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1. P. Heywood [3] proved the following theorems:
THEOREM A. If0 <y <2, if x*"1g(x) € L(0, n), and if

b,=3rg(x) sin nx dx (L.1)
n

0

forn=1,2,3, ..., then the series Z n~'bh, is convergent.
1
THEOREM B. If0 <y < 1, if x'"'f(x) € L(0, n), and if
a,= Ej J(x) cos nx dx 1.2
TJo

o
forn=1,213, .. then the seriesz n~%a, is convergent,
1

THEOREM C. Suppose that g(x) € L(0, %), that b, is defined by (1.1) for each n, that

0
0<yZ1, and that the seriesy, n”~' | b, | converges. Then the integral
1

In x"'g(x) dx

-0

exists as a Cauchy-Lebesgue integral.
THEOREM D. Suppose that f(x) € L(0, n), that a, is defined by (1.2) forn=1, 2, ..., that

0 <y < 1, and that the series Y, n*~* | a, | converges. Then the integral
1

In x7(x) dx

-0
exists as a Cauchy-Lebesgue integral.
When the index y satisfies 1 <y <2, Siobhan O’Shea [6] has proved the following
theorem:

THEOREM E. Suppose that 1 <y < 2. Then the series
Y b,sinnx (b,20) (1.3)
n=1

converges everywhere to a function g(x) satisfying x"'g(x)e L(0, =), if and only if
o0

Y n"" b, < 0.

1
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The present note is concerned with generalizations of these theorems. We shall make use
of a class of asymptotic functions which have previously been defined in [2]. By ¢(x) ~ [a, b],
0<asgb<wor - <asbsg0, we denote a non-negative function ¢(x), not identically
zero, such that x~?¢(x) is non-decreasing and x~%¢(x) is non-increasing, as x increases in
(0, ©). By ¢(x)~ {a, b), we denote ¢(x) such that there exists some positive constant ¢ for
which ¢(x) ~ [a+¢e, b—¢]. We define ¢(x) ~ [a, b) and ¢(x) ~ {a, b] in a similar way.
We shall establish the following theorems:

THeOReM 1. If x™'¢(x~V)g(x) € L(0, m), where ¢(x) ~[—1,0) or ¢p(x) ~ (=2, —1),
and if b, is defined by (1.1) for n =1, 2, 3, ..., then Y ¢(n)b,, is convergent.
1

THEOREM 2. If ¢(x) ~ {—1,0) and x ' (x~")f(x) € L(0, n), and if a, is defined by (1.2)

for every n, then Y, ¢(n)a, is convergent.
T

THEOREM 3. Suppose that g(x) € L(0, n), that b, is defined by (1.1) forn=1,2,3, ..., and
that Y} n~'¢(n~')| b, | < oo, where ¢(x) ~ (=2, 0); then the integral
1

f " b(x9(x) dx

-0

exists as a Cauchy-Lebesgue integral.

THEOREM 4. If f(x) € L(0, n), and if a, is defined by (1.2) for n=1, 2, 3, ..., such that
YonTto(n ") | a,| <oo, where ¢(x) ~ (1, 0), then the integral
1

f" S () dx
~0

exists as a Cauchy-Lebesque integral.

THEOREM 5. Let ¢p(x) ~ (-2, —1), and let b,= 0 for every n. Then the trigonometric

series Y. b, sin nx converges everywhere to g(x) such that $(x)g(x)e L(0, ), if and only if
1

Y ntg(n~ )b, < 0.

1

2. It is natural to inquire whether the result in Theorem A can be extended to integra-
bility of the function x~?{g(x)}” for p > 1 (cf. Math. Z. 66 (1956), 9-12). The answer is in the
negative even when p = 2. This may be justified by the example: g(x) = (n—x)"t. Here
we have 7b,/2~ K(—1)"*'n"%, so that if y=4, p=2, then x7"{g(x)}* € L(0, n), but
o0 [

Y. n'bE =Y n¥bl = co.
1 1

As a particular case in Theorem 1, we may set ¢(x) = x77L(1/x), where 0 <y <2 and

L(¢) is a slowly increasing function in the sense of Karamata ([4], [5]; cf. also [7, p. 186]).
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Similar conditions may be applied to Theorems 2 to 5. By a(x)=~ b(x) and a(x)< b(x), as
x — ¢, we mean a(x)/b(x) — 1 and K, < a(x)/b(x) < K,, respectively, as x —» c. Here and later
the letter X denotes a positive constant, not necessarily the same at each occurrence.

LemMma 1. Let

g(x) = i A, Sin nx, 2.1)
1

where A, decreases steadily to zero. If ¢(x)~[—1, 0> and if A,~ ¢(n) as n—oo, then
g x"1¢(x~Y), as x - +0.

Proof. Since ¢(x) ~[—1,0), by Lemma 1 in [2], ¢(x) is absolutely continuous in
(0, o0), where ¢ (x) decreases monotonically. From ¢(x) ~ [ —1, 0D, we obtain x¢(x) ~ [0, 1),
where x¢(x) is non-decreasing in (0, c0). It follows that

g =S dsnnx= Y 4+ ¥ =54+5, 22)
1

18n5(1/x) n>(1/x]

<Kx J o di< Kx(l){lqb(l)} = 5¢<1>. @2.3)
) x/|x \x x \x

By Abel’s transformation, it is easy to verify that

where

[1/x]

Y nd,
1

| Sy £Kx

[S;1 =] ) 4,sinnx

n>1/x

< ’fd,(l), (2.4)
X X

It remains to show that g(x) > Kx~'¢(x™ '), as x » +0. To see this, write

g(x) =Y AL, sin® J(ntd)x Ay x
T sin 4x 2 4 @.5)
= ¥ A, w+o{l¢(l>} = S, +5Sa,
T sin 4x x \x

say. If ¢(x) ~{—m,0), then x*¢(x) decreases and x"¢(x) increases for some ¢ >0 in
(0, ). This implies that n®¢(n) > (2n)°¢(2n) and n"¢(n) < 2n)"¢(2n). It follows that
d(n)—d(2n) > (22— 1Dp(2n) > 27™(2° = 1)p(n) = K$(n). Write 4, = {1+0(1)}¢(n),asn - co0.
Then
4 s K, /1
528 % 82X g s> ;qs(;), 26)

X nf2xSns3n/2x

as x » +0. Hence g(x) > (K/x)¢(1/x), as x =+ 0.
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LemMMA 2. If ¢(x) ~ {(—1, 0, then, for small positive x,

& K /1

21: ¢(n)cosnx | £ ;q&(;), @n
and also, for any positive integer N,

N

Y (m) cos nx | < I§(¢(,‘l¢) @.8)

where K in (2.8) is independent of N.

The proofs of (2.7) and (2.8) are similar. For brevity, we only prove (2.7) here. Since
d(x) ~ {—1,0), there exists &> 0, such that x!°¢(x) increases and x*¢(x) decreases in
(0, 00). By differentiating these functions we obtain

ep(X)/x = —¢'(x) = (1-e)p(x)/x,

where ¢’ (x) exists almost everywhere. It follows as in the proof of Lemma 1 that

[+ 0]
f=Y¢mcosnx= Y + Y =8+8,,
1 15ng[1/x) n>[1/x]
say. Here we have

IS:1

IA

Kf”’ () dt < ’5¢(1)~K f 60 de
1 X X

1

5¢(1)+K(1—-e)f”x () dt < 5¢<1),
X \x : X \x

where the last inequality is obtained by shifting the term K(1— s)J. ... to combine with

A

1/x
KJ. ¢(t) dt. Also, as in the proof of Lemma 1, we have | S, | < Kx"!¢(x~*). The
1

result follows.

LeMMA 3. If 4, 2 0, and if the series Y, A, sin nx converges everywhere to a function g(x)
1
[
such that x~'g(x) € L(0, n), then ), A, <.
1

LemMA 4. If 4, 2 0 and if the series ). A, sin nx converges everywhere to the function f(x),
1
such that $(x)f (x) € L(0, ©), where ¢(x) ~ {—1, 0), then

)‘? %qs(%)z <. 2.9)

Lemma 3 is due to R. P. Boas [1]. For the proof of Lemma 4, it is sufficient to prove that
the nth partial sum of (2.9) is bounded. Write ¥(x) = x " '¢(x™ ') ~ (—~1,0). The con-
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dition ¢ (x)f(x) € L(0, n) with ¢(x) ~ {—1, 0) implies that ¢(x)= Ky, > 0 in (0, 7) and that
f(x)e L(0, n). Using Lemma 2, we see that

i %‘15(%)1;‘ = i Yk = 2 Zn: w(k)jnf(x) cos kx dx
1 1 T1 o

- Ej"f(x)ilp(k) cos kx dx < Ej" 1769 | ‘fw(k) cos kx | dx
Mlo 1 o 1
ng" lw(l) 1) | dx = KJ" B0 1 /() | dx<K.
0o X X 0
LEMMA 5. If p(x) ~ =2, —1), and if
g(x)= i«ﬁ(n) sin nx, (2.10)
1

then g(x)=x"1¢(x~1).

Here it should be remarked that x~*¢(x~!) tends to zero as x - +0. So it is not obvious
that ¢ (n) in (2.10) can be replaced by 4,~ ¢(n), as in (2.1) of Lemma 1.

Since ¢(x) ~ (-2, —1), we have n¢(n) > 0, as n—»c0. By [7, Chap. 5, (1.3)], we see
that g(x) - 0, as x > +0. On the other hand,

g9'(x) = i ng(n) cos nx = i Y (n) cos nx, 2.11)

where Y(x) ~ (-1, 0), and the series (2.11) converges uniformly in (J, n) for any § > 0. It
follows from Lemma 2 that

g(x) = lim J T o' dt = o{r 3¢(5> dt} - o{r 20 dt}, 2.12)
s-+0 |4 ol \! 0

as x —» +0, where x(¢) = t =1 (¢~ 1) ~ {(—1, 0). Then, as in the proof of Lemma 2, we see¢ that
the right-hand member of (2.12) is O{xx(x)} = O{x~'¢(x~1)}.

Furthermore, it follows as in the proof of Lemma 1 that g(x) > Kx~'¢(x~!). Thus the
proof of Lemma 5 is completed.

3. We come now to the proof of Theorem 1. The argument is similar to the proof of
Theorem 1 in [3]. For any positive integer N, write

Nz—:l o(n)b, =Jd g(x) Nil ¢(n) sin nx dx +Jw g(x) i ¢ (n) sin nx dx
1 0 1 é 1

[T

_J" g(x) i ¢(n) sin nx dx—J‘u g(x) i ¢(n)sinnx dx (3.1)
’ N " N

=Il+12+l3+14,
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say. Taked = 1/N,n =1//N. Weshallsee that I,, I, I, tend to zero and I, tends to a finite
limit. In view of Lemmas 1 and 5, it follows from the hypothesis x~'g(x)¢(x~*) e L(0, n)
that the expression

lim I, = lim f g(x) Y. ¢(n) sin nx dx
5240

N-+w F 1

is finite. Similarly, in view of (2.5) and Lemma 1,

'] N-1
Imgj 19)1|'S ¢(n)sin nx
0 1

$1./1
dngf -¢<;) 190) | dx=0(l),  (32)

0 X

as N—oco. By similar arguments, it is easy to show that I; =o(l) and I, = o(l), as
N - c0. This completes the proof of Theorem 1. Similar arguments apply in the proof of
Theorem 2. The result follows in a similar way, except that Lemma 1 is replaced by Lemma 2.
Here we cannot replace ¢(x) ~ {(—1, 0> by ¢(x) ~[—1, 0>. This may easily be seen from the
special case ¢(x) = 1/x, where Y. n~!cosnx ~ —log x, as x— +0 [3, p. 174]. This also
means that Theorem 2 does not hold for the case ¢(x) ~ (=2, —1).

For the proof of Theorem 3, we write

1x)=g(x) —¥(x),

where
Y(x) = i b,sinnx, N=[6"1],
and l
Jj ¢ (x)g(x) dx = Lﬂ () (x) dx +I: ¢ (x)x(x) dx. (2.3)
Let

X(x) = J () dt.
0
From Lemma 1 in [2], we see that ¢(x) is absolutely continuous in [8, n] for any é > 0.
Since g(x) € L(0, n) implies x(x) € L(0, 7), integration by parts gives

] [

j " $00(x) dx = @)X (2) - (B)X () - J "B WX (W) d.

By similar arguments as in [3], it can readily be shown that the first and second terms on the
right tend to zero as § » 0. It remains to show that the last term tends to zero as N - o0. In
fact, since ¢(x) ~ (—2, 0> implies that ¢(x) is absolutely continuous, it follows that

f" ¢ ()X (x) dx ér (~¢@)XWIdxs 0715, |J" (~¢'(x)} dx
8 s 1 5
= 3 07,1 O-4@)S6@ T 17161 = o0
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as N — oo, where — ¢'(x) is positive almost everywhere. Hence
I POIX () dx0,
&

as N = 00. Then it is sufficient to consider

j" SO (x) dx =f" SO (x) dx - j * S (W (x) dx
3 0 0

= fﬁ (W (x) dx—fa ¢(x)§ b, sin nx dx -—J") o(x) i b,sinnxdx (3.4)
0 o 1 0

M+1
= Jy+Jp s,
say, where M = [67%]. Write 6,(t) = ¢(¢/n)/p(1/n) forn=1,2,3,.... Ttis easy to see that
17t <0,(H<s1" 2 (0<t<]), t°72<0,(ngt™ (1>1).

Since 6, (¢) decreases steadily to zero as f — oo,

f ¢(?) sin nt dt' = _¢< > j”“ 0,(1) sin tdt’

( ) <f )0 (1) sint dt

< ¢( ){j -2+ d:+j "dt} §5¢<1>. (3.5)
0 1 n n

N n . n
Jy= ; b,,I ¢ (x) sin nx dx— 21 b,.f ¢(x) sin nx dx,
o 0

Hence

as N — oo, where the last series converges absolutely. It remains to estimate J, and J,. We

have
[vN]} {1/VN]
TAEPD AT ¢( )f 0,(t)sin ¢ dt
1]
éKN“’zin‘%(n“)lb | = o(1), (3.6)
and | Jy] £ ﬁ n“o(n~YY\b, lj"NO(t)sintdt
[VN]
» n"¢(n")|bn|f ¢ dr
[VN] [}
<K 3 n~i¢(m") [ by| = o(1), 37
[VN]

as N - o0, This completes the proof of Theorem 3.
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Finally, it should be remarked that the proof of Theorem 4 is practically the same as that
of Theorem 3. Using Lemma 3 and Lemma 4, the proof of Theorem 5 follows in a similar

way as in [6] and is omitted here.
My thanks are due to the referee for pointing out a number of slips and for valuable

suggestions.
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