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CONTINUITY PROPERTIES OF OPERATOR SPECTRA 

NICHOLAS J. BEZAK AND MARTIN EISEN 

1. Introduction. This paper is devoted to the study of convergence and 
variation of operator spectra with respect to the distance G of Gokhburg and 
Markus [5] for subspaces and linear operators in a Banach space. We use the 
convention of Kato [7] and refer to convergence with respect to G as generalized 
convergence. Letting T denote a linear operator and A a complex number, we 
prove that the conjugate mapping c: T —» T' is continuous, where it is defined, 
in Theorem 2.6 and that the extended resolvent R: (X, 7") —> (X — T)~l is 
jointly continuous in Theorem 2.8. Both theorems generalize well-known 
results (confer [3; 7; 15]). An example of a sequence of bounded operators 
which converge to an unbounded operator in the generalized sense is given. 
We also prove that the spectrum mapping ae is upper semi-continuous on the 
set of linear operators in a Banach space in Theorem 3.3 which generalizes 
results of Newburgh [11] and Kato [7]. We extend to closed operators with 
non-void resolvent sets the three sufficient conditions of Newburgh [11] for 
continuity of ae at an operator T in Theorems 3.6, 3.9 and 3.10. 

The terms subspace and operator mean linear manifold and linear operator, 
respectively, in this paper. We employ the spectral notation and terminology 
of Taylor [15] in the sequel. We are indebted to Dr. H. A. Gindler for helpful 
conversations and suggestions in the formative stages of this research. 

2. Generalized convergence. This section is devoted to investigating 
some properties of the C7-topology for subspaces and operators. Let X be a 
non-trivial Banach space. We denote b y ^ ( X ) the class of subspaces of X 
and<5^(X) the class of closed subspaces of X. For F 6 ^(X), let 2 (F ) denote 
the set {3; G F; \\y\| = 1} and let d(x, y) = \\x — y\\ for x and y in X. 

Let Y and Z be subspaces of X. The opening of Y and Z, 0(F, Z), is defined 
by 

d(Y, Z) = max \ sup d(y, Z), sup d(z, Y) ( , 

the définition being completed by setting 6(Y} Z) = 1 if one and only one of 
For Z is {0} and0({O}, {0}) = 0. Here d(x, A) = infy€A \\x - y\\, îor A C X. 

This definition of opening is due to Krein, Krasnoselski, and Milman [8]. 
Gokhburg and Markus [5] defined the distance G by modifying the definition 
of opening as follows: let D denote the Hausdorff distance [6] induced by d on 
the class of non-void subsets of 2(X). 
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Definition. For subspaces F and Z of X, let 

G(Y, Z) = £ > ( 2 ( F ) , 2 ( Z ) ) = m a x j sup d(y,2(Z)), sup d ( 2 f S ( F ) ) > f 

if F ^ {Oj ?± Z, and let G(Y, Z) = 6(Y,Z), otherwise. 

Since 2 ( X ) has diameter ^ 2, D is a pseudo-metric (see [2]). I t follows t h a t 
G is a pseudo-metric f o r ^ # ( X ) and a metric ior S^(X). Moreover, G(Y, Z) = 
G ( F , Z) for F and Z i n ^ # ( X ) with bar denoting strong closure in X. I t is 
proved in [5] t h a t if F and Z belong t o ^ ( X ) , then G ( F , Z ) / 2 g 0 ( 7 , Z) g 
G ( F , Z ) , so t ha t G and 6 determine the same uniformity f o r ^ ( X ) . 

Let X' denote the conjugate space of X. If A is a non-void subset of X, 
let A1 = {xr £ X ' ; # ' (#) = 0 for each x G A} be the orthogonal complement 
of 4 in X ' . I t is known [12] t h a t 0 ( 7 , Z) = ^ ( T 1 , Z-1) for F , Z G ^ ( X ) . This 
proves the following lemma. 

2.1 LEMMA. Define T on^(X) with values in y\X') by setting T ( F ) = F 1 . 
Then Y is continuous with respect to G. 

For non-zero elements x and y in X, let 

n(x,y) = inf (e; | \x - y\ \ < {e - 1) min ( | |x | | , | b | | ) ) . 

Newburgh [10] proves t h a t n is a metric for X — {0} and uses this function to 
define a pseudo-metric 5 for the class of non-trivial subspaces of X as follows. 
Let D be the Hausdorff distance induced by n on the class of non-void subsets 
of X — {0} and for non-trivial subspaces F and Z in X, let 5 ( 7 , Z) = 5 ( 7 — 
{0}, Z — {0j). Berkson [1] proves in Theorem 7.1 t h a t 5 is equivalent to G. 
We can use this fact to deduce further properties of G. Note t h a t 5 ( 7 , Z) = 
5 ( 7 , Z) for non-trivial subspaces 7 and Z. 

Let X and 7 be non-trivial Banach spaces and let E = X X 7 be normed 
into a Banach space by || (x, y)\\ = \\x\\ + \\y\\, x £ X , 3/ G 7. We need the 
notion of bounded subspace in E due to Newburgh [10]. 

Definition. A subspace Z of E is said to be bounded over X (respectively 7 ) 
if and only if there is a positive cons tant K depending only on Z such t ha t 
\\y\\ ^ K\\x\\ (respectively, | |x | | ^ ^ I M I ) for each (x, y) £ Z. 

Let P denote the mapping defined on ^Ji{E) with values in ^(X) by P (Z) = 
{x; (x, y) £ Z} and let 38{X, 7 ) = {Z G - # ( £ ) ; Z is bounded over X and 
P(Z) =X). 

2.2 T H E O R E M . The class Se(X, 7 ) w open in^(E) with respect to G. 

Proof. We prove Së{X, F) is open with respect to 5. Let 0 < e < log (3/2) 
and choose Z0 G 3ê(X, F ) . From Lemmas 4 and 5 of Newburgh [10] there is 
a ft > 0 such t h a t Z Ç ^ # ( P ) and 5(Z, Z0) < ft implies 5 ( P ( Z ) , P ( Z 0 ) ) = 
5 ( P ( Z ) , X) < e. Bu t this implies P(Z) = X from Lemma 3 of [10] and the 
choice of e. 
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A similar theorem can be deduced with the roles of X and Y interchanged. 

Let 3T denote the class of linear operators T defined on domains D(T) C X 
and having ranges R(T) C Y and let 3Tc denote the subset of closed operators 
in $~. For S, T G Ĵ ~, we define G(S, T) = G (graph S, graph T), where graph S 
and graph T are considered as subspaces of E. G is then a pseudo-metric for J?̂ ~ 
and a metric for^~c. 

For a subset A of E, let ^4-1 = {(3/, x) ; (x,y) G ̂ 4}. Then we have G(Zi, Z2) 
= G(Z-rx, Z2

_1) for Zi and Z2 i n . ^ ( £ ) . The next theorem follows from this 
observation. 

2.3 THEOREM. The mapping i\ T —> T - 1 defined on the set of invertible operators 
in 3T is continuous with respect to G. 

For a closable operator T G ^~, let 7* denote the minimal closed linear 
extension of T i.e. graph T = graph T. Note that G(5, T) = G(5, T) for 
closable operators 5 and T m3T. Let [X, Y] = {T G 3~c\ D(T) = X}. The 
following theorem is a corollary to Theorem 2.3. 

2.4 THEOREM. The set {T G ^~; 2" is closable and T G [X, F]} is 0£en inJ^ \ 

Let T' denote the conjugate of T if and only if D(T) = X and let Of = 
{T G^~; D ( r ) = X}. Part (b) of the following lemma is due to Rota [13]. 

2.5 LEMMA. For T G T, let H{T) = {(-Tx, x)\ x G D(T)\. Then 
(a) G(5, T) = G(H(S), H(T)), 5, T G ^ " ; 
(b) graph r = 7 7 ( 7 ^ /or T G ^ . 

We denote by c the mapping defined on 2$ by c(T) = T'. The range of c 
is a subset of the set of closed operators defined on domains in Y' and having 
ranges in X'. 

2.6 THEOREM. The mapping c is continuous. 

Proof. Suppose {Tn} is a sequence in 2) such that G — lim Tn = T G ^ . 
Then G - limn T f ^ ) 1 - = H(T)1- from (2.1) and Lemma 2.5(a). Hence, 
G — limw Tn

f = 7"' in view of the previous lemma. 

Since the topologies of G and the operator norm are equivalent for [X, Y] 
(confer [1]), Theorem 2.6 generalized a well-known result (Dunford Schwartz 
[3, p. 478]). 

We assume in the sequel that X = Y and X is a complex Banach space. Let 
[X, X) = [X] and let C denote the space of complex numbers. The proof of the 
following lemma is taken from Bezak [2]. 

2.7 LEMMA. Let ^ denote the mapping defined on C X &~ with values in^T by 
^f(\,T) = X — T. Then ^ is jointly continuous. 

Proof. Suppose {(Xn, Tn)) is a sequence in C X $~ such that limw (X„, Tn) = 
(Xo, To) G C X ̂  with respect to the product topology. Let 0 < e < 1 and 
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choose a positive integer N such that n ^ N implies 

G(Tn) To) < /wi i IN J\2 and |Xn — Xo| < r • 

Fix n ^ N and choose x £ D(TQ) such that ||(x, (Xra — r„)x) | | = 1. This im­
plies 0 < \\x\\ ^ 1. By hypothesis there is y £ D(TQ) such that 

(..r^-o-.r^iK^j^jl 
Then 

||(x, (Xn - Tn)x) - (y, (Xo - T0)y\\ 

= \\x ~ y \ \ + \\Tnx - T0y\\ + ||X»# - Xô H 

_^* c \«A- • JL r>Jv ) • i t t i i i t i i i i l 

- 6 ( l + l X o | ) U | X " - X o | + | X o | | | x - y | 1 

< e\\{x, 7 » H , £ 
~ 6 ( 1 + |Xo|) ~ U * 

Now ||(z, Tnx)\\ g ||x|| + ||(xw - r n )x | | + |x„ - Xo| |M | + |x0| \\x\\ ^ 
1 + |Xo| + e/6, so that || (x, (Xn — JTW)X) — (y, (Xo — r 0 )y ) | | < e/2. This proves 

(a) sup {d(x, graph (X0 - T 0)) ;x £ 2 (graph (Xn - Tn))} g e/2. 
On the other hand, choose y £ D(T0) such that ||(;y, (X0 — r0);y)|| = 1, 

which implies 0 < ||^|| ^ 1. There exists x £ D(Tn) such that 

| | (y, ioy) (x,7wx)| | < 6 ( 1 + | X o | ) 2 . 

Then \\(y, T0y)\\ = \\y\\ + \\T0y - \,y + \0y\\ ^ 1 + |Xo| and \\n\ < |X0| + 
e/6. \\(y, (Xo - T0)y) - (x, (Xn - Tn)x)\\ £ \\x - y\\ + | | 7 > - T0y\\ + 
\\\0y ~ Kx\\ g e/6(l + |Xo|) + |Xo - Xn| + |Xn| \\x - y\\ < e/2, which proves 

(b) sup {d(y, graph (X, - Tn));ye 2 (graph (X0 - r0))} S e/2. 
Combining (a) and (b) we obtain G(\n — Tn, X0 — T0) ^ e îor n ^ N which 
proves the lemma. 

We define the extended resolvent R on 

D(R) = ( ( U ) ^ X f ; ( \ - T)-1 exists} 

by R(\, 7") = (X — T)~l. If T is a fixed operator in £T with non-void resolvent 
set p(T), then R restricted to p(T) X {T} becomes the usual resolvent R of T. 

2.8 THEOREM. The mapping R is jointly continuous. 

Proof. Let L and ^ be the continuous mappings of (2.3) and (2.7), respective­
ly. Then R = <j> o ^, where ^ = V/D(R) and 4> = i/$[D(R)]. 

This section is concluded with an example of generalized convergence of 
operators. 
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Example. Let X = / ^ , l < ^ < o o and let T be the operator in [X] having 
the matrix representation (Tmn) denned by Tmn = liim — n = 1 and Tmn — 0, 
otherwise, where m,n = 1, 2, 3, . . . . I t is well-known (Taylor [15, pp. 266-267]) 
t h a t p ( T ) = {X G C]\\\ > 1], Il2(r(T) = {X G C; |X| = 1}. Choose a sequence 
{\} C p(T) such tha t limn \n = X, |X| = 1. Then {R(\n, T)} is a sequence in 
[X] such t ha t G — limra i?(Xn, T) = i?(X, T) from the continuity of R. Simi­
larly, if we choose {\n\ C IIÏ<T(T) such tha t limn \n = X, |X| = 1, then 
{R(\n, T)} is a sequence of unbounded operators which converge to the un­
bounded operator R(\, T). 

3. C o n t i n u i t y propert ies of operator spectra . In this section we investi­
gate variat ion in the spectra of operators with respect to G. Let X be a complex 
Banach space and let Cœ denote the extended complex plane topologized by the 
chordal metric %• Let 5f denote the class of non-void closed subsets of Cœ. 
I t is proved in Gindler and Taylor [4] tha t p{T) and IIIia(T) are open sub­
sets of Cœ for T G ^~ . Therefore, the extended spectrum cre(T) and the set 
<re(T) — III\<T{T) are in J/*7 for each T G J^". We denote by <re the spectrum 
mapping defined on^ 7 " with values in Sf by setting <re(T) to be the extended 
spectrum of T. We also define the spectrum boundary mapping 8ae on 3T 
with values in 5f by 5ae(T) = <re(T) — IIIia(T). 

We need the notions of upper and lower semi-continuity. Let F be a topologi­
cal space and let <$/ be the class of non-void subsets of Y topologized by the 
upper and lower semi-finite topologies (confer Michael [9]). Consider a map­
p i n g / of a topological space X into s/. Then / is upper (respectively, lower) 
semi-continuous at x G X if and only if / is continuous with respect to the 
upper (respectively, lower) semi-finite topology. We have the following result 
[2]. 

3.1 T H E O R E M . For a topological space X and a metric space ( F , d) of finite 
diameter, let D be the Hausdorff distance induced by d on the class s/ of non-void 
subsets of Y. If f maps X intosé, then f is upper and lower semi-continuous at 
x G X if f is continuous at x with respect to D. Conversely, iff is upper and lower 
semi-continuous at x and f{x) is a compact subset of F, then f is continuous at x 
with respect to D. 

Proof. Suppose / is continuous a t x G X with respect to D. Let U be an 
open subset of F such t h a t / ( x ) C U. We can choose e > 0 so t ha t N(e) = 
{z (E Y\d(z,y) < e for some y G f(x)} C U.LetW= {B £s/;D(f(x),B) < e}. 
By hypothesis there is a neighborhood V of x such tha t f[V] G 'W which 
implies f[V] C U and proves t h a t / is upper semi-continuous a t x. If UQ is a 
neighborhood of y G / ( x ) , then z G V impl ies / (s ) C\ Uo ^ <£• This p r o v e s / is 
low^er semi-continuous a t x. 

Conversely, suppose / is upper and lower semi-continuous a t x and f(x) is 
compact. We can choose yu y2, . . . , yn in f(x) and e > 0 such t ha t f(x) C 
U = U L o U(yt, e), where U{yu «) = {z G F ; d(yu z) < t}. From upper 
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semi-continuity there is a neighborhood VQ of x such t h a t / [ 7 0 ] C U. From 
lower semi-continuity there are neighborhoods Vt of x such tha t z £ Vt implies 
/ (*) r\ U(yu *) 9*0, i = l , 2, . . . , n. Let V = n i=o Vt. U z £ V, then 
/ ( z ) C U. I t follows t ha t D(f(x),f(z)) ^ e, which completes the proof. 

Let D denote the Hausdorff distance induced by the chordal metric %• 
Since each closed subset of Cœ is compact , we have the following corollary to 
the previous theorem. 

3.2 COROLLARY. ae (respectively, 8ae) is continuous at T Ç $~ with respect to 
G and D if and only if ae (respectively, 8cre) is upper and lower semi-continuous 
atT. 

Newburgh [11] proved t ha t ae is upper semi-continuous on [X]. K a t o [7] 
proved tha t ae is upper semi-continuous with respect to G on the set of closed 
operators with non-void resolvent sets. T h e following theorem extends these 
results. 

3.3 T H E O R E M . The mappings <re and 8a e are upper semi-continuous on $~. 

Proof. We only prove the assertion for ae; the proof for 8ae is similar. Let 
T £ $~ and assume without loss of generality t ha t ae(T) 9e Cœ. Choose a 
proper open subset U of Cœ such t h a t ae(T) C U and select X g U. Then 
R(\, T) e C[X] = {T e <T; T is bounded and f <E [X]}. In view of (2.4) and 
(2.8) we can choose neighborhoods °à of R(X, T) in C[X] a n d ^ of T such t h a t 
5 G # implies R(\, S) G °U and X g ae(S). This proves ae(S) C U for each 
S G ^ which proves the assertion. 

3.4 T H E O R E M . If ae is continuous at T G 2s, then ae is continuous at T'. 

Proof. The assertion is a consequence of Theorem 2.6 and the fact t ha t 
ae(T) = ae(T'). 

We use the notion of Cauchy domain due to Taylor [14]. A Cauchy domain A 
is an open subset of Cœ which consists of a finite number of components and 
has a closed rectifiable boundary denoted b(A); moreover, the closures of its 
components are mutual ly disjoint. We also employ the operational calculus 
of Taylor [14]. For a closed operator T \x\3f such t ha t p(T) 9e 0, let 

E(a) = 81+ ~- f R(\,T)d\, 
Zirl J &(A) 

where a is a spectral set of T, A is a Cauchy domain containing ae(T) and 
the integration is performed in the usual counterclockwise sense on b(A). Here 
I is the ident i ty operator on X. 8 = 1 if oo G a- and 8 = 0, otherwise (see [14]). 
The following lemma occurs in [2]. 

3.5 LEMMA. Suppose G — limra Tn = T, where each Tn and T are either closed 
operators in $~ or operators in 3?~ with strongly dense domains in X and have non-
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void resolvent sets. Let a be a non-void spectral set of T and let A be a Cauchy 
domain such that a C A and Â H (<xe(T) — a) = 0. Then a positive integer N 
can be found such that n ^ N implies a e(T) P\ Â ^ 0. 

Proof. Suppose {Tw} and T a r e closed operators. If a = ae(T), the assertion 
is a consequence of the upper semi-continuity of ae. Assume a ^ <re(T) and 
the assertion is false. There is a subsequence {Tna)} of {Tn) such t ha t <re(Tn(i)) 
r\ A = 0, i = 1, 2, From Theorem 2.8 limn i?(X, r w ( 0 ) = R(\, T) uni-
formily for X £ &(A) because b(A) is compact. Therefore, 

lim I i?(X, r n ( 0 ) d X = I UmR(\, Tn{i))d\ = I JR(X, r )dX = 0. 
f «̂  &(A) J 6(A) z ^ 6(A) 

Hence, E(a) = 5/ . If oo £ o-, then -E(o-) = / implying a = (Te(T), a contradic­
tion of hypothesis. If oo go-, then -E(cr) = 0 which implies tha t a is void. In 
either case a contradiction is obtained which proves the assertion. For the 
case when each Tn and T have strongly dense domains in X, Ave apply the proof 
jus t completed to the conjugates Tn' and T' which completes the proof of 
the lemma. 

The first sufficient condition of Newburgh [11] for continuity of ae is general­
ized in the following theorem. 

3.6 T H E O R E M . If T £ ^~ is either closed or has strongly dense domain in X and 
<re(T) is totally disconnected, then <je is continuous at T with respect to G. 

Proof. Let U be a neighborhood of X £ <re(T). By hypothesis there is a 
spectral set a of T such tha t X £ & C U. From a theorem of Taylor [14] there 
is a Cauchy domain A such tha t <rC A C A C U. If G — limre Tn = T, then 
from the previous lemma there is an integer N such tha t ae{Tn) Pi Â ^ 0, 
n ^ N. Hence, ae is lower semi-continuous a t T. The assertion follows from 
Corollary 3.2 and Theorem 3.3. 

We fix a £ C and define the set function g a t a non-void subset A of Cœ 

by g (A) = {a + /x_1; id £ ^4}. Since the mapping p. —* a + /x_1 is a homeo-
morphism of Cœ onto itself, we have the following lemma. 

3.7 LEMMA. The mapping g is continuous on the class S^ of non-void closed 
subsets of Cœ with respect to D, the Hausdorff distance induced by % on £f. 

We have the following theorem due to Taylor [14]. 

3.8 T H E O R E M . Let T £ 3/~ be a closed operator and suppose p{T) ^ 0. Fix 
a £ p(T) and let Ta = —R(a, T). Then 

(a) a + p~l £ p(T) if and only if p. £ p(Ta); 
(b) a + p~l £ ae(T) if and only if p £ <xe(Ta). 

For S, T £ 37~, we define the product ST on 

£>(Sr) = {x]x £ £>(r) and 7 * £ D(S)} 
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by (ST)x = S(Tx). Then ST G J7" for each 5, T G ^~ . T h e following theorem 
generalizes the second sufficient condition of Newburgh [11] for cont inui ty 
of ae. 

3.9 T H E O R E M . Lei T £ ^~c, the subset of closed operators in^T, and suppose 
p(T) 9e <t>. If there is a neighborhood °U of T in 3T c such that S Ç °ti implies 
D(ST) = D(TS) and SR = TS, then ae is continuous at T. 

Proof. Choose a proper open subset U of Cœ such tha t ae(T) C U. Since <re 

is upper semi-continuous a t T, we can assume tha t S £ °ll implies ae(S) C U. 
Choose a G Cœ - U. If S G °U, then (a - T) (a - S) = (a - S) (a - T) which 
implies R (a, T)R (a, S) = R (a, S)R (a,T). We also have the fact t ha t [X] is open 
in 3T'c (confer Berkson [1]). I t follows from these results and Theorem 2.8 t h a t 
the s e t ^ = [R(a, S); S G °tt\ is a neighborhood in [X] which satisfies the 
conditions of Theorem 4 in Newburgh [11]. Hence, <re is continuous a t R(a, T). 
Let g be the function of Lemma 3.7. Then from (3.7) and (3.8) g is continuous 
a t ae(R(a, T)) and g(ae(R(a, T))) = ae(T). Let & be a neighborhood of 
<re(T) i nS^ . We can, therefore, choose a neighborhood °U\ C % of T. such t h a t 
5 G ^ o implies ae(S) G ^ . The details are given in [2]. This completes the 
proof. 

Definition, het^ be a subset of 3?~ and set 

U ? ' = ( r ; r G [XI, £>(Sr) = £>(rS) and ST = TS for each 5 G ^ } 

and ^ " = {^Jé'y. Then ^ ^ is said to be commutative if and only i f ^ " ' is a 
commuta t ive subset of [X]. 

Note t ha t if <Jé C [X], then ^ C-^ / y ' • T h e last theorem generalizes the 
third sufficient condition of Newburgh [11] for cont inui ty of ae. 

3.10 T H E O R E M . Let T G ^ c awd suppose p(T) ^ 0. / / //£gr<? w a neighborhood 
% of T in^~c such that % is commutative in the sense of the previous definition, 
then ae is continuous at T. 

Proof. Choose a G p(T). We can assume without loss of generality t ha t 
S G <% implies a G p(5) . Let J/ = {R(a, S); S G ^ } . From a theorem of 
Newburgh \\X\,,jVn = °tt" which i m p l i e s - # is a commuta t ive subset of [X]. 
From (2.8), JV is a neighborhood of R{a, T). I t follows from Theorem 4 in 
Newburgh [11] t ha t ae is continuous a t R(a, T). The remainder of the proof 
paraphrases t h a t of the previous theorem. 
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