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CONTINUITY PROPERTIES OF OPERATOR SPECTRA
NICHOLAS J. BEZAK AND MARTIN EISEN

1. Introduction. This paper is devoted to the study of convergence and
variation of operator spectra with respect to the distance G of Gokbburg and
Markus [5] for subspaces and linear operators in a Banach space. We use the
convention of Kato (7] and refer to convergence with respect to G as generalized
convergence. Letting T denote a linear operator and X\ a complex number, we
prove that the conjugate mapping ¢: 7 — T is continuous, where it is defined,
in Theorem 2.6 and that the extended resolvent R: (\, T) — (A — 7)1 is
jointly continuous in Theorem 2.8. Both theorems generalize well-known
results (confer [3; 7; 15]). An example of a sequence of bounded operators
which converge to an unbounded operator in the generalized sense is given.
We also prove that the spectrum mapping ¢, is upper semi-continuous on the
set of linear operators in a Banach space in Theorem 3.3 which generalizes
results of Newburgh [11] and Kato [7]. We extend to closed operators with
non-void resclvent sets the three sufficient conditions of Newburgh [11] for
continuity of ¢, at an operator 7 in Theorems 3.6, 3.9 and 3.10.

The terms subspace and operator mean linear manifold and linear operator,
respectively, in this paper. We employ the spectral notation and terminology
of Taylor [15] in the sequel. We are indebted to Dr. H. A. Gindler for helpful
conversations and suggestions in the formative stages of this research.

2. Generalized convergence. This section is devoted to investigating
some properties of the G-topology for subspaces and operators. Let X be a
non-trivial Banach space. We denote by .#(X) the class of subspaces of X
and ¥ (X) the class of closed subspaces of X. For ¥ € #(X), let Z(Y) denote
the set {y € V; ||y]| = 1} and let d(x, y) = ||x — || for x and y in X.

Let Y and Z be subspaces of X. The opening of ¥ and Z, 6(Y, Z), is defined
by
0(Y,Z) = max{ sup d(y, Z), sup d(z, Y)} ,
ye€Z(Y) 2€2( 2Z)

the definition being completed by setting 6(Y, Z) = 1 if one and only one of
Yor Zis {0} and ({0}, {0}) = 0. Here d(x, 4) = inf,ca ||x — y]|, for 4 C X.

This definition of opening is due to Krein, Krasnoselski, and Milman (8].
Gokhburg and Markus [5] defined the distance G by modifying the definition
of opening as follows: let D denote the Hausdorff distance [6] induced by d on
the class of non-void subsets of Z(X).
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Definiiion. For subspaces ¥ and Z of X, let

G(Y,Z) = DE(Y),2(2)) = max{ sup d(y,Z(Z)), sup d(z,E(Y))},
vEZ(Y) 2€2( 2)

if ¥V {0} Z, and let G(Y, Z) = 6(Y, Z), otherwise.

Since Z(X) has diameter £ 2, D is a pseudo-metric (see [2]). It follows that
G is a pseudo-metric for 4 (X) and a metric for ¥ (X). Moreover, G(Y, Z) =
G(Y, Z) for Y and Z in #(X) with bar denoting strong closure in X. It is
proved in [5] that if ¥ and Z belong to.#(X), then G(Y, Z)/2 < 6(Y, Z) <
G(Y, Z), so that G and 6 determine the same uniformity for #(X).

Let X’ denote the conjugate space of X. If 4 is a non-void subset of X,
let AL = {&’ € X'; 2'(x) = 0 for each x € 4} be the orthogonal complement
of 4 in X’. Itis known [12] that 8(Y, Z) = 6(Y+, Z1) for V, Z € M (X). This
proves the following lemma.

2.1 LEMMA. Define T on M (X) with values in ¥ (X') by setting T(Y) = VL.
Then T s conlinuous with respect to G.

For non-zero elements x and y in X, let
nx,y) = inf (& [lx — [ < (¢ = 1) min ([[x]], [ly]]).

Newburgh [10] proves that 7 is a metric for X — {0} and uses this function to
define a pseudo-metric 6 for the class of non-trivial subspaces of X as follows.
Let D be the Hausdorff distance induced by 7 on the class of non-void subsets
of X — {0} and for non-trivial subspaces ¥ and Z in X, let 6(V, Z) = D(V —
{0}, Z — {0}). Berkson [1] proves in Theorem 7.1 that § is equivalent to G.
We can use this fact to deduce further properties of G. Note that §(V, Z) =
6(¥, Z) for non-trivial subspaces ¥ and Z.

Let X and Y be non-trivial Banach spaces and let £ = X X Y be normed
into a Banach space by [|(x, ¥)|| = ||x]| + ||[y]], * € X, y € Y. We need the
notion of bounded subspace in E due to Newburgh [10].

Definition. A subspace Z of E is said to be bounded over X (respectively ¥)
if and only if there is a positive constant K depending only on Z such that
ll¥]| £ K||x|| (respectively, ||x|| £ K]||y||) for each (x,y) € Z.

Let P denote the mapping defined on .4 (E) with valuesin .# (X) by P(Z) =
{x; (x,y) € Z} and let Z (X, V) = {Z ¢ M (E); Z is bounded over X and

P(Z) = X}.

2.2 THEOREM. The class B (X, Y) is open in M (E) with respect to G.

Proof. We prove & (X, Y) is open with respect to 6. Let 0 < ¢ < log (3/2)
and choose Z, ¢ Z (X, V). From Lemmas 4 and 5 of Newburgh [10] there is
a 8 > 0 such that Z € A(E) and §(Z, Z,) < B implies 6(P(Z), P(Zy)) =
8(P(Z), X) < e. But this implies P(Z) = X from Lemma 3 of [10] and the
choice of .

https://doi.org/10.4153/CJM-1977-045-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1977-045-x

OPERATOR SPECTRA 431

A similar theorem can be deduced with the roles of X and Y interchanged.

Let .7 denote the class of linear operators 7" defined on domains D(7) C X
and having ranges R(7T) C Y and let .7 . denote the subset of closed operators
inJ . ForS, T €7, wedefine G(S, T') = G(graph S,graph T'), where graph .S
and graph T are considered as subspaces of E. G is then a pseudo-metric for.7~
and a metric for. 7 ..

For asubset 4 of E,let A=' = {(y,x); (x,y) € A}. Then we have G(Z,, Z)
= G(Z, Z,™Y) for Z, and Z, in A (E). The next theorem follows from this
observation.

2.3 THEOREM. The mapping v.: T — T~ defined on the set of invertible operators
I 1s continuous with respect to G.

For a closable operator T €.7, let T denote the minimal closed linear
extension of 7 i.e. graph T = graph 7. Note that G(S, T) = G(S, T) for
closable operators S and T inJ . Let [X, Y] = {T €9 ,; D(T) = X}. The
following theorem is a corollary to Theorem 2.3.

2.4 THEOREM. The set {T € F; T is closable and T € [X, Y1} is open inT .

Let 77 denote the conjugate of T if and only if D(T) = X and let & =
{T €9, D(T') = X}. Part (b) of the following lemma is due to Rota [13].

2.5 LEMMA. For T € 9 ,let H(T) = {(—=Tx,x);x € D(T)}. Then
(@) G(S,T) = G(H(S), H(T)), S, T €T ;
(b) graph T7 = H(T)+ for T € 9.

We denote by ¢ the mapping defined on & by ¢(T") = T’. The range of ¢
is a subset of the set of closed operators defined on domains in ¥’ and having
ranges in X'.

2.6 THEOREM. The mapping c 1is continuous.

Proof. Suppose {T,} is a sequence in & such that G —lim T, = T € 9.
Then G — lim, H(T,)*+ = H(T)L from (2.1) and Lemma 2.5(a). Hence,

G — lim, T,/ = T’ in view of the previous lemma.

Since the topologies of G and the operator norm are equivalent for [X, V]
(confer [1]), Theorem 2.6 generalized a well-known result (Dunford Schwartz
[3, p. 478]).

We assume in the sequel that X = Y and X is a complex Banach space. Let
[X, X] = [X] and let C denote the space of complex numbers. The proof of the
following lemma is taken from Bezak [2].

2.7 LEMMA. Let V denole the mapping defined on C X I with values inJ by
Y (N, T) = N — T. Then ¥ is jointly continuous.

Proof. Suppose { (\,, T,)} is a sequence in C X.7 such that lim, (\,, T,) =
(N, Ty) € C X.9 with respect to the product topology. Let 0 < ¢ < 1 and
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choose a positive integer N such that # = N implies

G(Tn, To) < and l)\n - )\ol < % .

€
6(1 + |no))?

Fix n = N and choose x € D(T) such that ||(x, (\, — T,)x)|| = 1. This im-
plies 0 < ||x|| £ 1. By hypothesis there is ¥ € D(T,) such that

el (x, Twx)||
[, Tx) — (v, Tay) || < 601+ )’
Then

H(x» ()\n - Tn)x) - (3’, (>\0 - TO)yH

S e = ol + 1T = Toyll 4 [ = Ay
el| G, Tnx)“ _ _
=8+ o2 T e Mol ol e = 5]
ellGe, Ti)|| | €
= 601+ o) T 6

Now [[(x, T2)[| = [lx]] + [[(Ov — Tl 4+ [\ = Nol [lx]] 4+ Ao [lx]] =
14 |Ao| + ¢/6,s0 that || (x, (\, — T2)x) — (v, (\o — T0)¥)|| < €/2. This proves
(a) sup {d(x, graph (\y — T9));x € Z (graph (A, — T3,))} = ¢/2.

On the other hand, choose y € D(T) such that |[[(y, (\e — To)y)|| = 1,
which implies 0 < ||y|] £ 1. There exists x € D(7,) such that
_ |, Twl|

Then [[(y, Tomll = [Iy[| + [[Toy — Ny + Nyl = 1 + [N and [N,] < [No] +
/6 |G Go — To)y) — (o O — TO)| S Jle — | + || Tx — Tepl] +
Ny — Nxl] = €/6(1 4 [Xo|) + Mo — NoJ =+ INJ ]2 — 9]] < €/2, which proves
(b) sup {d(¥, graph (\, — 73,)); % € Z (graph (\y — 1))} < ¢/2.
Combining (a) and (b) we obtain G(\, — T,, Ay — 19) < e for n = N which
proves the lemma.
We define the extended resolvent R on

D(R) = {(\,T) € CXT; (N— T)!exists)

by R(\, T) = (A — IT)~1. If T is a fixed operator in .7~ with non-void resolvent
set p(1"), then R restricted to p(7') X {I'} becomes the usual resolvent R of T

2.8 THEOREM. The mapping R is jointly continuous.

Proof. Let « and ¥ be the continuous mappings of (2.3) and (2.7), respective-
ly. Then R = ¢ oy, where ¢y = ¥/D(R) and ¢ = /Y[D(R)].

This section is concluded with an example of generalized convergence of
operators.
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Example. Let X = [?, 1 < p < 00 and let T be the operator in [X] having
the matrix representation (7,,) defined by 7', = 1ifm — n = land T,,, = 0,
otherwise, where m, n = 1,2, 3, .... Itis well-known (Taylor [15, pp. 266-267])
that p(T) = {N € C;|\ > 1}, I1,0(T) = {\ € C;|\ = 1}. Choose a sequence
{\} C p(T) such that lim, N\, = \, [\| = 1. Then {R()\,, T)} is a sequence in
[X] such that G — lim, R(\,, T) = R(\, T) from the continuity of R. Simi-
larly, if we choose {\,} C II.o(T) such that lim, N\, = X\, |[\| = 1, then
{R(\,, T)} is a sequence of unbounded operators which converge to the un-
bounded operator R(\, T).

3. Continuity properties of operator spectra. In this section we investi-
gate variation in the spectra of operators with respect to G. Let X be a complex
Banach space and let C, denote the extended complex plane topologized by the
chordal metric x. Let .¥ denote the class of non-void closed subsets of C..
It is proved in Gindler and Taylor [4] that p(7") and II1I1,6(T") are open sub-
sets of C, for T €.7 . Therefore, the extended spectrum o,(7) and the set
co(T) — IIIe(T) are in ¥ for each T €. . We denote by ¢, the spectrum
mapping defined on. 7~ with values in ¥ by setting ¢,(7") to be the extended
spectrum of 7. We also define the spectrum boundary mapping 6o, on .7
with values in . by 86,(T) = ¢.(T) — II11,o(T).

We need the notions of upper and lower semi-continuity. Let ¥ be a topologi-
cal space and let.o/ be the class of non-void subsets of ¥ topologized by the
upper and lower semi-finite topologies (confer Michael [9]). Consider a map-
ping f of a topological space X into.?Z. Then f is upper (respectively, lower)
semi-continuwous at x € X if and only if f is continuous with respect to the
upper (respectively, lower) semi-finite topology. We have the following result

[2].

3.1 THEOREM. For a topological space X and a metric space (Y, d) of finite
diameter, let D be the Hausdorff distance induced by d on the class & of non-void
subsets of V. If f maps X into ., then f is upper and lower semi-continuous at
x € X 1f f 1s continuous at x with respect to D. Conversely, if f is upper and lower
semi-continuous at x and f(x) is a compact subset of YV, then f is continuous at x
with respect to D.

Proof. Suppose f is continuous at x € X with respect to D. Let U be an
open subset of ¥V such that f(x) C U. We can choose ¢ > 0 so that N(e) =
{z € Y;d(z,9) < eforsomey€ f(x)} C U.Let# = {B¢c.oZ;D(f(x), B) < ¢l.
By hypothesis there is a neighborhood V of x such that f[V] € # which
implies f[V] C U and proves that f is upper semi-continuous at x. If Uy is a
neighborhood of y € f(x), then z € V implies f(z) M U,y 5% ¢. This proves f is
lower semi-continuous at x.

Conversely, suppose f is upper and lower semi-continuous at x and f(x) is
compact. We can choose yi1, 2, ..., ¥, in f(x) and ¢ > 0 such that f(x) C
U= Uiz Uy €), where U(y;, €) = {z € V; d(ys 2) < ¢}. From upper
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semi-continuity there is a neighborhood Vj of x such that f[1/y] C U. From
lower semi-continuity there are neighborhoods V'; of x such thatz € V; implies
fEONUlyy ) #£0,1=1,2, ..., n Let V=i Vi If 26V, then
f(z) C U. It follows that D(f(x), f(z)) = ¢ which completes the proof.

Let D denote the Hausdorff distance induced by the chordal metric x.
Since each closed subset of C,, is compact, we have the following corollary to
the previous theorem.

3.2 COROLLARY. ¢, (respectively, 6a,) is continuous at T € .F with respect Lo
G and D if and only if o, (respectively, da,) 1s upper and lower semi-continious
atT.

Newburgh [11] proved that ¢, is upper semi-continuous on [X]. Kato [7]
proved that o, is upper semi-continuous with respect to G on the set of closed
operators with non-void resolvent sets. The following theorem extends these
results.

3.3 THEOREM. The mappings o, and éc, are upper semi-continuous on J .

Proof. We only prove the assertion for ¢,; the proof for és, is similar. Let
T €9 and assume without loss of generality that o,(7") # C,. Choose a
proper open subset U of C, such that ¢,(7°) C U and select A\ ¢ U. Then
R\, T) € C[X] ={T €9 ;Tisbcunded and T € [X]}. In view of (2.4) and
(2.8) we can choose neighborhoods % of R(\, T°) in C[X] and ¥ of T such that
S € implies R(\, S) € % and \ € ¢,(S). This proves ¢,(S) C U for each
S € ¥ which proves the assertion.

3.4 THEOREM. If o, is continuwous at T € Z, then o, 1s continuous at T".

Proof. The assertion is a consequence of Theorem 2.6 and the fact that
a (1) = o, (17).

We use the notion of Cauchy domain due to Taylor [14]. A Cauchy domain A
is an open subset of C, which consists of a finite number of components and
has a closed rectifiable boundary denoted b(A); moreover, the closures of its
components are mutually disjoint. We also employ the operational calculus
of Taylor [14]. For a closed operator T in.7 such that p(7) # 0, let

E() = 61 + = f RO\, T,
271 J )

where ¢ is a spectral set of 7', A is a Cauchy domain containing ¢,(7") and
the integration is performed in the usual counterclockwise sense on b(A). Here
I is the identity operatoron X.6 = 1if 0 € gandé = 0, otherwise (see [14]).
The following lemma occurs in [2].

3.5 LEmMmA. Suppose G — lim, T, = T, where each T, and T are either closed
operators in I~ or operators in I wilh strongly dense domains in X and have non-
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void resolvent sets. Let o be a non-void spectral set of T and let A be o Cauchy
domain such that ¢ C A and AN (6,(T") — o) = 0. Then a positive integer N
can be found such thatn = N implies o,(T) N A # 0.

Proof. Suppose { T} and T are closed operators. If ¢ = ¢,(7"), the assertion
is a consequence of the upper semi-continuity of o, Assume ¢ = o,(7) and
the assertion is false. There is a subsequence { 75y} of {77} such that ¢,(7 )
NA=0,i=1,2,....From Theorem 2.8 lim, R(\, T\,(») = R(\, T°) uni-
formily for X € b(A) because b(A) is compact. Therefore,

lim f R()\, Tnu))d)\ = f lim R()\, Tﬂ(1))d)\ = f R()\, T)d)\ = 0.
i b(4) GV b(a)

Hence, E(¢) = 61. If 0 € ¢, then E(¢) = I implying ¢ = o¢,(7"), a contradic-
tion of hypothesis. If 0 ¢ ¢, then E(¢) = 0 which implies that ¢ is void. In
either case a contradiction is obtained which proves the assertion. For the
case when each T, and T have strongly dense domains in X, we apply the proof
just completed to the conjugates 75’ and 7”7 which completes the proof of
the lemma.

The first sufficient condition of Newburgh [11] for continuity of ¢, is general-
ized in the following theorem.

3.6 THEOREM. If T" € I is either closed or has strongly dense domain in X and
a.(1") is tolally disconnected, then o, is continuous at 1" with respect to G.

Proof. Let U be a neighborhood of N\ € ¢,(7"). By hypothesis there is a
spectral set ¢ of 7" such that A € ¢ C U. From a theorem of Taylor [14] there
is a Cauchy domain A such that s CACAC U. lf G — lim, T, = T, then
from the previous lemma there is an integer N such that ¢.(7,) M A 5 @,
n = N. Hence, o, is lower semi-continuous at 7. The assertion follows from
Corollary 3.2 and Theorem 3.3.

We fix o € C and define the set function g at a non-void subset 4 of C_
by g(4) = {a + p~'; u € A}. Since the mapping p — a 4+ u~! is a homeo-
morphism of C, onto itself, we have the following lemma.

3.7 LEMMA. The mapping g is continuous on the class ¥ of non-void closed
subsets of C, with respect to D, the Hausdorff distance induced by x on .

We have the following theorem due to Taylor [14].

3.8 THEOREM. Let T € J be a closed operator and suppose p(T) 5% . Fix
a€ p(T)andlet T, = —R(a, T). Then

@ a4+ pt€p(D)ifand onlyif u € p(1%);

D)a+ ut € o (T)ifand onlyif u € o¢(Ty).

For S, T €., we define the product ST on
D(ST) = {x;x € D(T) and Tx € D(S)}
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by (ST)x = S(Tx). Then ST € .9 for each S, T €.7 . The following theorem
generalizes the second sufficient condition of Newburgh [11] for continuity
of o,.

3.9 THEOREM. Lel 1" €.7 ., the subset of closed operators in. 7, and suppose
o(T) # ¢. If there is a neighborhood U of T in. T . such that S € U implies
D(ST) = D(TS) and SR = TS, then o,1s continuous at T.

Proof. Choose a proper open subset U of C,, such that ¢,(T) C U. Since o,
is upper semi-continuous at 7, we can assume that S ¢ % implies ¢,(S) C U.
Choose « € C,— U. If SC U, then (a = 1) (e —9S) = (@ —S) (e — T") which
implies R(a, T)R («,S) = R(ee, S)R (@, T'). Wealso have the fact that [X]isopen
in 7, (confer Berkson [1]). It follows from these results and Theorem 2.8 that
the set W = {R{a, S); S € %} is a neighborhood in [ X] which satisfies the
conditions of Theorem 4 in Newburgh [11]. Hence, ¢, is continuous at R (a, 1).
Let g be the function of Lemma 3.7. Then from (3.7) and (3.8) ¢ is continuous
at o,(R(e, 7)) and g(o,(R(a, T))) = o.(I). Let # be a neighborhood of
o.(T) in.%. We can, therefore, choose a neighborhood %, C % of T such that
S € U, implies ¢,(S) € % . The details are given in [2]. This completes the
proof.

Definition. Let# be a subset of I~ and set
M = {T;T € [X],DST) = D(TS) and ST = TS for each S € .M}

and A" = (M"). Then A is said to be commutative if and ounly if A" is a
commutative subset of [X].

Note that if 4 C [X], then A C.#". The last theorem generalizes the
third sufficient condition of Newburgh [11] for continuity of o,.

3.10 THEOREM. Let T € .J , and suppose p(T) == @. If there is a neighborhood
U of T inT , such that U is commutative in the sense of the previous definition,
then o, 1s continuous at 1.

Proof. Choose a € p(T). We can assume without loss of generality that
S € % implies « € p(S). Let &/ = {R(a, S); S € %}. From a theorem of
Newburgh [11], 4" = /' which implies. 4 is a commutative subset of [X].
From (2.8),.4 is a neighborhood of R(a, T). It follows from Theorem 4 in
Newburgh [11] that ¢, is continuous at R(«, 7). The remainder of the proof
paraphrases that of the previous theorem.
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