance criterion is the correlation coefficient
(R2). The R2 varies between �1 and + 1. R2 close to +1 indicates a
strong positive linear relationship between input parameters and
output variables [27]. The R2 coefficient is calculated from this
equation:

R2 = 1�
Pn
i= 1

xi� yi
� �2

Pn
i= 1

yi
2

0
BB@

1
CCA (12)

Several learning algorithms use backpropagation in their pro-
cessing systems to determine the weights and biases of neural
structures. Figure 11 presents the general NNarchitecture with
the different parameters.

For structural NN modeling, the Levenberg-Marquardt
(LM) algorithm, the scaled conjugate gradient (SCG) algorithm,
and the BR algorithmwere used. The present work uses the sigmoid
function as an activation function in order to normalize the output
response. The activation function is represented by the following
equation:

f pi
� �

=
2

1 + e�2pi
�1 (13)

where p is the input conversion function.
For all neural architectures, the data are divided into three

groups: learning, testing, and validation. Seventy percentage of
the data is devoted to the learning phase, 15% to the testing phase,
and finally 15% to validation. Table 10 shows how to figure out the
best learning algorithm, the number of hidden layers, and the
number of best outputs. After several tests, the optimal architecture
in this study for a single output is {3-10-1} for the output variable
Etot and {3-14-1} for the variables Ctot and Ra. The same LM
learning algorithm is used to realize all optimal structures. The
optimal architecture with three outputs (Etot, Ctot, and Ra) is now
presented by the {3-10-3} architecture realized with the BR algo-
rithm. The backpropagation algorithm was very good at predicting
the amount of energy used, the cost ofmachining, and the quality of
the surface. Figure 12 illustrates the predicted values of Etot, Ctot,
and Ra compared to the experimental values for the single output

ANNANN
VcVV (m(( /m m// inii )Vc (m/min)

f (m(( m/m r// ev)vf (mm/rev)

ap (m(( m)ap (mm)

Etot (k(( WhWW )Etot (kWh)

Ctot (TDTT )DCtot (TD)

Ra (µ(( m)Ra (µ m)

ANN1ANN1

VcVV (m(( /m m// inii )Vc (m/min)

f (m(( m/m r// ev)vf (mm/rev)

ap (m(( m)ap (mm)

Etot (k(( WhWW )Etot (kWh)

Ctot (TDTT )DCtot (TD)

Ra (µ(( m)Ra (µm)

ANN2ANN2

ANN3ANN3

a)a)

b)b)

Figure 10. Proposed neural architectures.

Table 9. Experimental values (second case)

No.

Input Output

Vc f ap Etot (kWh) Ctot(DT) Ra (μm)

1 1 �1 0 0.18184 50.3156 0.118

2 1 0 �1 0.21806 56.3425 0.130

3 0 1 1 0.09378 39.0243 0.176

4 �1 0 �1 0.28144 86.2920 0.110

5 0 0 0 0.16874 50.3123 0.095

6 0 1 �1 0.22250 58.3627 0.136

7 0 �1 �1 0.36009 79.6789 0.120

8 1 0 1 0.09550 38.2261 0.145

9 0 0 0 0.16802 50.3121 0.113

10 1 1 0 0.11139 40.6865 0.140

11 �1 0 1 0.11762 50.1745 0.155

12 0 �1 1 0.15066 47.5486 0.120

13 �1 1 0 0.10950 55.0624 0.131

14 0 0 0 0.17708 50.3144 0.103

15 �1 �1 0 0.22825 74.2222 0.106
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structure. The R2 for Etot, Ctot, and Ra are 0.9984, 0.9963 and
0.8741, respectively. These values show a good correlation between
the predicted values and the experimental values. On the other
hand, the MSE for the output responses is low, namely 8.25 10�6

(kWh), 1.42 TD (0.44 $), and 1.17 10�4 μm, respectively, for Etot,
Ctot, and Ra. Figure 13 shows the predicted values of Etot, Ctot, and
Ra versus the experimental values for the three-lead structure. The
R2 for Etot, Ctot, and Ra are 0.9992, 1, and 0.9117 respectively. So,

from Table 10 and Figures 12 and 13, the conclusion is drawn that
the LM algorithm has good learning with a single output response.
On the other hand, the BR algorithm has good learning with a
multi-criteria response (three for this work). By comparison
between these architectures, the {3-10-3} architecture with the BR
algorithm has a good correlation compared to the other architec-
tures. The MSE global MSE for this architecture is 2.74 10�3.
Therefore, the use of artificial intelligence by neural networks seems

Table 10. Different neural architectures (second case)

Etot Ctot Ra

Algorithm ANN MSE R2 MSE R2 MSE R2

A single output Train Test Train Test Train Test Train Test Train Test Train Test

LM 3_10_1 2.56E–11 1.65E–5 0.9999 0.99 8.59E–07 2.58 0.99999 1 3.18E–06 8.06E–04 0.996 0.999

LM 3_14_1 1.38E–15 1.65E–4 0.9999 0.99 1.23E–28 1.42 0.99999 0.99 2.90E–06 2.31E–04 0.997 1

BR 3_10_1 4.14E–06 1.38E–3 0.9996 1 7.01E–07 14.04 0.99999 1 1.84E–05 3.28E–04 0.980 0.999

BR 3_14_1 1.97E–08 7.98E–4 0.9999 1 7.01E–07 2.11 0.99999 1 1.59E–05 4.21E–04 0.983 0.999

SCG 3_10_1 3.28E–06 6.80E–4 0.9997 1 4.19E–02 23.94 0.9998 1 1.48E–05 3.53E–04 0.984 1

SCG 3_14_1 4.66E–06 2.94E–2 0.9995 1 2.22E–01 1.74 0.99942 1 5.52E–05 2.70E–04 0.961 1

Three outputs MSE_Training MSE_Testing R2_Training R2_Testing

LM 3_6_3 8.26E–05 74.95E–00 0.99999 0.99999

LM 3_10_3 1.88E–02 4.97E–02 0.99998 0.99998

LM 3_12_3 4.51E–00 3.54E–00 0.99723 0.99742

LM 3_14_3 7.25E–01 2.76E–01 0.99954 0.99999

BR 3_6_3 8.72E–06 7.44E–00 0.99999 0.99998

BR 3_10_3 3.57E–06 5.49E–03 0.99999 0.99999

BR 3_12_3 7.12E–06 5.62E–00 0.99999 0.99804

BR 3_14_3 6.96E–06 3.63E–02 0.99999 0.99999

SCG 3_6_3 6.73E–01 105.83E–00 0.99954 0.99945

SCG 3_10_3 2.22E–00 30.94E–00 0.99853 0.97474

SCG 3_12_3 5.65E–02 1.56E–00 0.99996 0.99911

SCG 3_14_3 46.19E–00 1.37E–00 0.99365 0.99987

Cutting speed (Vc)

Feed rate (f)

Depth of cut (ap)

Total energy consumed (Etot)
or

Total cost (Ctot)
or

Roughness (Ra)

b1ib1i

b2b2
w1iw1i w2ww iw2i

Input layersInput layers hidden layershidden layers Ouput layersOuput layers

Figure 11. General neural network architecture.
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to be a useful methodology to simulate multi-criteria responses in
mechanical manufacturing. In what follows, the {3-10-3} architec-
ture will be retained.

Prediction with ANFIS model
The ANFIS model is highlighted to predict experimental results in
different fields of engineering [28, 29 and 30]. ANFIS is a hybrid
fuzzy inference approach from Sugeno [31] which simultaneously
combines a fuzzy inference system (FIS) with a NN. This combin-
ation aims to make the system efficient in order to solve complex
problems [32]. In the general case, the ANFIS model includes five
consecutive treatment lines. The lines (layers) are connected to each
other by different nodes. Each entry node is drawn from the
previous line. Figure 14 presents the general architecture of the
ANFISmodel. The numerical interpretation of this architecture can
be presented as follows:

Rule 1 = if x is A1 and y is B1, then f1 = p1 x + q1 y + r1

Rule 2 = if x is A2 and y is B2, then f2 = p2 x + q2 y + r2

where x and y are the input parameters of the experimental study,
and pi and qi represent the variables of the fuzzy set. The output
function of the ANFIS model is presented by

f = �w1f 1 + �w2f 2 (14)

where �w1 =
w1

w1 +w2
; �w2 =

w2
w1 +w2:

where wi is the trigger strength for each rule.

In this present work, in order to find the optimal architecture of
the ANFIS model, a combination of numbers and types of mem-
bership functions (MFs) (Gaussian-shaped MFs, gaussmf and
gauss2mf, and triangular-shaped MF, trimf) was carried out. The
MFs used in this work are the trimf, gaussmf, and gauss2mf. The
numbers of MF used are {2 2 2}, {2 2 3}, and {2 3 3}. The MF of
constant and linear types is used for the output variables. The
ANFIS modeling process runs with 75% of the data for training
and 25% for testing. In this process, the iteration number for the
mapping is equal to 100. Table 11 presents the different combin-
ations of ANFIS architecture with the different MFs. According to
this table, structure {2 2 2} is the optimal structure for the three
output responses (Etot, Ctot, and Ra). According to the results, the
function (trimf) has the lowest test error for the energy consumed
(Etot) with a linear output. On the other hand, the (gaussmf)
function has the lowest error for Ctot and Ra output responses with
constant and linear output functions, respectively. The MSE_All
values for the Etot, Ctot, and Ra output responses are 0.01913, 3.399
and 4.516 E-3, respectively. Figure 15 illustrates the final {2 2 2}
architecture for the three output variables. Figure 16 illustrates the
comparison between predicted and experimental values for output
responses. The R2 values for the variables Etot, Ctot, and Ra are 0.95,
0.965 and 0.968, respectively. These values present a good correl-
ation but are less weak than those of the neural network, except for
the surface quality for the ANFIS model, which is greater than that
of the ANN (0.968 > 0.9117). Table 12 shows a comparison between
the two ANN and ANFIS models’ global MSEs (training and
testing) for the different output variables. The result shows that
the global MSE of the {3-10-3} neural structure is lower compared
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Figure 12. Experimental values versus predicted values (single output: {3-10-1} and {3-14-1}).
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to that of the ANFIS model. Indeed, Figures 12 and 13 (ANN),
Figures 15 and 16 (ANFIS), and comparison Table 12 show that the
use of the BR algorithm with a multi-criteria output response can
give good results when compared with ANFIS.

A 3D surface plot study was carried out in order to describe the
effects of the cutting parameters on the output responses. Figure 17
shows the variation of energy consumed (Etot), cost (Ctot), and
surface quality as a function of the cutting parameters. Figure 17a
and 17b shows that for a decrease in the feed rate (f), there is an

increase in the energy (Etot) and the cost (Ctot). This conclusion is
because the machining time decreases when the feed rate increases,
which positively influences the energy consumption and the cost.
This conclusion is similar to the studies of references [33, 34 and
35]. Figure 17e shows that as the feed rate increases, the surface
quality decreases. In other words, the roughness (Ra) increases.
Indeed, the feed rate (f) has a remarkable influence on the surface
quality compared with the cutting speed. In this present work, the
depth of cut (ap) is chosen so that all levels have the same depth of
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Figure 13. Experimental values versus predicted values (three outputs: {3-10-3}).
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Figure 14. General architecture of the ANFIS model.
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cut for a height of cut h. Figures 17(b) and (d) clearly show that as
the depth of cut increases, so does the energy (Etot) and the cost
(Ctot). The decrease in the number of cutting levels, caused by an
increase in the depth of cut, leads to a reduction in total machining
time. Similarly, for the surface quality, the increase in the depth of
cut has a negative influence on the roughness (Ra) (Figure 17(f)).
This is because the tool tends to vibratemore as the depth of cut gets
deeper, especially if the diameter of the tool is small. These con-
clusions converge with the studies of Khan Aqib et al. [35], Eser
et al. [36] and Devarajaiah et al. [37].

Development of an intelligent simulator based on prediction
models ANN and ANFIS

An interactive interface has been developed to help machinists
predict the energy consumed, surface quality, and cost of a 2017A

alloy part containing an interacting pocket and groove. The simu-
lator was implemented using the “Guide” interface of theMATLAB
2016 software. Figure 18 shows this user interface named
“QCE_Intelligent_simulator,” which is simple and extremely easy
to learn. As shown in the figure, the user must first input the values
of the cutting parameters (Inputs), that is, the cutting speed (Vc),
the feed rate (f), and the depth of cut (ap). Subsequently, the user has
the choice to predict the results according to the ANNmodel or the
ANFIS model by pressing the “Predict” button.

TheCatia-machine interaction is achieved through the production
of a G-code program according to the ISO 6983 standard compatible
with the CNC director Num of the machining center. The power is
measured in real time during the execution of the machining oper-
ation. The actual results are compared to what was expected after the
data and results have been analyzed [38, 39].When another operation
is executed, the machining parameters are updated.

Table 11. Different combinations of ANFIS architecture (second case)

N° MF Function Output Function

MSE

Etot Ctot Ra

Training Testing Training Testing Training Testing

1 2 2 2 trimf Constant 7.8416 E–3 0.05540 1.1554 5.7004 0.011449 0.02187

2 2 2 2 trimf Linear 1.4493 E–4 0.03812 1.7851 E–4 6.1249 3.674 E–3 5.775 E–3

3 2 2 2 gaussmf Constant 0.013354 0.07664 1.1380 5.6612 0.011222 0.02076

4 2 2 2 gaussmf Linear 1.4493 E–4 0.04799 1.9405 E–4 7.9327 3.674 E–3 4.516 E–3

5 2 2 3 trimf Constant 1.2314 E–3 0.08307 0.24543 10.763 4.378 E–3 0.03362

6 2 2 3 trimf Linear 1.4493 E–4 0.04688 6.6776 E–5 22.323 3.674 E–3 0.04732

7 2 2 3 gaussmf Constant 1.8205 E–3 0.08021 0.71613 9.7418 4.378 E–3 0.03288

8 2 2 3 gaussmf Linear 1.4493 E–4 0.04290 4.1635 E–5 26.535 3.674 E–3 0.05488

9 2 3 3 trimf Constant 1.4493 E–4 0.10174 7.881 E–5 47.256 3.674 E–3 0.064204

10 2 3 3 trimf Linear 1.4493 E–4 0.12681 4.9551 E–6 47.828 3.674 E–3 0.08988

11 2 3 3 gaussmf Constant 1.4493 E–4 0.06475 8.5646 E–5 34.968 3.674 E–3 0.05383

12 2 3 3 gaussmf Linear 1.4493 E–4 0.10273 9.1918 E–6 36.018 3.674 E–3 0.05890

Cutting Speed

Feed rate

Depth of cut

Etot or Ctot or Ra

Figure 15. Final {2 2 2} architecture.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 13

https://doi.org/10.1017/S089006042400009X Published online by Cambridge University Press

https://doi.org/10.1017/S089006042400009X


Comparative analysis

A very few of the researchers have applied artificial intelligence
models (ANN and ANFIS) to optimize machining performance in
milling. We cite, as examples, works somewhat close to our study:
Pourmostaghimi et al. [40] propose a model-based smart optimiza-
tion methodology to optimize the production cost and material
removal rate under surface quality constraint during a turning
operation inhardenedAISID2. Theydetermine the optimalmachin-
ing parameters by applying the particle swarm optimization (PSO)
algorithm. Namlu et al. [41] developed anANNmodel in the Python
programming environment to predict the cutting forces of Ti–6Al–
4 V machining. The results showed that the experimental cutting
forces were estimated with a successful prediction rate of 0.99 with
mean absolute percentage error and root MSE of 1.85% and 13.1,
respectively. Pourmostaghimi et al. [42] proposed a novel PSO-
RDNN hybrid approach combining PSO algorithm with recurrent
dynamic neural network (RDNN), for multi-performance optimiza-
tion of machining parameters in finishing turning of AISI D2

hardened parts. The proposed methodology returns a Pareto opti-
mality plot, which represents cutting variables optimized for several
different cutting conditions.

Thework of Sada and Ikpeseni [43] is the only research closest to
our work and which can be compared with the results of our work
even if the materials are not the same. Sada and Ikpeseni provide
valuable insights into the predictive performance of ANNs and
ANFISs for predicting the machining performance of AISI 1050
steel. This study focuses on a specific application and evaluates the
modeling ability of both ANN and ANFIS models. In this research,
the authors likely conducted experiments or collected data related
to the machining process of AISI 1050 steel. They then compared
the predictive capabilities of ANN and ANFIS models by training
and testing them on the collected data. The evaluation criteria could
include accuracy, precision, recall, mean absolute error, or other
relevant performance metrics. Sada and Ikpeseni assess the per-
formance of ANN and ANFIS models in predicting machining
responses (metal removal rate and tool wear) in anAIS steel turning
operation. The R2 obtained from the analysis further confirms the
preference of ANNwith a maximum value of 92.1% recorded using
ANN compared to that of ANFIS of 73%. Based on their analysis
and comparison, the authors found that the NN models (ANN)
exhibited superior predictive performance over the ANFIS models.
This conclusion aligns with your statement that the authors of
reference [43] established the predictive superiority of neural net-
works over ANFIS. The study’s findings suggest that ANN models
were better at capturing the intricate relationships and patterns in
the machining performance data of AISI 1050 steel. These NN
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Figure 16. Experimental values versus predicted values (ANFIS model).

Table 12. The MSE_ALL values of the ANN and ANFIS models (second case)

Model

MSE_ALL

Etot Ctot Ra

ANN (3–10–3)  ----------------------- –2.74 × 10�3-----------------------!
ANFIS (2 2 2) 0.01913 3.399 4.095 10�3
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Figure 17. 3D surface plot of energy (Etot), cost (Ctot), and roughness (Ra).

Figure 18. QCE_Intelligent_simulator.
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models likely outperformed ANFIS models in terms of accuracy
and generalization capability.

In our work, we obtained the R2 values for Etot, Ctot, and Ra:
99.92%, 100%, and 91.17%, respectively, for the ANN model and
95%, 96.5%, and 96.8%, respectively, for the ANFIS model. In our
article, we observed a strong correlation between the results,
highlighting the superiority of the ANN model over the ANFIS
model in all instances, which aligns with the findings of Sada and
Ikpeseni [43].

The obtained R2 in your work demonstrate the superior pre-
dictive performance of the ANN model compared to the ANFIS
model for the variables Etot, Ctot, and Ra. The high R2 values
achieved by the ANNmodel, such as 99.92% for Etot, 100% for Ctot,
and 91.17% for Ra, indicate a strong correlation between the
predicted values and the actual values. The superior predictive
performance of the ANN model compared to the ANFIS model,
as evidenced by the high R2 obtained in our work, can be attributed
to several scientific factors. NNs, including ANNs, excel at captur-
ing and representing nonlinear relationships in data due to their
flexible and adaptable nature. They can adjust their internal param-
eters during training, optimizing their performance and enabling
them to model complex nonlinear dependencies more effectively
than ANFISmodels. Additionally, the end-to-end learning capabil-
ity of neural networks allows them to learn directly from raw input
data without manual feature engineering, extracting relevant fea-
tures and uncovering hidden patterns. The scalability and depth of
neural networks, particularly in deep architectures, enable them to
handle intricate and high-dimensional datasets, contributing to
their superior predictive power. These scientific factors collectively
justify the superior predictive performance of the ANN model in
our work.

Conclusion

The increase in the world’s population promotes an increased
demand for products, which requires enormous energy consump-
tion in industries. In order to evaluate the trade-offs between cut
quality, manufacturing cost, and energy consumption (QCE). This
article presents an approach that integrates ANNs and ANFIS to
predict the effects of strategies, machining sequences, and cutting
parameters on the consumption of energy, machining cost, and
Ra. Two in-depth case studies were carried out to understand the
effects of the parameters introduced into the multi-criteria output
responses. Based on the results already found, the studies first show
that the strategies and the planning of the machining sequences
have a remarkable influence on the energy consumption, the cost of
machining, and the surface quality of the parts. In this work, a
multi-objective optimization based on the GRA was proposed,
which is applied to optimize the sequences and strategies of
machining on a part that contains interacting entities. The results
obtained confirm that the proposed optimization method is a very
indispensable tool for multi-criteria optimization. The use of a
variety of architectures and a variety of learning algorithms for
the construction of neural networks allows us to increase the range
of choice and the rigorous selection of the optimal solution
(architecture + algorithm). The {3-10-3} architecture with the BR
algorithm is the optimal neural architecture that yields an overall
MSE of 2.74 × 10�3. Similarly, for the ANFIS, the optimal structure
which gives a better error and better correlation is the {2 2 2}
structure, and this for the three output variables (Etot, Ctot, and Ra).

Studies also show that for a decrease in the forward speed (f), there is
an increase in Etot and Ctot. In contrast to energy and cost, a decrease
in f causes a decrease in Ra.

Future work will aim to extend multi-criteria output responses
to account for other factors (e.g., dimensional error and vibration).
Finally, an application to a wider range of prediction and optimiza-
tion with other methods of artificial intelligence can contribute
positively to the desired performance.

Nomenclature
N Spindle speed (rev/min) (rpm)
Vc Cutting speed (m/min)
f Feed rate (mm/rev)
ae Cutting width (mm)
Ppi Total power consumed for machining the pocket for a cutting

width = tool diameter (layer i) (W)
Pc_pi Power cutting for machining the pocket for a cutting width = tool

diameter (layer i) (W)
P0 No-load power (W)
Pg Total power consumed for machining the groove (W)
Pc_g Power cutting for machining the groove (W)
P∗
pi Total power consumed for machining the pocket for a cutting

width = ae (layer i) (W)
P∗
c_pi Power cutting for machining the pocket for a cutting width = ae

(layer i) (W)
ap Depth of cut (mm)
Vf Feed rate (mm/min)
Pc The power consumed (W)
CMachine Machine cost (TD)
CTool Tool cost (TD)
CEnergy Energy cost (TD)
μ1 Cost of assembly and adjustment (TD)
μ2 Machine cost per hour (TD/h)
ε Cost of a cutting edge and tool change (TD)
δ Energy cost (TD/kWh)
TD Tunisian dinars = 0.31 $ US Dollar
tc Cutting time (s)
tcycle Cycle time (s)
ANN Artificial neurons networks
ANFIS Adaptive neuro-fuzzy inference systems
GRA Gray relational analysis
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